当前位置:文档之家› 接触网线索参数表

接触网线索参数表

接触网线索参数表
接触网线索参数表

附表三接触网常用接触线性能参数表

注:符号3

7.825048+-H

说明 H 、表示钢筋混凝土支柱;分子25048-表示支柱容量,其中48表示垂直

于线路方向的支柱容量(m kN ?)、250表示顺线路方向的支柱容量(m kN ?);分母37.8+表示支柱高度,其中8.7表示支柱露出地面的高度(m )、3表示支柱埋入地下的深度(m )。

注:符号说明:GQ 表示高强度支柱;分子100表示支柱容量(m kN ?);分母“311+”表示支柱高度,其中11表示支柱露出地面的高度(m )、3表示支柱埋入地下的深度(m )。

S m f

FTJC-1接触网几何参数测量仪

FTJC-1接触网几何参数测量仪 产品概述与功能 FTJC-1接触网几何参数测量仪是电气化铁路接触网几何参数测量的专用仪器。本仪器系采用红光半导体激光器和相位脉冲技术,可对接触网的导高、拉出值、定位器坡度、锚段关节、线岔、超高、轨距和红线等参数进行快速测量。 产品特点 应用工业级TFT液晶,构成了全新的视频瞄准系统,从根本上解决了传统仪器瞄准的难题,基于B/S架构的软件,实现真正网络化管理。仪器具有现场数据处理功能,也可方便组合含GPRS与GPS模块的PDA(或者笔记本电脑)实现大规模数据详细分析、实时数据网络传输、部门间即使通讯等功能。 产品执行标准: TB/T3235-2010铁路专用几何计量器具通用技术条件; TB/T3227-2010接触网几何参数测量仪。 主要技术参数: 1、轨距:范围1410mm~1470mm,精度±0.5mm; 2、水平(超高):范围±200mm,精度±0.5mm; 3、导高:范围3000~15000mm,精度±3mm; 4、拉出值:范围±3000mm,精度±4mm; 5、线岔中心:精度±3mm; 6、500mm处高差:精度±4mm;

7、红线:精度±4mm; 8、侧面限界:精度±4mm; 9、承力索与接触线高差:精度±4mm; 10、跨铁道输电线与接触线的距离:精度±4mm; 11、锚段关节:精度士4mm 12、定位器坡度:1:n(n精确到0.1); 13、自由测量:水平精度±4mm,垂直精度:±3mm; 14、跨距测量:范围70000mm,精度±5mm; 15、导高 1 :范围: 3000-15000mm 精度:±3mm; 16、拉出值1 :范围:±3000mm,精度:±4mm; 17、导高: 2 :范围: 3000-15000mm 精度:±3mm; 18、拉出值2 :范围:±3000mm,精度:±4mm; 19、高差:精度 :±4mm; 20、导高 1 :范围: 3000-15000mm 精度:±3mm; 21、拉出值1 :范围:±3000mm,精度:±4mm; 22、定位器坡度:1:1(n精确到0.1); 23、导高: 2 :范围: 3000-15000mm 精度:±3mm; 24、拉出值2 :范围:±3000mm,精度:±4mm; 25、定位器坡度:2:1(n精确到0.1); 26、导高 1 :范围: 3000-15000mm 精度:±3mm; 27、拉出值1 :范围:±3000mm,精度:±4mm; 28、导高: 2 :范围: 3000-15000mm 精度:±3mm; 29、拉出值2 :范围:±3000mm,精度:±4mm; 30、高差:精度 :±4mm。

接触网支柱外部参数

说明:表中的H38/8.2+2.6型支柱H表示横腹杆式支柱,分子38表示支柱的标准设计弯矩(KN.m),分母8.2表示支柱地面以 上的高度(m),分母2.6表示支柱埋入地下的深度(m)。产品技术条件符合TB/T2286标准。另具有埋深增加0.6m的加长型各种支柱;法兰盘式、浅埋式(埋深1.5m、2.0m)腕臂支柱

说明:1、表中H90 /12 + 3 .5型支柱,H表示横腹杆式支柱,分子90表示支柱的标准设计弯矩(KN^m)分母12表示支柱地面以上的高度(m),分母3 ? 5表示支柱埋入地下的深度(m)。2、表中H 3 5 0 / 1 5型支柱,H表示横腹杆式 支柱,分子3 5 0表示支柱的标准设计弯矩(KN?m),分母15表示支柱地面以上的高度(m),此型支柱的基础是现浇混凝土基础,其基础采用地脚螺栓与支柱连接。3、产品技术条件符合TB/T 2 2 8 6标准。4、另具有埋入式、法兰盘式软横跨支柱。 大容量软横跨支柱说明: 本厂生产的150-350kN.m 系列大容量软横跨支柱是钢支柱的替代产品,已在哈大、神朔、朔黄、西康等多条电气化铁道上应用,具有“高强度、低造价、不腐蚀、无维修”的优异性能,深受广大用户欢迎。

说明: 1、本表中所有规格的分子均表示支柱地面处悬挂方向的标准检验弯矩,所有支柱均可作为打拉线下锚柱使用, 与下锚所产生的悬挂方向附加弯矩之和不大于支柱悬挂方向的弯矩标准值。 2、分母为二项者,第一项为地面以上的高度(m),第二项为1 . 5表示插入杯形基础的深度(m)地下的埋入深度(m)o 3、分母为一项者为带法兰盘支柱,分母表示地面以上高度(m)o 4、可根据用户需要生产4 0 0系列预应力管桩。 5、可根据用户需要生产杯形基础埋深为1 . 5 m或者直埋式,埋深为3m,柱长最长为14m,以0 支柱。 6、产品技术条件符合TB/T 2 2 8 7标准但悬挂方向的弯矩 ,第二项为3表示直接埋入.5 m为模数递减的其他柱长的

互换性与技术测量基础预测试题(带答案)

