贵州省毕节地区2011年中考数学模拟试题及答案
- 格式:doc
- 大小:217.85 KB
- 文档页数:8
某某某某2011年中考数学试题分类解析汇编专题6:函数的图象与性质一、选择题1. (某某某某3分)抛物线y=ax 2+bx+c (a≠0)的图象如图所示,则下列说法正确的是A 、b 2﹣4ac <0B 、abc <0C 、12ba-<- D 、a ﹣b+c <0 【答案】C 。
【考点】二次函数图象与系数的关系【分析】A 、由图象与x 轴有两个交点,因此b 2-4ac >0,故本选项错误;B 、由图象顶点在y 轴左边,得02ba-<,即0ab>,由图象与y 轴交于x 轴上方,得c >0,因此abc >0,故本选项错误;C 、由图象对称轴在 x=-1左边,得12ba-<-,故本选项正确;D 、x=-1时函数图象上的点在第二象限,所以a -b+c >0,故本选项错误。
故选C 。
2.(某某某某3分)已知正比例函数y=ax 与反比例函数xky =在同一坐标系中的图象如图,判断二次函数y=ax 2+k 在坐系中的大致图象是【答案】B 。
【考点】正比例、反比例和二次函数的图象和性质。
【分析】根据正比例函数的图象和性质,由所给正比例函数y=ax 的图象知a<0;根据反比例函数的图象和性质,由所给正比例函数xk y =的图象知k>0。
因此根据二次函数的图象和性质,对于二次函数y=ax 2+k , a<0,图象开口向下;k>0图象与y 轴交点在x 轴上方。
故选项B 正确。
3.(某某某某3分)函数m mx y -=与xmy =(0≠m )在同一直角坐标系中的图像可能是y B (0,3) A (1,0)x =-1ox【答案】D 。
【考点】一次函数和反比例函数的图象特征。
【分析】若0m >,函数y mx m =-的图象经过一、四、三象限,函数my x=的图象经过一、三象限,所以无适合选项;若0m <,函数y mx m =-的图象经过二、一、四象限,函数my x=的图象经过二、四象限,所以选项D 适合。
2011贵州中考数学模拟试题班级:_________ 姓名:_________ 得分:_________一、填空题(每小题3分,共24分)1.4的平方根是______,-8的立方根是______.2.函数y =12++x x 中,自变量x 的取值范围是______. 3.不等式3x -6<0的解集是______,方程32-x =1的解是______. 4.点P (-1,2)关于x 轴的对称点的坐标是______,点P (-1,2)关于原点的对称点的坐标是______.5.如图1,在△ABC 中,DE ∥BC ,且DE =3 cm ,DB AD =21,则BC =______cm ,ABCADE S S ∆∆ =______.图1 图2 图36.如图2,由一个边长为a 的小正方形与两个长、宽分别为a 、b 的小矩形拼接成矩形ABCD ,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式:_______________________________________________________________________.7.边长为2 cm 的正六边形的外接圆半径是______cm ,内切圆半径是_____cm .(结果保留根号)8.为了绿色北京,北京市现在执行严格的机动车尾气排放标准,同时正在不断设法减少工业及民用燃料所造成的污染,随着每年10亿立方米的天然气输到北京,北京每年将少烧300万吨煤,这样,到2006年底,北京的空气质量将会基本达到发达国家城市水平,某单位1个月用煤30吨,若改用天然气,一年大约要用______立方米的天然气。
(用科学记数法表示)二、选择题(本大题共4小题,每小题3分,共12分)9.不等式组⎪⎩⎪⎨⎧>+≤--x x a x x 324)2(3无解,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a >1 D .a ≥110.如图3,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM ≤5;B .4≤OM ≤5;C .3<OM <5;D .4<OM <511.如图4,点P 是x 轴上的一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,当点P 沿x 轴的正方向运动时,Rt △QOP 的面积( )图4 图5A .逐渐增大;B .逐渐减小C .保持不变;D .无法确定12.斜拉桥是利用一组组钢索,把桥面重力传递到耸立在两侧的高塔上的桥梁,它不须建造桥墩.如图5中A 1B 1、A 2B 2、…、A 5B 5是斜拉桥上5条互相平行的钢索,并且B 1、B 2、B 3、B 4、B 5被均匀地固定在桥上.如果最长的钢索A 1B 1=80 m ,最短的钢索A 5B 5=20 m ,那么钢索A 3B 3、A 2B 2的长分别为( )A .50 m 、65 mB .50 m 、35 mC .50 m 、57.5 mD .40 m 、42.5 m三、计算题(本大题共2小题,每小题5分,共10分)13.18+121+-821. 14.(y x y x +--11)÷222yx xy -.四、解答题(每小题7分,共14分)15.已知一次函数的图象与双曲线y =-x2交于点(-1,m ),且过点(0,1),求该一次函数的解析式.16.已知:如图,在梯形ABCD 中,AB ∥CD ,BC =CD ,AD ⊥BD ,E 为AB 中点,求证四边形BCDE 是菱形.五、解答题(本大题共2小题,每小题9分,共18分)17.如图,⊙O 1与⊙O 2相交于A 、B 两点,过点B 的直线交⊙O 1、⊙O 2于C 、D , 的中点为M ,AM 交⊙O 1于E ,交CD 于F ,连CE 、AD 、DM .(1)求证:AM ·EF =DM ·CE ; (2)求证:MA MF CE EF 22; (3)若BC =5,BD =7,CF =2DF ,AM =4MF ,求MF 和CE 的长.18.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-10.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是多少?(3)第几分时,学生的接受能力最强?六、解答题(10分)19.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索实践一:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图8的测量方案:图8 图9把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度(精确到0.1米).实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪(能测量仰角、俯角的仪器)一架.请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是(用工具的序号填写)______;(2)在图9中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a、b、c、 等表示测得的数据______;(4)写出求树高的算式:AB=_________________________.七、解答题(12分)20.阅读下列材料:如图10,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2的外公切线,A、B为切点,求证:AC⊥B C.