蛋白酪氨酸激酶(PTK)抑制剂的研究进展
- 格式:ppt
- 大小:1.66 MB
- 文档页数:20
现代生物医学进展 Progress in Modern Biomedicine Vol.10NO.16AUG.2010酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展*刘振凯1艾菁2耿美玉1,2△(1中国海洋大学医药学院山东青岛266003;2中国科学院上海药物研究所上海201203)摘要:酪氨酸激酶(protein tyrosine kinases,PTKs )在肿瘤细胞的增殖、分化、迁移、侵袭等相关信号通路中起到了关键的调控作用,已经成为肿瘤靶向性治疗的重要靶点。
本文对靶向酪氨酸激酶的小分子抑制剂的筛选和评价方法进行综述,以期促进酪氨酸激酶抑制剂类抗肿瘤药物的研究。
关键词:酪氨酸激酶;抗肿瘤药物;小分子抑制剂;抑制剂筛选中图分类号:R730.5,R915文献标识码:B 文章编号:1673-6273(2010)16-3134-04Advances in Research of Protein-tyrosine Kinases Inhibitorsas Anticancer Drug*LIU Zhen-kai 1,AI Jing 2,GENG Mei-yu 1,2△(1Marine drug and food Institute,Ocean university of China,Qingdao,266003,China;2Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai,201203,China )ABSTRACT:Protein tyrosine kinases (PTKs)have long been recognized as promosing therapeutic targets involved in a variety of human diseases and in particular several types of cancer.They play important roles in regulating intracellular signal transduction path-ways closely associated with the invasion,metastasis and angiogenesis of many tumors.An effort towards the development of new and more effective PTK inhibitors represents an attractive therapeutic strategy for cancer therapy.In this paper,we review the screening and evaluation methods of small-molecule inhibitors of PTKs with a view to promote the study of PTKs.Key words:Protein-tyrosine kinases;Antitumordrugs;Small-molecule inhibitors;Inhibitors screening Chinese Library Classification (CLC ):R730.5R915Document code:B Article ID:1673-6273(2010)16-3134-04*基金项目:国家杰出青年科学基金资助(No 30725046)作者简介:刘振凯(1983-),男,硕士。
蛋白酪氨酸磷酸酶(PTPs)及其抑制剂的研究进展吴狄;邓祥;王坤;黄小梅【摘要】蛋白质酪氨酸磷酸酶家族是细胞信号转导中的重要调节因子,参与多种细胞功能的调控,在调控细胞生命活动中起着重要作用。
蛋白酪氨酸磷酸酶的生理功能与诸多人类疾病有密切关系,例如癌症、糖尿病和免疫紊乱等。
蛋白酪氨酸磷酸酶已经成为治疗上述疾病的靶标。
文章综述了近年来蛋白酪氨酸磷酸酶及其抑制剂的研究进展。