一、判断题 01.()为使零件的几何参数具有互换性,必须把零件的加工误差控制在给定的范围内。 02.( X )公差是零件尺寸允许的最大偏差。 03.(X )从制造角度讲,基孔制的特点就是先加工孔,基轴制的特点就是先加工轴。 04.()Φ10E7、Φ10E8、Φ10E9三种孔的上偏差各不相同,而下偏差相同。 05.(X )有相对运动的配合应选用间隙配合,无相对运动的配合均选用过盈配合。 06.( X )若某平面的平面度误差值为0.06mm,则该平面对基准的平行度误差一定小于0.06mm。07.()若某平面对基准的垂直度误差为0.05mm,则该平面的平面度误差一定小于等于0.05mm.。08.(X )只要离基准轴线最远的端面圆跳动不超过公差值,则该端面的端面圆跳动一定合格。09.(X )轴上有一键槽,对称度公差为0.03mm,该键槽实际中心平面对基准轴线的最大偏离量为0.02mm,它是符合要求的。 10.(X )跳动公差带不可以综合控制被测要素的位置、方向和形状。 11.(X )某轴标注径向全跳动公差,现改用圆柱度公差标注,能达到同样技术要求。 12.(X )最大实体要求既可用于中心要素,又可用于轮廓要素。 13.(X )采用包容要求时,若零件加工后的实际尺寸在最大、最小尺寸之间,同时形状误差小于等于尺寸公差,则该零件一定合格。 14.(X )测量仪器的分度值与刻度间距相等。 15.(X )若测得某轴实际尺寸为10.005mm,并知系统误差为+0.008mm,则该尺寸的真值为10.013mm。16.()在相对测量中,仪器的示值范围应大于被测尺寸的公差值。 17.(X )量块按“级”使用时忽略了量块的检定误差。 18.(X )零件的尺寸公差等级越高,则该零件加工后表面粗糙度轮廓数值越小,由此可知,表面粗糙度要求很小的零件,则其尺寸公差亦必定很小。 19.()测量和评定表面粗糙度轮廓参数时,若两件表面的微观几何形状很均匀,则可以选取一个取样长度作为评定长度。 20.()平键联结中,键宽与键槽宽的配合采用基轴制。 21.(X )螺纹中径是指螺纹大径和小径的平均值。 22.(X )对于普通螺纹,所谓中径合格,就是指单一中径、牙侧角和螺距都是合格的。 23.(X )螺纹的单一中径不超出中径公差带,则该螺纹的中径一定合格。 24.()内螺纹的作用中径不大于其单一中径。 25.()中径和顶径公差带不相同的两种螺纹,螺纹精度等级却可能相同。 26.()圆锥配合的松紧取决于内、外圆锥的轴向相对位置。 27.()测量内圆锥使用塞规,而测量外圆锥使用环规。 28.(X )齿轮传动的振动和噪声是由于齿轮传递运动的不准确性引起的。 29.()在齿轮的加工误差中,影响齿轮副侧隙的误差主要是齿厚偏差和公法线平均长度偏差。30.()圆柱齿轮根据不同的传动要求,同一齿轮的三项精度要求,可取相同的精度等级,也可以取不同的精度等级相组合。 二、选择题 1.保证互换性生产的基础是(A )。 A.标准化B.生产现代化C.大批量生产D.协作化生产 2.基本偏差代号f的基本偏差是(C )。 A.ES B.EI C.es D.ei 3.φ30g6与φ30g7两者的区别在于(C )。 A.基本偏差不同B.下偏差相同,而上偏差不同 C.上偏差相同,而下偏差不同D.公差值相同

接触网组成及各部参数

7 施工技术要求 7.1技术标准与规范 本项目遵循的主要技术标准及规范(包括但不限于)以下所示,所采用的标准均应为项目执行时的最新有效版本。若投标人采用除上述之外的其它被承认的相关国内、国际标准,应明确提出并提供相应标准复印件,经招标人批准后方可采用。当相关标准发生冲突时,以较高版本的技术要求为准。 《地铁设计规范》(GB50157-2003) 《铁路电力牵引供电设计规范》(TB10009-2005) 《城市轨道交通直流牵引供电系统》(GB10411-2005) 《铁路电力牵引供电施工规范》(TB10208-98) 《铁路电力牵引供电工程施工质量验收标准》(TB10421-2003) 《地下铁道工程施工及验收规范》GB50299-1999 由招标人组织设计,监理工程师就某些特殊项目制定的标准。 有关设备及材料的制造、试验及验收等标准详见技术规格书。 7.2施工技术条件 7.2.1悬挂类型及组成

绝缘等级按重污区标准,绝缘子标称泄漏距离不小于250mm。 7.2.5绝缘间隙 绝缘间隙应符合GB50157-2003标准即带电体距结构体、车体之间的绝缘距离:静态为150mm,动态为100mm,绝对最小动态60mm。 7.2.6接触线悬挂高度 刚性接触网正线的最大拉出值一般为±200mm,辅助线道岔处工作支一般不超过350mm。 7.2.8跨距 刚性接触网悬挂点的间距一般为6~10m,最大不超过12m。 7.2.9锚段长度 刚性悬挂锚段长度一般不大于250m,最大不超过300m。 7.2.10中心锚结 刚性悬挂在锚段的中部设置中心锚结。在车站和矩形隧道内采用悬挂点两旁设防爬金具(可用汇流排电连接线夹替代)形式的中心锚结;盾构隧道内采用2个棒形的合成绝缘子“V”形布置在悬挂点两侧构成的中心锚结。 7.2.11电连接设置 刚性悬挂电连接设置 (1)非绝缘锚段关节处设置电连接。 (2)道岔处设电连接。

接触网技术参数统计

接触网技术参数统计 1刚性接触网 1.1锚段及跨距 每个锚段一般不超过250米。 1.2锚段关节 (1)关节中间处两接触线等高。 (2)转换悬挂点处非工作支不得低于工作支,可以比工作支高出0~8mm(0~4mm),困难情况下不超过10mm。 (3)受电弓在双向通过时应平滑无撞击和拉弧现象。 (4)非绝缘锚段关节两支接触悬挂的拉出值均为±100mm(75mm),汇流排中心线之间距离为200mm(150??),允许误差±20mm。接触线外露长度为150mm。 (5)绝缘锚段关节两支接触悬挂的拉出值均为±150mm(130mm),汇流排中心线之间距离为300mm(260??),允许误差±20mm。接触线外露150mm。 绝缘貌端关节示意图

