受体型蛋白酪氨酸激酶
- 格式:ppt
- 大小:177.00 KB
- 文档页数:40
受体型酪氨酸蛋白激酶在胰岛素信号途径中的作用胰岛素是人体内一种重要的代谢激素,能够调节体内的血糖和脂肪代谢。
胰岛素通过结合受体激活下游的信号通路来发挥其作用。
在胰岛素信号途径中,受体型酪氨酸蛋白激酶(RTK)是一种关键的酶类分子,在胰岛素信号途径中扮演着极其重要的角色。
1. 胰岛素信号途径胰岛素信号途径是指胰岛素结合受体(IR)激活下游的信号通路。
简单来说,胰岛素结合受体后,会激活一系列的酶或者激酶分子,最终达到调节葡萄糖和脂肪代谢的目的。
在胰岛素信号途径中,IR是一个重要的膜受体分子,它通常位于细胞表面。
当胰岛素结合IR后,IR会自身磷酸化,激活下游的信号通路。
2. 受体型酪氨酸蛋白激酶的作用受体型酪氨酸蛋白激酶(RTK)是一种关键的酶类分子,在胰岛素信号途径中扮演着极其重要的角色。
RTK属于一类被称为“激酶受体”的分子,和IR类似,它们也通常位于细胞表面。
不同于IR,RTK没有天然配体,需要依靠外源性的配体来激活。
RTK的主要作用是在胰岛素信号途径中启动下游的信号通路。
RTK活性的激活和调节是由配体形成外源性激活实现的。
在配体的激活下,RTK会通过激酶活性将一个磷酸基团添加到另一个蛋白质中的相应氨基酸上。
RTK的磷酸化可以引发多种生物作用。
例如,它能够激活诸如磷脂酰肌醇激酶(PI3K)和丝裂原激酶(MAPK)等下游信号通路,并且促进细胞增殖、分化等生物功能。
3. RTK在胰岛素抵抗中的作用胰岛素抵抗是一种常见的代谢性疾病,它表现为机体对胰岛素的敏感性下降,导致胰岛素信号途径的下游机制无法正常发挥作用,进而造成血糖代谢和脂质代谢的紊乱。
RTK在胰岛素抵抗中扮演着重要的角色。
一些研究表明,过多的RTK活性可能导致胰岛素抵抗的发生。
在这种情况下,主要是由于过多的RTK活性导致了胰岛素信号路线的干扰。
另外,由于胰岛素抵抗与过度摄入高糖高脂的食物有关,因此通过调节摄入量和减少高脂饮食等方法,可以减少RTK活性对胰岛素信号途径的干扰。
受体型蛋白酪氨酸磷酸酶Q的研究进展黄永红;史慧棉;周晓燕;徐宏;罗志军;徐方云【摘要】[ ABSTRACT] Receptor type protein tyrosine phosphatase Q( PTPRQ) is an unusual protein tyrosine phosphatase that has intrinsic dephosphorylating activity for various phosphatidylinositiol and phospho-tyrosine substrates, especially the phosphatidylinositol activity.Recent data show that PTPRQ has an important role in various biological processes and is as-sociated with some diseases.In this article, the structure and function of PTPRQ and the relationship between PTPRQ and diseases were briefly summarized.【期刊名称】《中国病理生理杂志》【年(卷),期】2015(000)007【总页数】5页(P1340-1344)【关键词】受体型蛋白酪氨酸磷酸酶Q;失聪;肿瘤;细胞增殖【作者】黄永红;史慧棉;周晓燕;徐宏;罗志军;徐方云【作者单位】南昌大学医学院病理生理学教研室,江西南昌330006;南昌大学医学院病理生理学教研室,江西南昌330006;南昌大学医学院病理生理学教研室,江西南昌330006;南昌大学医学院生理教研室,江西南昌330006;南昌大学医学院病理生理学教研室,江西南昌330006;南昌大学医学院病理生理学教研室,江西南昌330006【正文语种】中文【中图分类】R363研究表明,从基础代谢到细胞生长、分化、增殖等几乎每一细胞事件都与蛋白质酪氨酸磷酸化过程密切相关[1-4]。