%Protein tyrosine phosphatase (PTPs) family was an important cell signal transduction factor, which involved in many regulating cell functions and played an important role in the control of the action of cells. Physiological function of PTPs was related with human diseases such as cancer, diabetes and immune disorder. PTPs became a key pharmaceutical target in the treatment of diseases. The recent research developments in the study of PTPs were reviewed.【期刊名称】《广州化工》【年(卷),期】2012(040)009【总页数】3页(P11-12,37)【关键词】蛋白酪氨酸磷酸酶;信号转导;靶标【作者】吴狄;邓祥;王坤;黄小梅【作者单位】四川文理学院化学与化学工程系四川省特色植物开发研究重点实验室,四川达州635000;四川文理学院化学与化学工程系四川省特色植物开发研究重点实验室,四川达州635000;四川文理学院化学与化学工程系四川省特色植物开发研究重点实验室,四川达州635000;四川文理学院化学与化学工程系四川省特色植物开发研究重点实验室,四川达州635000【正文语种】中文【中图分类】O62蛋白酪氨酸磷酸化是细胞用来调控信号传导的一个最主要的手段.在细胞内,酪氨酸磷酸化是同一个动力学可逆的过程,并且该磷酸化过程可以抑制蛋白酪氨酸激酶(PTKs)的活性(图1).PTKs是用来催化酪氨酸磷酸化,而PTPs控制着去磷酸化过程.因此,PTKs、PTPs及它们相应的底物都属于可调节信号传导网的一类化合物,它们在体内的细胞生长、分化、代谢、细胞周期、细胞间通讯、细胞迁移等这些基本活动中起着极为重要的信号传导调节作用.这一信号转导网的缺陷和不适当则会导致酪氨酸磷酸化的异常,进而引发许多人类疾病如癌症和糖尿病等[1].虽然PTPs是构成信号传导通路中很重要的部分,但是它们在人类健康和疾病中的重要性直到近二十年来才受到足够的重视.基于对PTKs的观察,PTP活性的失调是许多人类疾病的致病机理[2].因此,PTPs在发展临床试剂中代表着一类新的分子目标物,下面我们首先介绍下PTPs结构和机理特性,之后我们将综述下PTPs在信号传导和人类疾病中的重要作用,举例说明特异性的PTP抑制剂的临床意义.最后我们将重点介绍近年来小分子PTP抑制剂方面的发展进程,讨论基于有选择性的PTP抑制剂临床疗效技术的发展.最初的人类基因序列分析揭示了112种PTPs化合物[3].与蛋白激酶不同,PTPs的氨基酸序列和丝氨酸/苏氨酸磷酸酶是不相关的.PTPs也可以被划分为三大类,即特异性酪氨酸PTPs (tyro-,sine-specific)、双重特异性PTPs(dual-specific)和低分子量的PTPs(图2).特异性酪氨酸PTPs和低分子量的PTPs目标物必须是含有酪氨酸的蛋白,而双重特异性的PTPs目标物既可以是含有酪氨酸的蛋白,也可以是含有丝氨酸和苏氨酸的蛋白.一些双重特异性的PTPs 也可以水解底物而不是水解磷酸蛋白.双重特异性的PTPs包括MAP磷酸酶激酶(MKPs),细胞循环调节器Cdc25磷酸酶和肿瘤干扰抑制器PTEN.几十种PTPs的晶体结构已经被确认.虽然氨基酸序列具有多样性和底物具有特异性,双重特异性的PTPs和低分子量的PTPs的晶体仍显示出与特异性酪氨酸PTPs 的结构相似性.并且,对催化器重要作用的核心晶体结构部分如PTP活性位点的环状部位,H/V)C(X)R(S/T的序列模式在三类PTPs化合物中均得到了保留.对Yersinia PTP,PTP1B,VHR和小分子PTPs的机理研究表明所有的PTPs都有类似的催化机理,利用活性位点部位的半胱氨酸作为亲核试剂形成一个具有硫代磷酰共价结构的酶中间体,保持不变的精氨酸残基则起着稳定调控状态和保持底物配位亲和功能的作用.磷酸酶中间体第二步则是水解过程,它可以催化天冬氨酸残基.许多疾病都与信号传导有障碍有关,其特征就是酪氨酸磷酸化过度或者不能正常实现磷酸化(表1).例如,SHP-1的突变可以引发人类免疫系统紊乱,导致老鼠中moth-eaten显性因子增多.SHP-1是一种重要的细胞因子信号传导的负调控因子,失去SHP1将会导致酪氨酸不断地磷酸化,继而导致细胞繁殖增生不断增强.