1.3线岔 (1)在受电弓可能同时接触两支接触线范围内的两支接触线应等高。 (2)在受电弓始触点后至岔尖方向,渡线接触线应比正线接触线高出0~10mm(0~4)。(3)在受电弓双向通过时应平滑无撞击及不应出现固定拉弧点。 (4)单开道岔悬挂点的拉出值距正线汇流排中心线为200mm,允许误差±20mm。平行段距离为2000mm。 (5)交叉渡线道岔处的线岔,在交叉渡线处两线路中心的交叉点处,两支悬挂的汇流排中心线均距交叉点100mm,允许误差±20mm。 (6)侧线端部向上弯70mm左右。 (7)线岔处电连接线、接地线应完整无遗漏,连接牢固。 道岔分类

刚性悬挂线岔示意图 1.4刚柔过度 (1)两根柔性接触网等高并列运行进入刚柔过渡元件约500mm后,在过渡原件外面的导线逐渐抬高脱离接触,其最终的抬高量不应小于35mm。 (2)刚柔过渡处刚性悬挂应比柔性悬挂高20~50mm。 (3)柔性悬挂升高下锚处绝缘子边缘应距受电弓包络线不得小于75mm。 (4)刚性悬挂带电体距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于150mm。(5)受电弓距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于100mm。 (6)受电弓双向通过时平滑不撞击及不应出现固定拉弧点。 (7)两支悬挂的拉出值为±100mm,间距为200mm,允许误差±20mm。 贯通式刚柔过渡单链悬挂示意图

接触网的注意参数

电气化铁道接触网在实际的应用中时,需要结合行车速度、行车界限等多方面的注意一些参数,这些的注意参数有导高、侧面限界、拉出值、结构高度、跨距等。 导高 导高是指接触线悬挂点高度的简称,是接触线无弛度时定位点出(或悬挂点处)接触线距轨面的垂直高度,一般用H 表示。 接触线的最高高度,是根据受电弓的最大工作高度确定的。我国电力机车 TGS型受电弓的工作高度为5183?6683mm考虑到接触线可能出现负弛度及保证受电弓接触线工作压力的需要,接触线距轨面的最高高度不应大于6500mm。 接触线的最低高度的确定,是考虑了带电体对接地体之间的空气绝缘距离及通过超限货物的要求。接触线高度的允许施工偏差为土30mm对于行车速度在160km/h?200km/h 时,对施工误差要求更加严格;定位点两侧低一吊弦处接触线高度应等高,相对该定位点的接触线的高度的施工偏差为土10mm但不得出现 “V'字形;两相邻悬挂点等高相对差不得大于20mm同一跨距内相邻吊弦处的导高差应符合设计预留弛度的要求,施工偏差不得大于5mm。 最低点高度应符合下列规定: (1)站场和区间(含隧道)接触线距轨面的高度宜取一致,其最低高度不应小于5700mm编组站、区段站等配有调车组的线、站,正常情况下不小于6200mm 确有困难时不应小于5700mm。 (2)既有隧道内(包括按规定降低高度的隧道口外及跨线建筑物范围内)正常情况下不应小于5700mm困难情况下不应小于5650mm特殊情况下不应小于 5330mm。 开双层集装箱列车的线路,接触线距轨面的最低高度应根据双层集装箱的高度和绝缘距离确定。一般采用6450mn导高。对于客运专线,应为不存在超限货物列车通过问题,为了提高接触悬挂稳定性,导高较低,一般采用5000?5500mm。

接触网常用参数标准及测量计算

接触网常用参数标准及测量计算 一、拉出值(跨中偏移值) 1、技术标准 160km/h及以下区段: 标准值:直线区段200-300mm;曲线区段根据曲线半径不同在0-350mm之间选用。 安全值:之字值≤400mm;拉出值≤450mm。 限界值:之字值450mm;拉出值450mm。 160km/h以上区段: 标准值:设计值。 安全值:设计值±30mm。 限界值:同安全值。 2、测量方法 利用DJJ多功能激光接触网检测仪进行拉出值测量:受电弓滑板平面与两钢轨平面平行,检测仪与两钢轨平面平行,测量时无需考虑外轨超高,直接校准定位点在检测仪上的投影位置,此位置与检测仪中心点的距离就是拉出值。 二、导线高度 1、技术标准 标准值:区段的设计采用值。 安全值:标准值±100mm。 限界值:小于6500mm;任何情况下不低于该区段允许的

最低值。 当隧道间距不大于1000m时,隧道内、外的接触线可取同一高度。 2、测量方法 利用DJJ多功能激光接触网检测仪进行导高测量:将测量仪置于两钢轨之上与两轨面平行,利用测量仪上的观察窗校准定位点位置,测出定位点至两轨面的垂直距离即为导高。 三、导线坡度及坡变率 1、技术标准 标准值: 120km/h及以下区段≤3‰;120-160km/h区段≤2‰;200km/h区段≤2‰,坡度变化率不大于1‰;200-250km/h区段≤1‰,坡度变化率不大于1‰。 安全值:120km/h及以下区段≤5‰;120-160km/h区段≤4‰。其他同标准值。 限界值:120km/h及以下区段≤8‰;120-200km/h区段≤5‰;200km/h及以上区段同安全值。 160km/h及以上区段,定位点两侧第一根吊弦处接触线高度应相等,相对该定位点的接触线高度允许误差±10mm,但不得出现V字型。 2、测量与计算方法 定位点A与定位点B之间的坡度测量:1、测出A点的