图10 图11证明:过点C作⊙O1和⊙O2的内公切线交AB于D.∵DA、DC是⊙O1的切线,∴DA=D C.∴∠DAC=∠DC A.同理∠DCB=∠DB C.又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,∴∠DCA+∠DCB=90°,即AC⊥B C.根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图11).已知A、B两点的坐标为(-4,0)、(1,0),求经过A、B、C三点的抛物线y=ax2+bx +c的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.参考答案1.±2 -2 2.x ≥-2且x ≠-1 3.x <2 x =54.(-1,-2) (1,-2) 5.9 916.a 2+2ab =a (a +2b ) a (a +b )+ab =a (a +2b )a (a +2b )-a (a +b )=ab a (a +2b )-ab =a (a +b )等7.2 38.1.2×105(提示:10×108∶300×104=x ∶30×12,x =1.2×105)二、9.B 10.A 11.C 12.A三、13.-1 14.xy2 四、15.y =-x +1 16.证CD =DE =CB =BE五、17.(1)连AB ,证△CEF ∽△ADM(2)由CE ∥DM ,有DMME CE EF =, 由△CEF ∽△ADM ,有AM MD CE FE =,则22CEEF =DM MF ·AM MD =MA MF (3)先求MF 长,MF =2,再求CE 长,CE =8.18.(1)y =-0.1x 2+2.6x +43=-0.1(x -13)3+59.9,所以,当0≤x ≤13时,学生的接受能力逐步增强,当13<x ≤30时,学生的接受能力逐步下降.(2)当x =10时y =-0.1(10-13)2+59.9=59.第10分时,学生的接受能力为59.(3)x =13时,y 取得最大值,所以,在第13分时,学生的接受能力最强. 六、19.实践一:∵ ∠CED =∠AEB ,∠CDE =∠ABE =Rt ∠,∴ △CED ∽△AE B .∴BE AB DE CD =. ∴ 7.87.26.1AB =,∴ AB ≈5.2米. 实践二:(1)①② (2)示意图略 (3)CD =a ,BD =b (4)a +b七、20.解:(1)切线长定理,等腰三角形的性质定理,三角形的内角和等于180°等(2)由题意OA =4,OB =1,AC ⊥BC ,Rt △ACB 中,∵ AC ⊥BC ,CO ⊥AB ,∴ △BOC ∽△CO A .∴ OAOC OC OB =,OC 2=OA ·OB ,∴ OC 2=4,OC =2. ∴ 点C (0,-2)设y =a (x +4)(x -1),代入点C (0,-2)有:-2=-4a . ∴ a =21.∴ y =21(x +4)(x -1).即y =21x 2+23x -2.(3)解法一:设⊙O 1的半径为R ,⊙O 2的半径为r .连O 1A 、O 2B 、O 1O 2,过O 2作O 2H ⊥O 1A 于H .在Rt △O 1O 2H 中,O 1H =R -r ,O 1O 2=R +r ,HO 2=AB =5, 在梯形ABO 2O 1中,41==OA OB R r . ∴ ⎪⎩⎪⎨⎧=+=-+.4,)()(5222r R r R r R ∴ R =5,r =45.∴ 梯形AO 1O 2B 的中位线长为:21(R +r )=21(5+45)=825. ∵ 由抛物线的对称性知,梯形中位线在对称轴上. ∴ O 1O 2的中点坐标是(-23,-825). ∵ y =21(x +23)2-825,∴ 顶点P (-23,-825). ∴ 抛物线的顶点在O 1O 2的连心线上.解法二:(接解法一)由R =5,A (-4,0),C (0,-2),∴ 点O 1=(-4,-5).设过点O 1、O 2的直线为y =kx +b , 又点C 在连心线O 1、O 2上,∴ ⎩⎨⎧+-=-=-b k b 452∴ ⎪⎩⎪⎨⎧-==243b k ∴ y =43x -2.当x =-23时,y =43×(-23)-2=-825. ∴ 顶点(-23,-825)在连心线O 1O 2上.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的算术平方根是()A. B. C.D.试题2:2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学计数法表示为()A. B. C. D.试题3:下列运算正确的是()A. B.C. D.试题4:图中是一个少数名族手鼓的轮廓图,其主视图是()评卷人得分试题5:为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52C.53D.54试题6:到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B. 三条角平分线的交点C.三条中线的交点D. 三条边的垂直平分线的交点试题7:估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间试题8:如图,直线a//b,则()A. B. C.D.试题9:已知关于的方程是二元一次方程,则的值为()A. B.C. D.试题10:如图,点A为反比例函数图象上一点,过A作AB轴于点B,链接OA, 则的面积为()试题11:下列语句正确的是()A.对角线互相垂直的的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形试题12:如图,点A,B,C在☉O上,则( )A. B. C. D.试题13:为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树棵,则列出的方程为()A. B.C. D.试题14:一次函数与二次函数在同一个坐标系中的图象可能是()试题15:如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH 的长是()A.3B.4C.5D.6试题16:分解因式试题17:若则的值为。
2011年毕节地区中考试题数 学(满分150分,考试用时120分钟)卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分。
在每小题选项中,只有一个选项正确,请把你认为正确的选项涂在相应的答题卡上。