这种调控模式增加了有丝分裂,导致了细胞转化.一些PTPs已经与人类疾病联系在一起.例如:PTEN肿瘤抑制基因突变能够导致很多关键部位的癌症,如脑癌、胸癌和前列腺癌等[4].遗传学和生化研究表明一些PTPs可以发展为有效的靶向药物,如PTP1B、LAR和PTPα等[5].PTP活性的的增加或许是造成Ⅱ型糖尿病的一个因素,Ⅱ型糖尿病的典型特征就是胰岛素信号受阻或削弱胰岛素受体的信号传导.PTP1B在胰岛素信号中的负调控作用已被老鼠实验研究证实,可以推测,特异性的PTP1B抑制剂或许能够增加胰岛素的灵敏性,发展成为一种治疗Ⅱ型糖尿病、胰岛素受阻和肥胖症的有效方法.PTPα抑制剂能够有效抑制肿瘤激酶的活性.Cdc25磷酸酶可以从控制细胞循环的激酶中的酪氨酸和苏氨酸残基上脱去磷酸化,因此在调控细胞循环中起着很重的作用,有证据表明Cdc25A和Cdc25B可能都是致癌基因[6].抗癌药物就是针对抑制Cdc25磷酸酶的活性发展的.综上所述,一些人类疾病的致病机理可归因于PTP活性紊乱,其中包括癌症、糖尿病和免疫紊乱等疾病.PTPs在不同的病理生理学上的重要性已经使它们成为研究药物靶点的焦点.因此,PTPs抑制剂也被预测有很好的治疗研究价值.酪氨酸磷酸酯(pTyr)模拟化合物的设计是发现PTPs抑制剂的一条最主要的途径.在早期,pTyr模拟化合物的设计主要是针对PTPs的催化活性区域,通常用磷酸、乙酸、丙二酸、磺酸和草酸等来取代磷酸酯基,因为所有的PTPs都拥有相同的磷酸化的酪氨酸活性位点,所以设计单一的,选择性的PTPs的抑制剂存在着不小的挑战.幸运的是,PTPs的特异性研究表明,单独的酪氨酸磷酸酯(pTyr)对没有足够的亲和力,与pTyr相连接的残基对PTPs的识别作用很重要.经证明,靠近PTPs活性位点的残基最有可能发展为抑制剂的靶点.这些研究对控制PTP抑制剂的能力和特异性提供了分子基础,也暗示了一种发展有效的特异性强的PTP抑制剂的范例,即发展能同时与活性位点和相邻近的外部位点(有强亲和力的二齿配体),因此独特的与PTP活性位点相临近的部位能够作为靶点增强抑制剂的亲和力和选择性.基于此原理人们已经发展了几种有效的选择性好的PTPs抑制剂,在下文中我们将做讨论.研究发现,Zn2+、Ni2+和钒酸盐具有抑制PTPs的活性作用,其中钒酸盐的抑制效果最显著,钒酸根在结构上类似于酶的天然底物的磷酸根.最早发现的一类可逆的非特异性PTPs抑制剂是钒酸盐和过氧钒酸盐.其中钒酸盐能竞争性抑制活性位点中的半胧氨酸残基.在矾酸盐与PTP1B复合物的晶体结构中,矾原子与活性位点中的硫醇非常靠近,并与酶形成三角双锥形的过渡态结构,类似于磷酞基转移过程中形成的硫代磷酸盐过渡态.PTPs包含一个具有催化功能的半胱氨酸残基,因此一些碱性试剂和氧化试剂可能成为潜在的PTPs抑制剂.过氧矾酸盐则为一种强氧化试剂,它使活性位点中的半胱氨酸残基氧化成为磺酸,因此它对PTPs的选择性要强于矾酸盐;其它的无机类PTP抑制剂还有一氧化氮和苯胂化氧;这些无机化合物除了可以抑制PTPs外,还有其它的酶抑制活性,正是这种非专一性限制了其作为药物的可能性. 含有磷酸化酪氨酸残基(pTyr)的肽类底物与PTPs有较高的亲和性,保留pTyr而得到的肽类似物与酶有较高的亲和性,但事实上没有取得预期的结果.因为肽类化合物容易受到体内蛋白酶的降解作用,并且不易通过生物膜,故而肽类化合物一般不是优良的药物先导.正是由于肽类抑制剂代谢快,化学稳定性和生物稳定性差,使得人们寻找一些小分子.S W Ham等发现许多PTPs抑制剂具有醌的结构,猜测其机理可能是醌类化合物具有氧化性,可以氧化PTPs活性位点中的半胱氨酸.从而形成了共价结合物,达到抑制酶活性的作用.噻二唑烷酮类是一类直接针对胰岛素抵抗的新药,该类药物通过增加靶器官内的胰岛素敏感性来改善血糖控制.该类化合物是酪氨酸磷酸酯的生物电子等排体.磷酸酯中的两个氧原子与砜基上的氧配适,而磷酸酯中的第3个氧原子与2位氮原子重叠.由于1位砜基和3位羰基均为吸电子基团,2位氮上的质子具有弱酸性,可以模拟磷酸酯与催化活性区的碱性氨基酸形成静电作用,增加与酶的亲和力.噻二唑烷酮类抑制剂的开发为pTyr模拟物设计提供了一条新思路,有望成为高活性、高选择性、药学性质适合的新药物.经研究表明磷酸酯类化合物具有较强的抑制活性,一直作为PTPs抑制剂设计的重点.