DJJ-8型接触网激光参数检测仪使用方法

DJJ-8型接触网激光参数检测仪使用方法 1、准备工作 (1)仪器放置标准 将测量架放置于待测目标下方的轨道面上,拨动测量架右端的轨距手柄,使测量架两端的固定测脚和活动测脚都紧靠钢轨内沿。保持测量架与轨道基本垂直。将主机放置于测量架的定位盘上,并使旋紧旋钮处于旋紧状态。 (2)开机 打开电源开关后,按下键盘上“启动”按钮,显示屏出现“请向右旋转主机”,根据提示用手轻轻旋转主机头(禁止快速旋转),直至显示屏上出现视频图像,即表示仪器进入正常测量状态,可以开始测量。 (3)瞄准 仪器的显示屏中央有白色十字丝,通过前后挪动测量架和旋转主机头,使十字丝中心与待测目标完全重合。 瞄准时,可先用手转动主机头进行粗调,然后根据需要可旋转微调旋钮进行微调,直到对准目标。在光线较弱的情况下也可以按“长光”键打开长光[注]用眼睛观察红色激光点辅助瞄准。 (4)、测量 在正常测量状态下,瞄准目标后即可按下相应功能键进行测量,并显示测量结果。如果没有瞄准目标则提示“进入盲区或未对准目标请重新测量”。 2、参数测量 (1)、标准模式:导高、拉出值、轨距、超高 将仪器按“仪器放置标准”放置; 正常测量状态下瞄准目标后,按下“测量”键,即可显示结果(示例如下): 注:拉出值拉向仪器左侧为“+”,拉向右侧为“-”;以仪器右侧超高为“+”,右侧偏低为“-”。 (2)、红线标高、侧面限界测量

将仪器按“仪器放置标准”放置; 正常测量状态下瞄准支柱上的红线(没标注红线时瞄准目测近似点即可)。 按下 “红线”键,即可显示结果(示例如下): 注:红线高于实际轨面为“+”。 (3)、 500mm 处高差测量 将仪器按“仪器放置标准”放置于“500mm 处”下方的任意一对钢轨上。 正常测量状态下按下 “500mm ”键,进入500mm 出高差测量模式。 仪器提示“请测量第一点”,瞄准第一条接触线后按下“测量”键。 仪器提示“请测量第二点”,瞄准第二条接触线,按下“测量”键,即可显示结果(示例如下): 如果显示屏显示的线距数值接近500mm 时按“确认”键完成测量。 如果显示屏显示的线距数值与500mm 差别较大时,请不要按“确认”!按下“长光”键。 将测量架向前或向后挪动(必须保证有一定的距离,使线距有大于100mm 的变化量)按“测量”键,并重复第三、四步骤。 按下“确认”后仪器自动换算出“500mm 处”高差结果。此时的高度1为换算后的500mm 处第一条接触线的导高。 (4)、承力索、接触线高差测量 将仪器按“仪器放置标准”放置; 正常测量状态下按下键盘上“承力索”键。 仪器提示“请测量第一点”,瞄准承力索后按下“测量”键。 仪器提示“请测量第二点”,瞄准接触线,按下“测量”键。 按下“确认”键,即可显示结果(示例如下):

互换性与测量技术基础复习题及答案.doc

互换性与测量技术基础女习题及答案 —、填空 1、允许零件几何参数的变动量称为(公差) 2、按互换的程度不同,零部件的互换性可分为(完全)互换和(不完全)互换。 3、配合的选用方法有(计算法)(实验法)(类比法). 4、公差类型有(尺寸(角度))公差,(形状)公差,(位置)公差和(表面粗糙度)。 5、向心滚动轴承(除圆锥滚子轴承)共分为:(B)(C)(D)(E)(G)五等级,其中(B)级最高,(G)级最低。 6、配合是指(基木尺寸)相同的,相互结合的孔和轴的公差带的关系。 7、光滑极限量规筒称为(量规),它是检验(孔、轴零件)的没有(刻度)的专用检验工具。 8、根据配合的性质不同,配合分为(间隙)配合,(过盈)配合,(过渡)配合。 9、用量规检验工件尺寸时,如果(通)规能通过,(止)规不能通过,则该工件尺寸合格。 10、按照构造上的特征,通用计量器具可分为(游标量具),(微动螺旋副量具),(机械量具),(光学量具),(气动量具),(电动量仪。) 11、形状公差包括(直线度),(平面度),(圆度),(圆柱度),(线轮廓度), (面轮廓度)。 12、国际单位制中长度的基木单位为(米) 13、位置公差包括(平行度),(垂直度),(倾斜度),(同轴度),(对称度), (位置度),(圆跳动),(全跳动)。 14、在实际测量中,常用(相对)真值代替被测量的真值,例如,用量块检定千分尺,对于分尺的示值来说,量块的尺寸就可视为(相对)真值。 15、螺纹按其用途不同,可分为(紧固)螺纹,(传动)螺纹和(密封)螺纹。 16、表面粗糙度Ra、Rz、Ry三个高度参数中,(Ra)是主要参数 17、表面粗糙度的评定参数有(轮廓算术平均偏弟Ra),(微观不平度I?点高度Rz)(轮廓最大高度Ry),(轮廓微观不平度的平均距离Sw),(轮廓的单峰平均间距S),(支撑长度率Tp) 18、当通用量仪直接测量角度工件时,如果角度精度要求不高时,常用(万能量角器)测量;否则,用光学角分度头或(测角仪)测量。 19、表面粗糙度检测方法有:(用光切粗糙度样块比较——比较法)(用电动轮廓仪测量一针描法)(用光切显微镜测量——光切法)(用干涉显微镜测量——干涉法)。 20、键的种类有(平键)(楔键)(半圆键)。 21、平键配合是一种(基轴)制的配合,配合种类只有三种,(较松)键连接,(一般)键联接和(较紧)键联接,其中(较松)键联接是间隙配合。(一般)键联接和(较紧)键联接是过渡配合。 22、角度和锥度的检测方法有(用定值基准量具比较)(用通用量仪直?接测量)和(用通用量具间接测量) 23、平键和半圆键都是靠键和键槽的(侧)面传递扭矩。 24、检验T一件最大实体尺寸的拍:规称为(通规)。检验T.件最小实体尺寸的量规称为(止规)。 二名词解释