) 1. (2011贵州毕节,1,3分)16的算术平方根是( )A .4B .±4C .2D .±2 【答案】C2. (2011贵州毕节,2,3分)下列交通标志中,是中心对称图形的是( )A .B .C .D . 【答案】D3. (2011贵州毕节,3,3分)将下图所示的Rt △ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )A B C D【答案】C4. (2011贵州毕节,4,3分)下列计算正确的是( ) A .623a a a =⋅ B .1055a a a =+C .2236)3(a a =- D .723)(a a a =⋅【答案】D5. (2011贵州毕节,5,3分)毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把己开发水能资源用四舍五入法保留两个有效数学并且用科学计数法表示应记为( )千瓦 A .51016⨯ B .6106.1⨯ C .610160⨯ D .71016.0⨯【答案】B6. (2011贵州毕节,6,3分)为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是( ) A .41 B .21 C .91 D .92【答案】D7. (2011贵州毕节,7,3分)两个相似多边形的面积比是16:9,其中较小多边形周长为36cm ,则较大多边形周长为( )A .48cmB .54cmC .56cmD .64cm【答案】A8. (2011贵州毕节,8,3分)函数12-+=x x y 中自变量x 的取值范围是( ) A .x ≥-2 B .x ≥-2且x ≠1 C .x ≠1 D .x ≥-2或x ≠1【答案】B 9. (2011贵州毕节,9,3分)一次函数)0(≠+=k k kx y 和反比例函数)0(≠=k xky 在同一直角坐标系中的图象大致是( )【答案】C10. (2011贵州毕节,10,3分)广州亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,下列所列方程正确的是( )A .128%)1(1602=+a B .128%)1(1602=-a C .128%)21(160=-a D .128%)1(160=-a【答案】B11. (2011贵州毕节,11,3分)如图,已知AB ∥CD ,∠E =︒28,∠C =︒52,则∠EAB 的度数是( )A .︒28B .︒52C .︒70D .︒80【答案】D12. (2011贵州毕节,12,3分)如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .32cm D .52cm【答案】C13. (2011贵州毕节,13,3分)如图,已知AB =AC ,∠A =︒36,AB 的中垂线MD 交AC 于点D 、交AB 于点M 。
2011年中考数学《数与式》单元复习(一)重点、难点、易错点1.重点:①实数与数轴上点的对应关系,利用数轴解决数的有关问题。
②科学记数法、有效数字及实数的运算。
③整式的有关概念的理解;正确进行整式的计算。
④分式、二次根式的有关概念,性质及运算.2.难点:①有效数字的理解、实数的运算的灵活运用。
②同底数幂的运算法则的运用。
③因式分解基本方法的灵活运用。
④理解分式、二次根式的意义。
3.易错点:①对无理数的常见类型掌握不全.②在确定近似数的精确度和有效数字时,易忽略小数点后的“0”.③同底幂的乘法和整式的加减法运算易混淆.④提取公因式时,若有一项被全部提出时,易忽略括号内的项“1”,误以为是“0"。
⑤易忽略二次根式运算结果必须是最简二次根式。
⑥忽略根式中隐含条件对变形的影响。
(二)基本数学思想与方法1.基本数学思想:①转化思想。
②分类讨论思想.③数形结合思想.- 1 -- 2 - ④整体思想。
2.基本方法:①数轴图示法。
②分母有理化.③因式分解。
④配方法.⑤公式法等。
(三)主要考点和典型例题考点1:实数的概念例1.(2010巴中中考试题) 下列各数:2π,0,9,0。
23·,cos60°,722,0。
303003……, 21-中无理数个数为( )A .2 个B .3 个C .4 个D .5 个解:选B 。
分析:,0,0.23·,227,cos60°=21,化简后也是有理数;所以2π,0。
303003……,1B 。
点评:一个数是无理数必须满足下列两个条件:(1)无限小数;(2)是不循环小数,二者缺一不可。
对实数分类不能只看表面形式,应根据结果去判断。
如2)22(2=-是整式、有理数,不是无理数。
在复习中要注意常见的几种无理数:①根号型:2,8等开方开不尽的数;②三角函数型:060sin ,030tan 等;③构造型:如1。
323223…;④与π有关的,如π-1,3π等。
xx学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣2的相反数是()A.±2 B.2 C.﹣2 D.试题2:如图所示的几何体的主视图是()A.B.C.D.试题3:2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学记数法表示为()A.10.7×104B.1.07×105C.107×103D.0.107×106试题4:实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.4评卷人得分试题5:估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间试题6:下列计算正确的是()A.a3•a3=2a3B.a3÷a=a3C.a+a=2a D.(a3)2=a5试题7:已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16 B.20或16 C.20 D.12试题8:在下列图形中既是轴对称图形又是中心对称图形的是()①线段,②角,③等边三角形,④圆,⑤平行四边形,⑥矩形.A.③④⑥B.①③⑥C.④⑤⑥D.①④⑥试题9:数据4,7,4,8,6,6,9,4的众数和中位数是()A.6,9 B.4,8 C.6,8 D.4,6试题10:分式方程的解是()A.x=﹣3 B.C.x=3 D.无解试题11:如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°试题12:如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A.5 B.10 C.8 D.6试题13:一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A.k>0,b>0 B.k<0,b>0 C.k<0,b<0 D.k>0,b<0试题14:将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3试题15:在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°试题16:二元一次方程组的解是.试题17:正八边形的一个内角的度数是135 度.试题18:已知⊙O1与⊙O2的半径分别是a,b,且a、b满足,圆心距O1O2=5,则两圆的位置关系是外切.试题19:已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是10π cm3(结果保留π)试题20:一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).试题21:计算:.试题22:甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.试题23:先化简,再求值.,其中m=2.试题24:)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.试题25:四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转90 度得到;(3)若BC=8,DE=6,求△AEF的面积.试题26:如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)试题27:如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD 相似?若存在请求出P点的坐标;若不存在,请说明理由.试题1答案:考点:相反数.分析:根据只有符号不同的两个数互为相反数即可求解.解答:解:﹣2的相反数为2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.