在磷酸的α位引入负电性的卤原子后,降低了磷酸根的pKa值,增强了磷酸与PTPs催化活性区域的静电作用及氢键相互作用.拥有两个DFMP结构单元抑制剂分别与催化活性区及第二结合位点作用,其活性是单DFMP化合物的450倍,并且对PTP1B有一定的选择性.为了构建分子多样性的化合物库,采用平行合成技术,以不同的肽模拟物片段连接两个二氟亚甲基磷酸结构单元,筛选得到的化合物对PTP1B具有很高的亲和力.总体来说,目前PTP1B抑制剂的相关研究还不是很多,抑制剂与酶之间的作用机制也不是很明确,并且PTP1B的另一个芳基磷酸盐结合位点的发现也有助于高专一性、高选择的PTPIB抑制剂的设计与研究.有关PTP1B及其抑制剂研究的不断深入开展,不仅有助于阐明胰岛素的胞内信号传导途径,而且在抗糖尿病新药开发中具有重大意义.【相关文献】[1] T.Hunter.Signaling-2000 and Beyond[J].Cell,2000,100: 113-127.[2] L.Li,J.E.Dixon.Form,function,and regulation of protein tyrosine phosphatases and their involvement in human diseases[J].Semin.Immunol,2000,12:75-84.[3] nder,L.M.Linton,B.Birren,et al.Initial sequencing and analysis of the human genome[J].Nature,2001,409:860-921.[4] C.A.Di,P.P.Pandolfi.The multiple roles of PTEN in tumorsuppression[J].Cell,2000,100:387-390.[5] N.P.H.Moller,L.Iversen,H.S.Andersen,et al.Protein tyrosine phosphatases(PTPs)as drug targets:inhibitors of PTP1B for the treatment ofdiabetes[J].Curr.Opin.Drug.Discov.Dev.,2000(3): 527-540.[6] K.Galaktionov,A.K.Lee,J.Eckstein,et al.Cdc25 phosphatases as potential human oncogenes[J].Science,1995,269:1575-1577.[7] A.Caselli,P.Chiarugi,G.Camici,et al.In vivo inactivation of phosphotyrosine protein phosphatases by nitric oxide[J].FEBS. Lett.,1995,374:249-252.[8] G.Huyer,S.Liu,J.Kelly,et al.Mechanism of inhibition of protein -tyrosine phosphatases by vanadate and pervanadate[J].J.Biol. Chem.,1997,272:843-851.[9] zo,K.Nemoto,K.E.Pestell,et al.Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphataseinhibitors[J].Mol.Pharmacol.,2002,61:720-728.[10] E.Black,J.Breed,A.L.Breeze,et al.Structure-based design of protein tyrosine phosphatase 21B inhibitors[J].Bioorg.Med.Chem. Lett.,2005,15:2503-2507.[11] T.O.Johnson,J.Ermolieff,M.R.Jirousek.Protein tyrosine phosphatase 1B inhibitions for diabetes[J].Nat.Rev.Drug.Discov., 2002(1):696-709.。