浅谈接触网动态检测

浅谈接触网动态检测 冯磊 摘要:接触网检测技术是高速铁路建设的关键之一。随着铁路的不断提速对电 气化接触网的要求会更高。不确定因素会更多,对检测设备要求也会更高。因此, 不断提高检测技术及设备水平才能保证电气化接触网的良好状态,才能保证电气 化铁路的运输畅通。 关键词:接触网动态监测 一概述 铁路发展经历了从蒸汽时代、内燃时代到电气时代的过程,提速离不开电气化铁路。接触网担负着把从牵引变电所获得的电能直接输送给电力机车使用的重要人物,因此接触网的质量和工作状态将直接影响着电气化铁道的运输能力。 接触网是沿公务线路架空布臵,向电气列车连续提供电力的设备,是电气化铁路的重要组成部分。它具有露天、无备用、架空等特性,运行状态和技术参数受机车车辆、公务线路和自然环境影响极大。运行中的电气列车通过受电弓滑板和接触线间的滑动摩擦从网上取流,弓网间机械运动会对接触网造成不同程度的损伤,随时改变接触网设备的技术状态,甚至造成行车事故,如发生弓网故障造成断线,断续的取流过程有可能造成接触线烧损,机车带电过分相会毁坏分相绝缘器,受电弓状态不良造成定位线夹脱落、偏移等。公务线路外轨超高的改变会造成动态拉出值增大,发生刮弓故障。严冬季节雨雪天气会造成接触网覆冰,发生接触网断线故障,风力过大甚至导致支持装臵翻转和接触网舞动,严重危及行车安全。因此随时掌握接触网的运行状态以及有关参数,及时对接触网设备进行检修,确保接触网设备技术参数和运行状态符合安全运行的要求,对安全运输的顺利进行有着

至关重要的作用,接触网动态检测就为这种要求提供了可靠的保证。二重要性 接触网是一个复杂、庞大的供电系统,要达到向电气列车安全不间断的供电目的,必须满足以下几个方面技术条件: 1、符合安全运行要求的几何参数,如拉出值、导线高度、各种限界等。 2、具有与运输能力相匹配的供电能力,电器参数复合要求,如网压、主导电回路载流能力等。 3、在一定速度下要有良好的弓网关系,如硬点产生的冲击尽可能小,接触压力不得过大或过小,离线时间较短等。 4、接触设备各部件质量良好,如接触网零部件、线索、支持装臵的材质、工艺等符合要求。 接触网动态监测主要是针对前三方面的要求进行动态测量,并根据对检测数据的综合分析,对接触网当前的运行状态和弓网关系做出恰当的判断,向生产站段提出接触网检修设备的检修内容。 接触网检测是运用技术手段对接触网参数进行在线检测,根据接触网设备可测得的和外部可辨认的特征对其工作状况进行评价。在高速铁路的建设和发展上,电气化铁路以其显著的优点被许多国家作为大力研究和重点发展的目标,使得接触网设备的检测特别是动态监测变的越来越重要,主要体现在以下几方面: 1、高速电气化铁路的建设和发展需要不断的积累经验,通过不同条件、各种项目检测的结果分析,验证预期效果,找出设备运行规律,为今后设计、施工、维修持续改进提供依据。 2、接触网作为电气化铁路的重要设备,其质量优越与电力机车运行安全直接相关,由于接触网设备露天布臵且无备用,工作环境恶劣,如不加强设备检修,及时发现整治设备隐患,就会危及行车安全,

互换性与测量技术基础复习题及答案

互换性与测量技术基础复习题及答案 一、填空 1、允许零件几何参数的变动量称为(公差) 2、按互换的程度不同,零部件的互换性可分为(完全)互换和(不完全)互换。 3、配合的选用方法有(计算法)(实验法)(类比法). 4、公差类型有(尺寸(角度))公差,(形状)公差,(位置)公差和(表面粗糙度)。 5、向心滚动轴承(除圆锥滚子轴承)共分为:(B)(C)(D)(E)(G)五等级,其中(B)级最高,(G)级最低。 6、配合是指(基本尺寸)相同的,相互结合的孔和轴的公差带的关系。 7、光滑极限量规简称为(量规),它是检验(孔、轴零件)的没有(刻度)的专用检验工具。 8、根据配合的性质不同,配合分为(间隙)配合,(过盈)配合,(过渡)配合。 9、用量规检验工件尺寸时,如果(通)规能通过,(止)规不能通过,则该工件尺寸合格。 10、按照构造上的特征,通用计量器具可分为(游标量具),(微动螺旋副量具),(机械量具),(光学量具),(气动量具),(电动量仪。) 11、形状公差包括(直线度),(平面度),(圆度),(圆柱度),(线轮廓度),(面轮廓度)。 12、国际单位制中长度的基本单位为(米) 13、位置公差包括(平行度),(垂直度),(倾斜度),(同轴度),(对称度),(位置度),(圆跳动),(全跳动)。 14、在实际测量中,常用(相对)真值代替被测量的真值,例如,用量块检定千分尺,对千分尺的示值来说,量块的尺寸就可视为(相对)真值。 15、螺纹按其用途不同,可分为(紧固)螺纹,(传动)螺纹和(密封)螺纹。 16、表面粗糙度Ra、Rz、Ry三个高度参数中,(Ra)是主要参数 17、表面粗糙度的评定参数有(轮廓算术平均偏差Ra),(微观不平度十点高度Rz)(轮廓最大高度Ry),(轮廓微观不平度的平均距离Sw),(轮廓的单峰平均间距S),(支撑长度率Tp) 18、当通用量仪直接测量角度工件时,如果角度精度要求不高时,常用(万能量角器)测量;否则,用光学角分度头或(测角仪)测量。 19、表面粗糙度检测方法有:(用光切粗糙度样块比较——比较法)(用电动轮廓仪测量——针描法)(用光切显微镜测量——光切法)(用干涉显微镜测量——干涉法)。 20、键的种类有(平键)(楔键)(半圆键)。 21、平键配合是一种(基轴)制的配合,配合种类只有三种,(较松)键连接,(一般)键联接和(较紧)键联接,其中(较松)键联接是间隙配合。(一般)键联接和(较紧)键联接是过渡配合。 22、角度和锥度的检测方法有(用定值基准量具比较)(用通用量仪直接测量)和(用通用量具间接测量) 23、平键和半圆键都是靠键和键槽的(侧)面传递扭矩。 24、检验工件最大实体尺寸的量规称为(通规)。检验工件最小实体尺寸的量规称为(止规)。