试题2答案:考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.试题3答案:考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将107000用科学记数法表示为1.07×105.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题4答案:考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:﹣π,0.1010010001….共有2个.故选B.点评:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.试题5答案:考点:估算无理数的大小.分析:11介于9与16之间,即9<11<16,则利用不等式的性质可以求得介于3与4之间.解答:解:∵9<11<16,∴3<<4,即的值在3与4之间.故选C.点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.试题6答案:考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:结合各选项分别进行同底数幂的乘法、同底数幂的除法、合并同类项、幂的乘方等运算,然后选出正确选项即可.解答:解:A、a3•a3=a6,原式计算错误,故本选项错误;B、a3÷a=a3﹣1=a2,原式计算错误,故本选项错误;C、a+a=2a,原式计算正确,故本选项正确;D、(a3)2=a6,原式计算错误,故本选项错误.故选C.点评:本题考查了同底数幂的除法、同底数幂的乘法、幂的乘方等运算,属于基础题,掌握各运算法则是解题的关键.试题7答案:考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为4和8两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;②当4为腰时,其它两边为4和8,∵4+4=8,∴不能构成三角形,故舍去,∴答案只有20.故选C.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.试题8答案:考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,不是中心对称图形;④是轴对称图形,也是中心对称图形;⑤不是轴对称图形,是中心对称图形;⑥是轴对称图形,也是中心对称图形;综上可得既是轴对称图形又是中心对称图形的有:①④⑥.故选D.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.试题9答案:考点:众数;中位数.分析:根据众数和中位数的定义求解即可.解答:解:数据4出现3次,次数最多,所以众数是4;数据按从小到大排列:4,4,4,6,6,7,8,9,中位数是(6+6)÷2=6.故选D.点评:本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.试题10答案:考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解.故选C.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.试题11答案:考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质可得∠CFE=45°,再根据三角形内角与外角的关系可得∠E+∠D=∠CFE.解答:解:∵AB∥CD,∴∠ABE=∠CFE,∵∠EBA=45°,∴∠CFE=45°,∴∠E+∠D=∠CFE=45°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的关系,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.试题12答案:考点:垂径定理;勾股定理.专题:探究型.分析:连接OB,先根据垂径定理求出BC的长,在Rt△OBC中利用勾股定理即可得出OB的长度.解答:解:连接OB,∵OC⊥AB,AB=8,∴BC=AB=×8=4,在Rt△OBC中,OB===.故选A.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.试题13答案:考点:反比例函数与一次函数的交点问题.分析:本题需先判断出一次函数y=kx+b与反比例函数的图象在哪个象限内,再判断出k、b的大小即可.解答:解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0又∵反比例函数的图象经过二、四象限,∴k<0.综上所述,k<0,b<0.故选C.点评:本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意图象在哪个象限内,是解题的关键.试题14答案:考点:二次函数图象与几何变换.分析:由二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,根据平移的性质,即可求得所得图象的函数解析式.注意二次函数平移的规律为:左加右减,上加下减.解答:解:∵二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,∴所得图象的函数解析式是:y=(x﹣1)2+3.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.试题15答案:考点:切线的性质;等腰直角三角形.分析:首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.解答:解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选A.点评:此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.试题16答案:考点:解二元一次方程组.专题:计算题.分析:根据y的系数互为相反数,利用加减消元法求解即可.解答:解:,①+②得,4x=12,解得x=3,把x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.故答案为:.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.试题17答案:考点:多边形内角与外角.分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为:×1080°=135°.故答案为:135.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).试题18答案:考点:圆与圆的位置关系;非负数的性质:绝对值;非负数的性质:算术平方根.首先根据求得a、b的值,然后根据半径与圆心距的关系求解即可.解答:解:∵,∴a﹣2=0,3﹣b=0解得:a=2,b=3∵圆心距O1O2=5,∴2+3=5∴两圆外切,故答案为:外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.试题19答案:考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解答:解:圆锥的侧面积=2π×2×5÷2=10π.故答案为:10π.点评:本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.