蛋白酪氨酸激酶综述目前至少已有近六十种分属20个家族的受体酪氨酸激酶被子识别。
所有受体酷氨酸激酶都属于I型膜蛋白,其分子具有相似的拓朴结构:糖基化的胞外配体结合区,疏水的单次跨膜区,以及胞内的酪氨酸激酶催化结构域及调控序列。
不同受体酪氨酸激酶结合,将导致受体发生三聚化,并进一步使受体胞内区特异的受体酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路。
许多肿瘤的发生、发展都与酪氨酸激酶的异常表达有着极其密切的联系,下面将对几类与肿瘤的发生发展最为密切的受体酪氨酸激酶的研究迸展做一简介。
一、表皮生长因子受体(Epidermal grovth factor receptor, EGFR)家族EGFRPE包括EGFR、ErbB2、ErbB4等4个成员,其家族受体酪氨酸激酶(RTK)以单体形式存在,在结构上由胞外区、跨膜区、胞内区3个部分组成,胞外区具有2个半氨酸丰富区,胞内区有典型的ATP结合位点和酪氨酸激酶区,其酪氨酸激酶活性在调节细胞增殖及分化中起着至关重要的作用。
人的egfr基因定位于第7号染色体的短臂(7p12.3-p12.1),它编码的产物EGFR由1210个氨基酸组成,蛋白分子量约为170kDa,其中,712-979位属于酪氨酸激酶区。
EGFR的专一配体有EGF、TGF、amphiregulin,与其他EGFR家庭成员共有的配体有(cellulin(BTC)、heparin-bindingEGF(HB-EGF)、Epiregulin(EPR) )等。
EGFR在许多上皮业源的肿瘤细胞中表达,如非小细胞性肺癌,乳腺癌、头颈癌,膀胱癌,胃癌,前列腺癌,卵巢癌、胶质细胞瘤等。
另外,在一些肿瘤如恶性胶质瘤、非小细胞性肺癌、乳腺癌、儿童胶质瘤、成神经管细胞瘤及卵巢癌等中还可检测到EGFR缺失。
最为常见的EGFR缺失突变型是EGFRⅧ,EGFR Ⅷ失去了配体结合区,但是可自身活化酪氨酸激酶,刺激下游信号通路的激活,而不依赖于与其配全结合。
受体型酪氨酸激酶FGR的结构与功能研究近年来,随着生物技术的不断发展和深入,对于受体酪氨酸激酶FGR(FGR,Feline Gardner-Rasheed)的结构和功能的研究也日益深入。
FGR是蛋白质家族中的一员,参与了多种生物学过程中的信号传导通路,其异常表达甚至会引发疾病。
本文将重点阐述FGR的结构和功能研究进展。
一、FGR的结构FGR由两个主要区域组成:N末端和C末端。
N末端具有SH2(Src同源)结构和SH3结构,它们是与其他蛋白质相互作用的域。
SH2结构可以结合到酪氨酸激酶抑制蛋白上,以便磷酸化特定的酪氨酸。
SH3结构主要用于与低分子量的肽相互作用。
而C末端则是由酪氨酸激酶结构域和辅助结构域组成。
酪氨酸激酶结构域由N-和C-两个与ATP结合的区域,以及肽底物结合区域(PEP)构成,它们都是酪氨酸激酶酶活性所必需的区域。
同时,辅助结构域主要存在于N端和C端之间,也具有多种功能,如分子识别、酶调节等。
二、FGR的功能FGR广泛参与了多种生物学过程的信号传导通路,如细胞增殖和分化、免疫反应和炎症等。
FGR也是细胞骨架的重要组成部分,能够调节细胞粘附和迁移。
此外,FGR还与另一种受体酪氨酸激酶SRC紧密合作,共同调控多种细胞生理活动。
FGR在疾病的诊断和治疗中也扮演着重要角色。
在白血病和淋巴瘤等肿瘤中,FGR的过度表达与肿瘤细胞增殖、侵袭和转移密切相关。
因此,探索FGR在这些肿瘤中的作用机制,有助于对这些肿瘤的防治有更深入的理解。
三、FGR研究的方法研究FGR的结构和功能,需要采用多种生物技术手段,包括蛋白质纯化和结晶、X射线晶体学、核磁共振(NMR)结构测定、质谱技术、生物信息学方法等。