接触网线索参数表

接触网线索参数表

附表一 镀锌钢铰线参数表 标称 截面 股数 单股外径 钢绞线外 径 实际 截面 单位自重 标准抗拉强度不小于(Mpa ) 1100 1200 1250 1400 1550 1700 破坏拉力不小于(kN ) 10 7 1.4 4.2 10.77 0.923 11.80 13.40 15.0 16.6 18.30 30 7 2.4 7.2 31.34 0.2709 34.80 39.50 44.3 49.0 53.80 50 7 3.0 9.0 49.49 0.4237 54.40 61.80 69.2 76.6 10 19 0.8 4.0 9.55 0.814 30 19 1.4 7.0 29.23 0.2492 40 19 1.6 8.0 38.18 0.3253 50 19 1.8 9.0 48.32 0.4111 53.10 60.4 67.6 74.8 82.10 70 19 2.2 11.0 72.20 0.6150 79.40 90.3 101. 111. 122.5 100 19 2.6 13.0 100.8 0.8594 说明:表中面积单位为mm ,外径单位为mm ,自重单位为kN/mx10 附表二 铜承力索参数表 型号 截面积(mm 2 ) 股数与单股直径(mm) 计算直径(mm) 有效电阻 (Ω/km) 单位重量(KN/km) 线胀系数 x10-6 1/℃ 弹性模量E(Gpa) TJ-70 70 19x2.14 10.6 0.28 6.18 17 130 TJ-95 95 19x2.49 12.4 0.20 8.37 THJ-95 95 19x2.50 12.5 8.45 TJ-120 120 19x2.8 14.0 0.158 1.058 TJ-150 150 19x3.15 15.8 1.388 1.388 附表 三 接触网常用接触线性能参数表 型 号 CTHA110 CTHA120 TCG —100 TCG —85 TCG —110 AgCu120 综合拉断力不小于(kN ) 39.96 41.75 35.00 30.60 43.80 抗拉强度MPa 350 306 365 接合力(kN) 直流电阻(Ω) 0.179 0.21 0.161 0.144 载流量A(100℃) 710 750 600 550 485(80℃) 760(150℃) 线胀系数1/℃ 17.4x10-6 17x10-6 17x10-6 17x10-6 17x10-6 17x10-6 弹性系数MPa 124000 124000 126000 126000 130000 113000 最高使用温度 +150 +150 +100 +100 +100 制造长度(m ) 550-2500 550-3000 550-1800 650-2000 550-1800 650-2500 标称截面mm 2 110 120 100 85 120 断面几何尺寸 (mm) A:12.34 B:12.34 A:12.90 B:12.90 A:11.8 B:12.8 A:10.8 B:11.8 A:12.3 B:11.8 A:13 B:13 单位自重 0.992 1.082 0.89 0.76 0.979 1.070

互换性与技术测量基础预测试题(带答案)

互换性预测题 一、判断题 01.(1 )为使零件的几何参数具有互换性,必须把零件的加工误差控制在给定的范围内。 02.()公差是零件尺寸允许的最大偏差。 03.()从制造角度讲,基孔制的特点就是先加工孔,基轴制的特点就是先加工轴。 04.( 1 )Φ10E7、Φ10E8、Φ10E9三种孔的上偏差各不相同,而下偏差相同。 05.()有相对运动的配合应选用间隙配合,无相对运动的配合均选用过盈配合。 06.()若某平面的平面度误差值为0.06mm,则该平面对基准的平行度误差一定小于0.06mm。07.( 1 )若某平面对基准的垂直度误差为0.05mm,则该平面的平面度误差一定小于等于0.05mm.。08.()只要离基准轴线最远的端面圆跳动不超过公差值,则该端面的端面圆跳动一定合格。09.()轴上有一键槽,对称度公差为0.03mm,该键槽实际中心平面对基准轴线的最大偏离量为0.02mm,它是符合要求的。 10.()跳动公差带不可以综合控制被测要素的位置、方向和形状。 11.()某轴标注径向全跳动公差,现改用圆柱度公差标注,能达到同样技术要求。 12.()最大实体要求既可用于中心要素,又可用于轮廓要素。 13.()采用包容要求时,若零件加工后的实际尺寸在最大、最小尺寸之间,同时形状误差小于等于尺寸公差,则该零件一定合格。 14.()测量仪器的分度值与刻度间距相等。 15.()若测得某轴实际尺寸为10.005mm,并知系统误差为+0.008mm,则该尺寸的真值为10.013mm。16.( 1 )在相对测量中,仪器的示值范围应大于被测尺寸的公差值。 17.()量块按“级”使用时忽略了量块的检定误差。 18.()零件的尺寸公差等级越高,则该零件加工后表面粗糙度轮廓数值越小,由此可知,表面粗糙度要求很小的零件,则其尺寸公差亦必定很小。 19.( 1 )测量和评定表面粗糙度轮廓参数时,若两件表面的微观几何形状很均匀,则可以选取一个取样长度作为评定长度。 20.( 1 )平键联结中,键宽与键槽宽的配合采用基轴制。 21.()螺纹中径是指螺纹大径和小径的平均值。 22.()对于普通螺纹,所谓中径合格,就是指单一中径、牙侧角和螺距都是合格的。 23.()螺纹的单一中径不超出中径公差带,则该螺纹的中径一定合格。 24.( 1 )内螺纹的作用中径不大于其单一中径。 25.( 1 )中径和顶径公差带不相同的两种螺纹,螺纹精度等级却可能相同。 26.( 1 )圆锥配合的松紧取决于内、外圆锥的轴向相对位置。 27.( 1 )测量内圆锥使用塞规,而测量外圆锥使用环规。 28.()齿轮传动的振动和噪声是由于齿轮传递运动的不准确性引起的。 29.( 1 )在齿轮的加工误差中,影响齿轮副侧隙的误差主要是齿厚偏差和公法线平均长度偏差。30.( 1 )圆柱齿轮根据不同的传动要求,同一齿轮的三项精度要求,可取相同的精度等级,也可以取不同的精度等级相组合。 二、选择题 1.保证互换性生产的基础是()。 A.标准化 B.生产现代化 C.大批量生产 D.协作化生产 2.基本偏差代号f的基本偏差是()。 A.ES B.EI C.es D.ei