试题20答案:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.分析:把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.解答:解:∵一次函数y=kx+1的图象经过(1,2),∴2=k+1,解得,k=1.则反比例函数解析式为y=,∴当x=2时,y=.故答案是:.点评:本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.试题21答案:考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等运算,然后按照实数的运算法则计算即可.解答:解:原式=1+5+2﹣3﹣2=3.点评:本题考查了实数的运算,涉及了零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等知识,属于基础题.试题22答案:游戏公平性;列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为偶数情况,再利用概率公式即可求得答案;(2)分别求得甲、乙两人获胜的概率,比较大小,即可得这个游戏规则对甲、乙双方是否公平.解答:解:(1)画树状图得:∵共有6种等可能的结果,两数之和为偶数的有2种情况;∴甲获胜的概率为: =;(2)不公平.理由:∵数字之和为奇数的有4种情况,∴P(乙获胜)==,∴P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.试题23答案:考点:分式的化简求值.专题:计算题.原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分,并利用同分母分式的加法法则计算得到最简结果,将m的值代入计算即可求出值.解答:解:原式=•+=+==,当m=2时,原式==2.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.试题24答案:考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.解答:解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.点评:此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.试题25答案:考点:旋转的性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠EBF=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE 绕旋转中心 A点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.解答:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是DCB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50(平方单位).点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.试题26答案:考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设EC=x,则在Rt△BCE中,BC=EC=x;在Rt△BCD中,CD=BC=3x;在Rt△ACD中,AC=AB+BC=73.2+x,CD=3x,利用关系式AC=CD列方程求出x;塔高DE=CD﹣EC=2x可以求出.解答:解:设EC=x(米),在Rt△BCE中,∠EBC=30°,∴BC==x;在Rt△BCD中,∠DBC=60°,∴CD=BC•tan60°=x•=3x;在Rt△ACD中,∠DBC=45°,∴AC=CD,即:73.2+x=3x,解得:x=12.2(3+).塔高DE=CD﹣EC=3x﹣x=2x=2×12.2(3+)=24.4(3+)≈115.5(米).答:塔高DE约为115.5米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度,难度一般.试题27答案:考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式,点B坐标可由对称性质得到,或令y=0,由解析式得到;(2)关键是求出点D的坐标,然后利用勾股定理分别求出四边形ABCD四个边的长度;(3)本问为存在型问题.可以先假设存在,然后按照题意条件求点P的坐标,如果能求出则点P存在,否则不存在.注意三角形相似有两种情形,需要分类讨论.解答:解:(1)∵点A(1,0)和点C(0,1)在抛物线y=ax2+b上,∴,解得:a=﹣1,b=1,∴抛物线的解析式为:y=﹣x2+1,抛物线的对称轴为y轴,则点B与点A(1,0)关于y轴对称,∴B(﹣1,0).(2)设过点A(1,0),C(0,1)的直线解析式为y=kx+b,可得:,解得k=﹣1,b=1,∴y=﹣x+1.∵BD∥CA,∴可设直线BD的解析式为y=﹣x+n,∵点B(﹣1,0)在直线BD上,∴0=1+n,得n=﹣1,∴直线BD的解析式为:y=﹣x﹣1.将y=﹣x﹣1代入抛物线的解析式,得:﹣x﹣1=﹣x2+1,解得:x1=2,x2=﹣1,∵B点横坐标为﹣1,则D点横坐标为2,D点纵坐标为y=﹣2﹣1=﹣3,∴D点坐标为(2,﹣3).如答图①所示,过点D作DN⊥x轴于点N,则DN=3,AN=1,BN=3,在Rt△BDN中,BN=DN=3,由勾股定理得:BD=;在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=;又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=;∴四边形ABCD的周长为:AC+BC+BD+AD=+++=+.(3)假设存在这样的点P,则△BPE与△CBD相似有两种情形:(I)若△BPE∽△BDC,如答图②所示,则有,即,∴PE=3BE.设OE=m(m>0),则E(﹣m,0),BE=1﹣m,PE=3BE=3﹣3m,∴点P的坐标为(﹣m,3﹣3m).∵点P在抛物线y=﹣x2+1上,∴3﹣3m=﹣(﹣m)2+1,解得m=1或m=2,当m=1时,点E与点B重合,故舍去;当m=2时,点E在OB左侧,点P在x轴下方,不符合题意,故舍去.因此,此种情况不存在;(II)若△EBP∽△BDC,如答图③所示,则有,即,∴BE=3PE.设OE=m(m>0),则E(m,0),BE=1+m,PE=BE=(1+m)=+m,∴点P的坐标为(m, +m).∵点P在抛物线y=﹣x2+1上,∴+m=﹣(m)2+1,解得m=﹣1或m=,∵m>0,故m=1舍去,∴m=,点P的纵坐标为: +m=+×=,∴点P的坐标为(,).综上所述,存在点P,使以B、P、E为顶点的三角形与△CBD相似,点P的坐标为(,).点评:本题是代数几何综合题,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、相似三角形的判定与性质、勾股定理等重要知识点.第(2)问的解题要点是求出点D的坐标,第(3)问的解题要点是分类讨论.。