酪氨酸激酶抑制剂的研究进展许娇红;游育红;许建华【期刊名称】《海峡药学》【年(卷),期】2010(22)7【摘要】恶性肿瘤-直严重威胁着人类生命.尽管诊断和治疗水平有所进步,但很多肿瘤生存率一直很低.近年来随着科学的发展,我们对肿瘤的生物学特性有了更深一步的认识.人类蛋白酪氨酸激酶(PTKs)在肿瘤的发生发展过程中起着非常重要的作用,它已成为一种很有前景的肿瘤治疗新靶点.PTKs抑制剂研究已成为当今世界抗肿瘤研究的热点领域,特别是BCR-ABL酪氨酸激酶抑制剂imatinib(STI571)治疗慢性髓细胞白血病的显著成功使得科学家们更热心于投入这一领域的研究,目前,至少有30多种酪氨酸激酶抑制剂在肿瘤治疗的不同临床试验阶段.在此对酪氨政激酶在肿瘤中的作用及酪氨酸激酶抑制剂在肿瘤治疗中的研究进展作一综述.【总页数】4页(P8-11)【作者】许娇红;游育红;许建华【作者单位】福建医科大学药学院,福州,350004;福建医科大学药学院,福州,350004;福建医科大学药学院,福州,350004【正文语种】中文【中图分类】R979.1【相关文献】1.酪氨酸激酶抑制剂相关治疗药物监测的研究进展 [J], 张晓旭;郭志烨;缴万里;褚智君;刘晓红;侯林中2.酪氨酸激酶抑制剂心血管毒性研究进展 [J], 刘艳平;陈乐梅;何岚;罗嗣宇;何楠;曹盛生3.小分子血管内皮生长因子受体酪氨酸激酶抑制剂治疗脑转移瘤伴瘤周水肿的研究进展 [J], 任粤;何宁宁;梁秋源;汪善兵;江健;雷开键;贾钰铭4.小分子酪氨酸激酶抑制剂安罗替尼在肺癌治疗中的应用研究进展 [J], 郭煜颍;张敏;刘彦廷;路平5.神经胶质瘤中受体酪氨酸激酶信号传导系统及酪氨酸激酶抑制剂的研究进展 [J], 刘家刚;毛庆因版权原因,仅展示原文概要,查看原文内容请购买。
蛋白质酪氨酸激酶调节神经元发育研究进展随着科技的不断发展,生物学领域中的许多细节也得以揭示。
其中,神经科学的研究又尤为复杂。
但是,近年来,人们发现蛋白质酪氨酸激酶(PTKs)在神经元发育过程中发挥着重要作用。
本文将介绍蛋白质酪氨酸激酶在神经元发育中的作用和最新研究进展。
一、PTKs在神经元发育中的作用PTKs是一类蛋白质,它们通过磷酸化作用来调控细胞的许多生理和代谢过程。
然而,最近的研究表明,PTKs还能够调节神经元的生长和分化,从而影响神经系统的发育和功能。
PTKs通过磷酸化神经元的多个靶点来调节神经元的生长和分化。
神经元是一个高度极性化的细胞,它们的生长和分化需要密切的细胞信号调节。
PTKs被发现参与了神经营养因子的信号传递,如BDNF(脑源性神经营养因子)和NT-3(神经营养因子-3)。
PTKs的活性还调节了细胞骨架的重组,影响神经元形态的改变。
此外,它们还参与了突触的形成和传递过程,影响神经元间的通讯。
二、PTKs在神经元发育中的最新研究进展1. PTKs与学习和记忆的关系最近的研究表明,PTKs参与了学习和记忆的过程。
学习和记忆需要脑的神经元持续地改变它们之间的连接形式和信号传递的强度。
这种改变被称为突触可塑性。
一些研究发现,PTKs能够影响突触可塑性,并且参与了学习和记忆的形成。
这些发现引发了科学家们进一步研究PTKs在神经元可塑性方面的作用。
2. PTKs与神经退行性疾病的关系一些神经退行性疾病,如阿尔茨海默病和帕金森病,都与神经元的死亡和损伤相关。
PTKs有可能在这些疾病中扮演重要的角色。
在阿尔茨海默病的相关研究中,PTKs被发现参与了AMPA型谷氨酸受体的内化及其对突触可塑性的影响。
其他研究还表明,PTKs参与了帕金森病的神经元代谢损伤和细胞死亡。
3. PTKs治疗药物的发展和应用最近几年,人们利用PTKs作为靶点开发和研究治疗药物。
例如,如果神经元的生长和分化被抑制,可能会导致一系列神经系统疾病,如霍奇金淋巴瘤、神经管缺陷和帕金森病等。
蛋白酪氨酸激酶小分子抑制剂研究进展
毛志强;项伟中;俞雁;李绍顺
【期刊名称】《中国药物化学杂志》
【年(卷),期】2005(015)002
【摘要】对近年来文献报道的小分子蛋白酪氨酸激酶(protein tyrosine kinases,PTKs)抑制剂按其结构类别进行综述.指出PTKs与肿瘤形成、生长过程有密切关系,已成为抗肿瘤研究的一个新靶点.在过去的30多年时间里,人们对大量的天然产物及人工合成化合物进行筛选,得到了许多小分子抑制剂,一些活性强、选择性高的化合物作为抗肿瘤药已进入开发研究的不同阶段,有的正在进行临床研究.【总页数】8页(P121-128)
【作者】毛志强;项伟中;俞雁;李绍顺