接触网动态检测

接触网动态检测 学生姓名:王伟 学号:1233992 专业班级:电气化铁道技术 指导教师:孙正华

目录 第一章绪论............................................., (1) 1.1 接触网 (1) 1.2 受电弓 (1) 第二章接触网动态检测 (3) 2.1 动态检测系统说明 (3) 2.2 接触网参数的测量 (3) 2.3 检测缺陷的判定 (3) 2.4 检测组织 (4) 2.5 动态特性检测 (4) 2.6 缺陷易造成的后果分析 (4) 2.7 发生接触力不一的原因 (4) 第三章接触网冷滑动态检测 (5) 3.1冷滑行前的检查 (5) 3.2接触网动态检测 (7) 第四章接触网热滑动态数据分析 (8) 4.1 180km/h动态检测与200km/h动态检测数据缺陷数量对照分析 (8) 4.2 200km/h动态检测数据中缺陷出现部位概率分析 (9) 4.3动态弓网关系综合分析 (10) 4.4接触网缺陷克服措施 (11) 第五章电气化铁路接触网动态检测管理体系探讨 (13) 第六章高速铁路接触网检测 (16) 6.1动态解除压力检测 (18) 6.2接触网光学检测 (18) 总结 (20)

展望 (19) 致谢 (21) 参考文献 (22) 摘要 铁路速度的发展经历了从蒸汽时代、内燃时代到电气时代的过程,提速离不开电气化铁路。影响列车运行速度的主要因素除线路曲线半径、无缝钢轨、牵引机车、列车车辆等外,接触网与电力牵引机车之间的动态弓网关系也是影响列车运行速度的重要因素。如何提高接触网的稳定性、平滑度,减少接触网硬点、火花、碰弓、脱弓,消除接触网事故及行车事故隐患,延长接触网使用寿命,减少接触网维护工作量,降低接触网维护成本,是铁路提速中必须解决的问题。本文试对时速200km客货共线改造工程接触网竣工后不同速度试验检测车的热滑动态数据,通过比较分析法,从定量到定质进行分析研究,做出步步研判,为给以后200km/h接触网施工克服缺点提供参考依据,提出一些不成熟的看法,供同行参考。 【关键词】:接触网检测车,动态检测,受电弓滑板

3第三章接触网基本知识

第三章接触网基本知识 接触网就是电气化铁路牵引供电系统重要装置之一,就是牵引网的主体,它的构造及工作状态对列车的运行安全与运行速度影响之大。 第一节接触网的组成 接触网由接触悬挂、支持装置、支柱与基础,三部分组成,如图3-1-1所示。 图3-1-1 接触网组成示意图 (a)接触悬挂; 1-承力索 2-吊弦 3-接触线 (b)支持装置: 4-绝缘子 5-平腕臂 6-斜腕臂 7-定位管 8-定位器 (c) 9-支柱 10-轨道 一、支柱与基础 支柱与基础用于承受支持装置与接触悬挂的全部负载,并将接触悬挂固定在规定的位置。 二、支持装置 支持装置用于支持接触悬挂,并将其负荷传给支柱。支持装置由棒式绝缘子、腕臂、定位装置及连接零件构成。要求它具有足够的机械强度、轻巧耐用,便于施工与维修。

三、接触悬挂 接触悬挂就是架设在铁路上空的输电线路,与机车受电弓摩擦接触,将从牵引变电所获得的电能输送给电力机车。接触悬挂由承力索、接触线、吊弦及连接零件构成。 要求接触悬挂弹性好,高度一致,机械强度高,耐磨、耐腐、耐热性能好,稳定性好,使用寿命长,结构简单,便于安装与维修。 第二节接触悬挂的分类 由于列车运行速度不同,接触悬挂的结构形式也较为繁多,按有无承力索分为简单悬挂与链形悬挂。 简单悬挂由支持装置直接对接触线进行悬挂与定位。它结构简单、施工维修方便、造价低,但接触线高度变化大、弹性差,不适应高速列车运行。 链形悬挂通过承力索悬吊接触线,它弹性均匀,接触线高度一致,稳定性好,适应高速列车运行,在我国电气化铁路中广泛采用。这里只介绍链形悬挂的类型。 一按终端下锚方式分类 链形悬挂按终端下锚的方式分为未补偿、半补偿、全补偿三种。如图3-2-1所示。未补偿与半补偿链形悬挂,线索张力与弛度变化大,不适于高速列车运行,故已不采用。全补偿链形悬挂承力索与接触线都采用补偿装置下锚,当温度变化时,补偿装置能自动调整 图3-2-1 线索下锚示意图 线索张力,保持线索张力不变。因此,全补偿链形悬挂具有弹性好、线索张力恒定、接触线高度一致、吊弦偏移小、结构高度低、支柱容量小、施工方便等优点,在我国电气化铁路中广泛应用。