D 2010—2011学年第二学期期中测试初三数学试卷命题人:徐惠忠复核人:缪月红 (满分130分,考试时间120分钟)一、选择题(每题3分,共30分,请在答题卡指定区域内作答)1、-3的倒数是…………………………………………………………………………( )A . 3B . 31-C .-3D .31 2、下列运算中,结果正确的是…………………………………………………………( ) A .()532x x = B .()222y x y x +=+ C .532x x x =+ D .633x x x =⋅3、下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( )4、已知33-=-y x ,则y x 35+-的值是………………………………………………( ) A . 2 B .5 C .8 D .05、下列调查适合作普查的是………………………………………………………………( ) A .了解在校大学生的主要娱乐方式 B .了解无锡市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查6、如图:是由几个相同的小正方体搭成的一个几何体,它的左视图是…………………( )O 1O 2可能取的值 )8、已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是…………………( ) A .220cmB .220cm πC .210cm πD .25cm π9、下图是章老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图像,若用黑点表示章老师家的位置,则章老师散步行走的路线可能是……………………………( )A B CDABC10、如图,E F G H ,,,分别为正方形ABCD 的边AB ,BC ,CD , DA 上的点,且13AE BF CG DH AB ====,则图中阴影部分的面积与正方形ABCD 的面积之比为……………………………………………………………………………………………( )A .25B .49 C .12D .35二、填空(每空2分,共20分,请在答题卡指定区域内作答) 11、-8的相反数是 ;25的算术平方根是 12、函数y =x 的取值范围是13、2010年上海世界博览会中国馆投资110000万元,将110000万元用科学记数法表示为_________ 万元14、因式分解: x x 43-=___________15、关于x 的一元二次方程220x x m -+=有两个实数根分别为1x 和 2x ,则m 的取值范围是_____________,12x x +=16、如图:△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上, 若∠BAC =35°,则∠ADC = 度17、如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .18、如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .第9题(第10题)第16题第17题第18题第22题三、解答题(本大题共10小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19、(本题满分8分)计算:(1101()(5)4sin 603π----︒ (2)化简并求值:21(1)11a a a a --÷++,其中12a =.20、(本题满分8分) (1)解方程:213xx x +=+; (2)解不等式组:12,132,2x x x ->⎧⎪⎨-≤+⎪⎩………………①…………②21、(本题满分6分)中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A (海政)、B (空政)、C (武警)组成种子队,由部队文工团的D (解放军)和地方文工团的E (江苏)、F (上海)组成非种子队.现从种子队A 、B 、C 与非种子队D 、E 、F 中各抽取一个队进行首场比赛.(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A 、B 、C 、D 、E 、F 表示);(2)求首场比赛出场的两个队都是部队文工团的概率P. 22、(本题满分6分)已知:如图,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。
黔东南州2011年中考数学模拟试题及参考答案一、选择题1.-3的相反数是DA .-13B .13C .-3D .32.计算(x 2y)3,结果正确的是D A .x 5y B .x 6y C .x 2y 3 D .x 6y 3 3.等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有B A .1个 B .2个 C .3个 D .4个4.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d 。
若直线l 与⊙O 有交点,则下列结论正确的是B A .d =r B .d ≤r C .d ≥r D .d <r5.用换元法解分式方程222(1)672x x x x ++=+时,如果设21x y x +=,那么将原方程化为关于y 的一元二次方程的一般形式是AA .22760y y -+=B .22760y y ++=C .2760y y -+=D .2760y y ++=6.已知:如图1,在矩形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点。
若AB =2,AD =4,则图中阴影部分的面积为B A .3 B .4 C .6 D .87.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例。
图2表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为CA .2I R =B .3I R =C .6I R=D .6I R=-8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
下面两个图框使用法国“小九九”计算7×8和8×9的两个示例。
若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是CA .2,3B .3,3C .2,4D .3,49.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的。
驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是AA D H图1 OI (A )R (Ω)B(3,2)图223A .5B .6C .7D .810.一根绳子弯曲成如图3-1所示的形状。