其中,蛋白质纯化和结晶是最基本的研究手段,但由于FGR的结晶较难,目前的结晶条件还需要不断优化。
X射线晶体学和NMR结构测定则是结构研究的主要手段,但它们也各有局限性和优缺点。
质谱技术则可用于对FGR结构域的拼接、突变和修饰进行分析。
蛋白酪氨酸激酶(2)互作用。
CD4是分子量为55-60kDa的糖蛋白,以单体形式表达。
CD8是由二致辞体组成,有两种形式:一种是由两条α链(32-34kDa)组成的同源二聚体;另一种形式是由α链和β链(25-26kDa)组成的异源二聚体。
CD4和CD8分子中胞浆内部分子不具有激酶功能区,因此它们与受体酪氨酸激酶如EGF-R或PDGF-R无同源性。
目前已经证实CD4和C D8均与信号转导成份p56lckPTK相连接。
p56lck几乎在所有淋巴细胞中表达,包括全部成熟T细胞和胸腺细胞,提示它可能在T细胞活化和分化调节过程中起作用。
有关p56lck在T细胞活化信号中正调节作用的最初发现是p56lck直接同CD4或CD8复合受体分子胞浆内功能域相连接,在体外具有酪氨酸激酶活性,在体内,T细胞受到刺激后酪氨酸磷酸化水平增加。
即使在静止的鼠CD4-T细胞中也有大约50%细胞内p56lck是同CD4糖蛋白相连接。
图8-7 p56lck同CD4、CD8作用的模式图2.p56lck与CD4/CD8分子的连接p56lck同CD4/CD8相互作用的区域位于分子的氨基端的底物作用区(图8-7),此区域在src相关PTKs 中是独特的,含有4个半胱氨酸,这对于p56lck与CD4和CD8相互作用是必须的。
底物作用区中6个带负电荷的氨基酸可使p56lck与CD4/CD8结合位点内相对应的碱性氨基酸残基相结合。
在CD4和CD8α分子的胞浆内有一个含13个氨基酸的相似区域,经突变研究和肽竞争分析法证实此区域可能为p56lck结合区域。
CD4和CD8α含有两个对于p56lck结合起关键作用的半胱氨酸以及与p56lck氨基末端负电荷相互作用的5个带正电荷的氨基酸。
证实此区域中有6个氨基酸直接与p56lck结合有关,如果把这6个氨基酸残基从CD8α胞浆功能域转移到一个非相关蛋白水泡性口炎病毒糖蛋白(VSV-G)胞浆功能区域上,p56lck即可结合到这个杂交分子上去。
一、名词解释:第二信使,受体,G蛋白,PKA,IP3、DAG、CaM,受体型酪氨酸蛋白激酶,Ras蛋白,STAT,配体,G 蛋白,细胞信号转导,衔接蛋白,钙调蛋白,G 蛋白偶联受体;基因工程,限制性核酸内切酶,粘性末端,cDNA文库,基因组文库,质粒,感受态细胞,癌基因,抑癌基因,原癌基因。
二、问答/简答题1. 简述跨膜信号转导途径的一般过程。
(一)通过具有特殊感受结构的通道蛋白质完成的跨膜信号转导1.化学(配体)门控通道2.电压门控通道3.机械门控通道(二)由膜的受体-G蛋白-效应器酶共同完成的跨膜信号转导1.如肾上腺素→相应膜受体→Gs蛋白→腺苷酸环化酶→cAMP →生物学效应2.受体→G蛋白→磷脂酶C→二酰甘油(DG)>→生物学效应三磷酸肌醇(IP3)(三)由酪氨酸激酶受体完成的跨膜信号转导2. 膜受体介导的信号转导途径有哪些?细胞外信号分子与靶细胞膜表面受体的结合来触发细胞内的信号转导过程。
细胞外传递特异信号的信号分子称为第一信使,细胞内传递信号的小分子物质(如cAMP、cGMP、Ca2+ 、DAG、IP3)及TPK等称为第二信使(一)环核苷酸信号转导途径,以cAMP或cGMP作为第二信使,通过细胞内环核苷酸浓度的改变来进行信号转导。
(二)脂类衍生物信号转导途径磷脂类化合物是构成生物膜的重要成分,由各种磷脂酶催化其水解后生成的若干衍生物,常常也是细胞信号转导的第二信使,(三)Ca2+信号转导途径由于细胞内许多生物大分子,如酶、蛋白因子、结构蛋白等对Ca2+有依赖性,胞浆[Ca2+]的改变将会引发细胞若干生理功能的变化,因此Ca2+是细胞内一种重要的信号物质。