【作者单位】上海交通大学,药学院,上海,200030;上海交通大学,药学院,上
海,200030;上海交通大学,药学院,上海,200030;上海交通大学,药学院,上海,200030【正文语种】中文
【中图分类】R914
【相关文献】
1.小分子蛋白酪氨酸激酶抑制剂的合成研究进展 [J], 赵迎春;张前军;卢永仲;陈海燕
2.小分子靶向抗癌药物--蛋白酪氨酸激酶抑制剂研究进展 [J], 张志华;黄彦;王晓明;谭载友
3.小分子酪氨酸激酶抑制剂及其在癌症治疗中的应用研究进展 [J], 姜庆媛;杨磊夫;
胡利明
4.小分子血管内皮生长因子受体酪氨酸激酶抑制剂治疗脑转移瘤伴瘤周水肿的研究进展 [J], 任粤;何宁宁;梁秋源;汪善兵;江健;雷开键;贾钰铭
5.小分子酪氨酸激酶抑制剂安罗替尼在肺癌治疗中的应用研究进展 [J], 郭煜颍;张敏;刘彦廷;路平
因版权原因,仅展示原文概要,查看原文内容请购买。
表皮生长因子受体酪氨酸激酶抑制剂的研究进展一、本文概述表皮生长因子受体(EGFR)酪氨酸激酶抑制剂(TKIs)是一类针对EGFR信号通路的关键药物,广泛应用于非小细胞肺癌、结直肠癌、头颈癌等多种癌症的治疗。
本文旨在综述近年来EGFR TKIs的研究进展,包括其作用机制、药物研发、临床应用以及面临的挑战等方面。
通过深入了解EGFR TKIs的研究现状和发展趋势,有望为癌症治疗提供新的思路和方法,进一步改善患者的生活质量和预后。
本文将从EGFR TKIs的作用机制出发,阐述其如何通过抑制EGFR 的酪氨酸激酶活性来阻断癌细胞的增殖和转移。
接着,我们将回顾EGFR TKIs的药物研发历程,介绍目前市场上主流的EGFR TKIs药物及其特点。
在此基础上,我们将重点关注EGFR TKIs在临床试验中的应用情况,包括其疗效、安全性以及耐药性等问题。
我们将探讨EGFR TKIs面临的挑战和未来发展方向,包括如何克服耐药性、提高治疗效果以及拓展新的适应症等。
通过本文的综述,我们希望能够为相关领域的研究者和临床医生提供有价值的参考信息,推动EGFR TKIs在癌症治疗中的进一步应用和发展。
二、EGFR-TK抑制剂的分类与机制表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TK抑制剂)是近年来癌症治疗领域的重要突破,其通过抑制表皮生长因子受体(EGFR)的酪氨酸激酶活性,从而阻断细胞的生长、增殖和转移过程。
根据药物的作用机制和化学结构,EGFR-TK抑制剂主要分为两大类:可逆性抑制剂和不可逆性抑制剂。
可逆性抑制剂,如吉非替尼和厄洛替尼,能够与EGFR的ATP结合位点形成可逆性结合,从而竞争性地抑制酪氨酸激酶的活性。
这类药物对于EGFR敏感突变的非小细胞肺癌具有较好的疗效,但在长期治疗过程中,患者往往会出现耐药现象。
不可逆性抑制剂,如阿法替尼和奥希替尼,能够与EGFR的ATP 结合位点形成共价键,导致EGFR的永久性失活。
蛋白酪氨酸激酶抑制剂的进展与临床评价
张石革
【期刊名称】《中国医院用药评价与分析》
【年(卷),期】2010(010)001
【摘要】目的:归结于药学和生物工程技术的进步,把对肿瘤细胞的攻击锁定于表皮生长因子和血管内皮生长因子等靶位,使药物治疗的切入点由细胞水平向分子水平过度,提高肿瘤联合治疗的效果,成为肿瘤综合治疗策略.由此应运而生蛋白酪氨酸激酶抑制剂独树一帜,对其研究和评价日趋活跃,本文总结其作用优势和临床评价.方法:采用国内、外文献综述方法.结果及结论:酪氨酸激酶抑制剂疗效确切、特异性强、不良反应和耐药性小,无疑是药学研究领域中的巨大突破.
【总页数】3页(P4-6)
【作者】张石革
【作者单位】北京大学第四临床医院,北京积水潭医院,北京市,100035
【正文语种】中文
【中图分类】R979.1
【相关文献】
1.小分子蛋白酪氨酸激酶抑制剂的合成研究进展 [J], 赵迎春;张前军;卢永仲;陈海燕
2.多靶点蛋白酪氨酸激酶抑制剂的研究进展 [J], 刘靖;王林;杨晓明
3.多靶点蛋白酪氨酸激酶抑制剂类抗肿瘤药物的研究进展 [J], 张秋荣;陈婷;于康;王慧;周广强;朱楠;冯贝贝;刘宏民
4.抗Gleevec(STI-571)耐受的Bcr-Abl蛋白酪氨酸激酶抑制剂研究进展 [J], 王立升;于海侠;郭鑫;肖军海;李松
5.新型蛋白酪氨酸激酶抑制剂类抗肿瘤药物的研究进展 [J], 彭珧;张怡轩;郑更新因版权原因,仅展示原文概要,查看原文内容请购买。