xx学校xx 学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:计算﹣32的值是()A.9 B.﹣9 C.6 D.﹣6试题2:如图是某一几何体的三视图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥试题3:下列运算正确的是()A.π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2试题4:下列因式分解正确的是()评卷人得分A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2试题5:下列叙述正确的是()A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等试题6:如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3试题7:我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()A.23,24 B.24,22 C.24,24 D.22,24试题8:如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14试题9:如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16试题10:若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1试题11:抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小试题12:如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.试题13:若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.1试题14:如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥3试题15:如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC 的长为()A.1 B.C.3 D.试题16:1纳米=10﹣9米,将0.00305纳米用科学记数法表示为米.试题17:不等式组的解集为试题18:观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是试题19:将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.试题20:如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.试题21:计算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.试题22:先化简,再求值:(﹣)÷,其中a2+a﹣2=0.试题23:在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.试题24:我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.试题25:某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.试题26:如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.试题27:如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.试题1答案:B试题2答案:C试题3答案:D试题4答案:A试题5答案:C试题6答案: B试题7答案: C试题8答案: A试题9答案: B试题10答案: C试题11答案: B试题12答案: A试题13答案: D试题14答案: A试题15答案: D试题16答案: 3.05×10﹣12试题17答案: ﹣4≤x≤1 .试题18答案:.试题19答案:30试题20答案:试题21答案:解:原式=4﹣(2﹣)+1﹣3×﹣2=4﹣2++1﹣﹣2=1试题22答案:解a2+a﹣2=0得a1=1,a2=﹣2,∵a﹣1≠0,∴a≠1,∴a=﹣2,∴原式=÷=•=,∴原式===﹣.试题23答案:解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).试题24答案:解:(1)该班总人数是:12÷24%=50(人),则E类人数是:50×10%=5(人),A类人数为:50﹣(7+12+9+5)=17(人).补全频数分布直方图如下:;(2)画树状图如下:,或列表如下:共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,则概率是:=.试题25答案:解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.∴第x档次,提高的档次是x﹣1档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);(2)由题意可得:﹣10x2+180x+400=1120整理得:x2﹣18x+72=0解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档试题26答案:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.试题27答案:解:(1)设抛物线解析式为:y=a(x+1)2﹣1,将(1,0)代入得:0=a(1+1)2﹣1,解得;a=,∴抛物线的解析式为:y=(x+1)2﹣1;(2)∵A(﹣1,﹣1),∴∠COA=45°,∴△CAO是等腰直角三角形,∴AC=AO,∴C(﹣2,0),设直线AC的解析式为:y=kx+b,将A,C点代入得出:,解得:,∴直线AC的解析式为:y=﹣x﹣2,将y=(x+1)2﹣1和y=﹣x﹣2联立得:,解得:,,∴直线AC的解析式为:y=﹣x﹣2,B点坐标为:(﹣5,3);(3)过点B作BP⊥EF于点P,由题意可得出:E(﹣5,﹣2),设直线EF的解析式为:y=dx+c,则,解得:,∴直线EF的解析式为:y=x+,∵直线BP⊥EF,∴设直线BP的解析式为:y=﹣2x+e,将B(﹣5,3)代入得出:3=﹣2×(﹣5)+e,解得:e=﹣7,∴直线BP的解析式为:y=﹣2x﹣7,∴将y=﹣2x﹣7和y=x+联立得:,解得:,∴P(﹣3,﹣1),故存在P点使得BP⊥EF,此时P(﹣3,﹣1).。
贵州省毕节地区2011年中考数学模拟试题及答案一、选择题1.2的相反数是…………………………………………………………………………( ) A .2B .-2C .21 D .22.y=(x -1)2+2的对称轴是直线………………………………………………( ) A .x=-1 B .x=1 C .y=-1 D .y=13.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是……………………( ) A .1:1 B1:3 D .1:44.上图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是……………………………………………………( )A .60°B .80°C .120°D .150°5.函数11+=x y 中自变量x 的取值范围是………………………………………( ) A .x ≠-1B .x>-1C .x ≠1D .x ≠06.抛物线22x y =是由抛物线2)1(22++=x y 经过平移而得到的,则正确的平移是…( )A 、先向右平移1个单位,再向下平移2个单位B 、先向左平移1个单位,再向上平移2个单位C 、先向右平移2个单位,再向下平移1个单位D 、先向左平移2个单位,再向上平移1个单位7.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是……………………( )A B C D8.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是…………………( ) A .-3或1 B .-3 C .1 D .39.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。