Ca2+信号转导途径以胞浆[Ca2+]的升高为特征,其级联反应包括:电信号或化学信号→钙通道→胞浆[Ca2+]→CaM→CaM-PK→底物蛋白/酶→生理效应。
3.说明受体的种类及其与配体结合或相互作用的主要特点。
分类:细胞膜受体和细胞内受体两大类。
一、名词解释1.O-连接糖链:糖链的N-乙酰半乳糖胺与多肽链的丝氨酸或苏氨酸的羟基链接,形成O-糖苷键,糖链即为O-链接糖链。
为O-连接糖链,也称O-连接聚糖2.N-连接糖链:糖链的N-乙酰葡糖胺与多肽链的天冬酰胺的酰胺氮连接,形成N-糖苷键,此种糖链为N-连接糖链,也称N-连接聚糖3.MAPK:有丝分裂原激活的蛋白激酶,是一类丝氨酸/苏氨酸蛋白激酶,该激酶家族所有成员的一个共同结构特征是一级结构中第185和187个氨基酸残基分别是可磷酸化的苏氨酸和酪氨酸。
两个氨基茇酸残基必需同时磷酸化才能被激活。
该信息通路主要参与胞外生长因子类化学信号及辐射、紫外线、过氧化物,热休克、脂多糖、渗透压等物理变化信号的传导。
4.双功能蛋白激酶:5.糖型;蛋白质常有多个潜在的糖基化位点,对于同一个糖基化位点,是否连接糖链,及所结合糖链的长短等与组织类型及表达阶段有关。
蛋白质肽链相同,但所结合的糖链不同的一组糖蛋白.6.旁分泌与自分泌:一些胞外化学信号分子如生长因子,细胞因子被分泌后很快被降解,只能对邻近的细胞或自身细胞起作用,这种细胞间通讯方式称旁分泌或自分泌。
7.脂交叉双层:鞘糖脂分子容易相互聚集,因所含的脂酸链较长且饱和度高而相对伸展,并使局部细胞膜增厚,形成膜上特殊的微功能区(microdomains),称为脂筏。
8.Grb2:生长因子受体结合蛋白2,该蛋白参与细胞内各种受体激活后的下游调节。
9.Sos:即一种信号蛋白,Sos蛋白是编码鸟苷释放蛋白的基因sos的产物。
Sos蛋白在Ras信号转导途径中的作用是促进Ras释放GDP,结合GTP,使Ras蛋白由非活性状态转变为活性状态,所以, Sos蛋白是Ras激活蛋白。
10.糖结合位点:11.GPCR:G蛋白偶联受体,它是细胞信号传导中的重要蛋白质,其拓扑构象为7次跨膜的受体。
G蛋白偶联受体主要参与各种激素,化学趋化因子的信息跨膜转换过程。
目前已发现有数百种化学信号分子由G蛋白偶联受体来传递信号。
蛋白激酶的分类蛋白激酶可以根据其作用方式、结构特征以及底物的不同分为多个分类。
根据作用方式,蛋白激酶可以分为两类:1. 蛋白酪氨酸激酶(Protein Tyrosine Kinases,PTKs):这类蛋白激酶主要催化蛋白质上的酪氨酸残基的磷酸化修饰,从而参与调节细胞的生长、分化、凋亡等重要生物学过程。
PTKs可以进一步分为受体型酪氨酸激酶(Receptor Tyrosine Kinases,RTKs)和非受体型酪氨酸激酶(Non-receptor Tyrosine Kinases)。
RTKs主要存在于细胞膜表面,通过与配体结合激活,参与信号传导;而非受体型酪氨酸激酶一般位于细胞质内,参与调节多种信号通路。
2. 蛋白丝氨酸/苏氨酸激酶(Protein Serine/Threonine Kinases,STKs):这类蛋白激酶主要催化蛋白质上的丝氨酸和/或苏氨酸残基的磷酸化修饰。
STKs广泛参与细胞信号转导、细胞周期调控、细胞分化、细胞凋亡等重要生物学过程。
根据结构特征,蛋白激酶可以分为多个家族,包括但不限于:蛋白激酶A家族(PKA)、蛋白激酶G家族(PKG)、蛋白激酶C家族(PKC)、蛋白激酶D家族(PKD)等。
蛋白激酶的分类还可以根据其底物的不同进行划分,例如:MAPK(Mitogen-Activated Protein Kinase,丝裂原激活蛋白激酶)家族、JNK(c-Jun N-terminal Kinase,c-Jun氨基末端激酶)家族、CDK(Cyclin-Dependent Kinase,周期蛋白依赖性激酶)家族等。
以上仅是蛋白激酶分类的一些例子,实际上蛋白激酶家族种类众多,功能多样,不同分类方法可能存在交叉和重叠。