在此案中能肯定的作案对象是……………………………………( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C二、填空题: 10、已知a+a 1=2,则a 2+2a 1的值为_ _. 11、小鹏在初三第一学期的数学成绩分别为:平时成绩为84分,期中考试成绩为90分,期末考试成绩为87分. 如果按平时、期中、期末的权重分别为10%、30%与60%,那么他该学期的总评成绩应该为_ _分.12、方程x 2+ x-1 = 0的根是 .13、如图,点D 、E 是△ABC 中BC 边上的两点, AD=AE ,要得到△ABD ≌△ACE ,还应补充 一个条件为_ _.14、请你设计一个游戏,使某一事件的概率为41,简明叙述游戏方案为_ _. 三、解答题: 15.计算:1232()222x x x x x++÷+-+.16.如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,对角线BD ⊥CD ,AD =3,AB =4,求边BC 的长.17.在电视台转播“CBA ”篮球联赛某场比赛实况的过程中,对球赛的精彩程度进行观众电话投票,按球赛表现“很精彩”、“较精彩”、“一般”和“不精彩”进行统计.请根据所给的有关信息,在表内四个空格中填写相关统计结果.18.已知抛物线2(3)1y x n x n =+-++经过坐标原点O . (1)求这条抛物线的顶点P 的坐标;(2)设这条抛物线与x 轴的另一个交点为A ,求以直线PA 为图象的一次函数解析式.CAD EC19.某超市用2500元购进一批鸡蛋,销售过程中损耗鸡蛋10千克.已知超市每千克鸡蛋的售价比进价多1元,全部售完后共赚440元,求购进这批鸡蛋共多少千克?进价是每千克多少元?20.如图,E 是正方形ABCD 的边AD 上的动点,F 是边BC 延长线上的一点,且BF =EF ,AB =12,设AE =x ,BF =y .(1)当△BEF 是等边三角形时,求BF 的长;(2)求y 与x 之间的函数解析式,并写出它的定义域;(3)把△ABE 沿着直线BE 翻折,点A 落在点A ' 处,试探索:△BF A '能否为等腰三角形?如 果能,请求出AE 的长;如果不能,请说明理由.21. 计算:2sin60°20051)1()31(33-++--22.为美化环境,某单位需要在一块正方形空地上分别种植四种不同的花草,计划将这块空地按如下要求分成四块:⑴分割后的整个图形必须是中心对称图形;⑵四块图形的形状相同;⑶四块图形的面积相等.请按照上述三个要求,分别在下面的正方形中给出4种不同的分割方法.CF23.下表是明明同学填写实习报告的部分内容:24.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频率分布直方图。
请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90(3)25.某校准备在甲、乙两家公司为毕业班学生制作一批纪念册。
甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费。
(1)请写出制作纪念册的册数x 与甲公司的收费y 1(元)的函数关系式。
(2)请写出制作纪念册的册数x 与乙公司的收费y 2(元)的函数关系式。
(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司? 26.已知抛物线y=(1-m)x 2+4x -3开口向下,与x 轴交于A(x 1,0)和B(x 2,0)两点,其中x l <x 2 . (1)求m 的取值范围;(2)若x 12+ x 22=10,求抛物线的解析式 ;(3)设(2)中的抛物线与y 轴于点C,在y 轴上是否存在点P ,使以P 、0、B 为顶点的三角形与△AOC 相似?若存在,求出P 点的坐标;若不存在,请说明理由.27、如图,小鹏在滨海大道的A 处测得鸟岛P 在北偏西60º的方向,他向西前行200米到达B 处,测得鸟岛P 在他的西北方向. 请计算鸟岛到滨海大道的距离. (参考数据:414.12=,732.13=) 解:[参考答案]一、 选择题B B DC AD C C A 二、填空题10、2; 11、87.6; 12、251±-;13、AB=AC 或∠B=∠C 或BD=CE ;14、四等份转盘等 三、15.解:原式=22432(2)(2)(2)x x x x x x x -+++÷+-+=32(2)(2)(2)32x x x x x x ++⋅+-+ =2-x x. 16.解:∵AD ∥BC ,∴∠ADB =∠CBD . ∵BD ⊥CD ,∠A =90°,∴∠BDC =∠A =90° ∴△ABD ∽△DCB ∴ADBDBD BC =. ∵AD =3,AB =4,∴BD =5.∴355=BC . ∴325=BC .17.200;300;0.25;0.15.四、18.解:(1)∵抛物线2(3)1y x n x n =+-++经过原点,∴10n +=∴1n =-.得x x y 42-=,即224(2)4y x x x =-=--. ∴抛物线的顶点P 的坐标为(2,-4). (2)根据题意,得点A 的坐标为(4,0) 设所求的一次函数解析式为y =kx +b . 根据题意,得⎩⎨⎧+=-+=.24,40b k b k解得⎩⎨⎧-==.8,2b k∴所求的一次函数解析式为y =2x -8.19.解:设购进这批鸡蛋共x 千克,进价是每千克y 元. 根据题意,得⎩⎨⎧=+-=.2940)1)(10(,2500y x xy解得⎩⎨⎧==.5,500y x答:购进这批鸡蛋共500千克,进价是每千克5元. (其他解法参照上述解题过程评分) 20.(1)当△BEF 是等边三角形时,∠ABE=30°. ∵AB=12,∴AE=34∴BF=BE=38.(2)作EG ⊥BF ,垂足为点G .根据题意,得EG=AB=12,FG=y-x ,EF=y .∴22212)(+-=x y y .∴所求的函数解析式为)120(21442<<+=x x x y(3)∵∠AEB=∠FBE=∠FEB ,∴点A '落在EF 上. ∴AE E A =',∠F A B '=∠E A B '=∠A=90°. ∴要使△BF A '成为等腰三角形,必须使F A B A '='. 而12=='AB B A ,E A BF E A EF F A '-='-=', ∴12=-x y .∴1221442=-+x xx .整理,得0144242=-+x x . 解得21212±-=x .经检验:21212±-=x 都原方程的根,但21212--=x 不符合题意,舍去. 当AE =12212-时,△BF A '为等腰三角形. 23.(8分)解:设CD=x 米,则AD=x 33,DB=x ∵AB=BD -AD ∴20=x -x 33 x=米)31030()33(1033120+=+=-答:河宽CD 为(30+103)米。
24.(10分) (1)4+6+8+7+5+2=32人 (2)90分以上人数:7+5+2=14人%75.434375.03214== (3)该中学参赛同学的成绩均不低于60分。
成绩在80—90分数的人数最多。
25.(12分) (1) y 1=5x+1500; (2) y 2=8x. (3) ∵当y 1=y 2时,5x+1500=8x, x=500. 当y 1>y 2时,5x +1500>8x ,x<500. 当y 1<y 2时,5x +1500<8x ,x>500.∴当订做纪念册的册数为500时,选择甲、乙两家公司均可; 当订做纪念册的册数少于500时,选择乙公司; 当订做纪念册的册数大于500时,选择甲公司; 26.(12分) (1) 1<m ≤37 (2)y=-x 2+4x -3 (3) 存在 p(0,9) 或 p(0,-9) 或 p(0,1)C或 p(0,-1)27、作PO ⊥AB 于O ,设PO=x 由条件得PO=BO=x 在Rt △APO 中,︒=30tan AOPO得33200x x =+ 解之得:x=273.2。