接触网的注意参数

接触网的注意参数 电气化铁道接触网在实际的应用中时,需要结合行车速度、行车界限等多方面的注意一些参数,这些的注意参数有导高、侧面限界、拉出值、结构高度、跨距等。 导高 导高是指接触线悬挂点高度的简称,是接触线无弛度时定位点出(或悬挂点处)接触线距轨面的垂直高度,一般用H表示。 接触线的最高高度,是根据受电弓的最大工作高度确定的。我国电力机车TGS型受电弓的工作高度为5183~6683mm,考虑到接触线可能出现负弛度及保证受电弓接触线工作压力的需要,接触线距轨面的最高高度不应大于6500mm。 接触线的最低高度的确定,是考虑了带电体对接地体之间的空气绝缘距离及通过超限货物的要求。接触线高度的允许施工偏差为±30mm。对于行车速度在160km/h~200km/h时,对施工误差要求更加严格;定位点两侧低一吊弦处接触线高度应等高,相对该定位点的接触线的高度的施工偏差为±10mm,但不得出现“V”字形;两相邻悬挂点等高相对差不得大于20mm;同一跨距内相邻吊弦处的导高差应符合设计预留弛度的要求,施工偏差不得大于5mm。 最低点高度应符合下列规定: (1)站场和区间(含隧道)接触线距轨面的高度宜取一致,其最低高度不应小于5700mm;编组站、区段站等配有调车组的线、站,正常情况下不小于6200mm,确有困难时不应小于5700mm。 (2)既有隧道内(包括按规定降低高度的隧道口外及跨线建筑物范围内)正常情况下不应小于5700mm;困难情况下不应小于5650mm,特殊情况下不应小于5330mm。 开双层集装箱列车的线路,接触线距轨面的最低高度应根据双层集装箱的高度和绝缘距离确定。一般采用6450mm导高。对于客运专线,应为不存在超限货物列车通过问题,为了提高接触悬挂稳定性,导高较低,一般采用5000~5500mm。

检测技术的基本概念

检测技术的基本概念 典型参数的检测技术 检测技术的练习 检测技术的基本概念 检测的意义 为了满足机械产品的功能要求,在正确合理地完成了可靠性、使用寿命、运动精度等方面的设计以后,还须进行加工和装配过程的制造工艺设计,即确定加工方法、加工设备、工艺参数、生产流程及检测手段。其中,特别重要的环节就是质量保证措施中的精度检验。 “检验”就是确定产品是否满足设计要求的过程,即判断产品合格性的过程。检验的方法可以分为两类:定性检验和定量检验。定性检验的方法只能得到被检验对象合格与否的结论,而不能得到其具体的量值。定量检验的方法是在对被检验对象进行测量后,得到其实际值并判断其是否合格的方法,简称为“检测”。检测的核心是测量技术。通过测量得到的数据,不仅能判断其合格性,还为分析产品制造过程中的质量状况提供了最直接而可靠的依据。 测量的基本要素 一个完整的测量过程应包含被测量、计量单位、测量方法(含测量器具)和测量误差等四个要素。 被测量在机械精度的检测中主要是有关几何精度方面的参数量,其基本对象是长度和角度。 计量单位是以定量表示同种量的量值而约定采用的特定量。我国规定采用以国际单位制(SI)为基础的“法定计量单位制”。常用的长度单位有“毫米(mm)”、“微米(μm)”和“纳米(n m)”,常用的角度单位有“度(°)”、“分(′)”、“秒(″)”和“弧度(rad)”、“球面度(sr)”。 测量方法是根据一定的测量原理,在实施测量过程中对测量原理的运用及其实际操作。广义地说,测量方法可以理解为测量原理、测量器具(计量器具)和测量条件(环境和操作者)的总和。 测量误差是被测量的测得值与其真值之差。由于测量会受到许多因素的影响,其过程总是不完善的,即任何测量都不可能没有误差。从测量的角度来讲,真值只是一个理想的概念。因此,对于每一个测量值都应给出相应的测量误差范围,说明其可信度。不考虑测量精度而得到的测量结果是没有任何意义的。 检测的一般步骤 通常情况下,检测应有以下几个步骤: 1、确定被检测项目认真审阅被测件图纸及有关的技术资料,了解被测件的用途,熟悉各项技术要求,明确需要检测的项目。 2、设计检测方案根据检测项目的性质、具体要求、结构特点、批量大小、检测设备状况、检测环境及检测人员的能力等多种因素,设计一个能满足检测精度要求,且具有低成本、高效率的检测预案。 3、选择检测器具按照规范要求选择适当的检测器具,设计、制作专用的检测器具和

测量基础知识

测量基础知识 第一篇测量基础知识概要 测量技术是一门具有自身专业体系、涵盖多种学科、理论性和实践性都非常强的前沿科学。而熟知测量技术方面的基本知识,则是掌握测量技能,独立完成对机械产品几何参数测量的基础。 1.1 测量的定义 一件制造完成后的产品是否满足设计的几何精度要求,通常有以下几种判断方式。 测量:是以确定被测对象的量值为目的的全部操作。在这一操作过程中,将被测对象与复现测量单位的标准量进行比较,并以被测量与单位量的比值及其准确度表达测量结果。例如用游标卡尺对一轴径的测量,就是将被对象(轴的直径)用特定测量方法(用游标卡尺测量)与长度单位(毫米)相比较。若其比值为30.52,准确度为±0.03mm,则测量结果可表达为(30.52±0.03)mm。 任何测量过程都包含:测量对象、计量单位、测量方法和测量误差等四个要素。 测试:是指具有试验性质的测量。也可理解为试验和测量的全过程。检验:是判断被测物理量是否合格(在规定范围内)的过程,一般来说就是确定产品是否满足设计要求的过程,即判断产品合格性的过程,通常不一定要求测出具体值。因此检验也可理解为不要求知道具体值的测量。

计量:为实现测量单位的统一和量值准确可靠的测量。 1.2 测量基准 测量基准是复现和保存计量单位并具有规定计量单位特性的计量器具。 在几何量计量领域内,测量基准可分为长度基准和角度基准两类。长度基准:1983年第十七届国际计量大会根据国际计量委员会的报告,批准了米的新定义:即“一米是光在真空中在1/299 792 458秒时间间隔内的行程图1-1 长度计量检定系统表(简化) 长度”。根据米的定义建立的国家基准、副基准和工作基准,一般都不能在生产中直接用于对零件进行测量。为了确保量值的合理和统一,必须按《国家计量检定系统》的规定,将具有最高计量特性的国家基准逐级进行传递,直至用于对产品进行测量的各种测量器具。图1-1为长度(端度)计量检定系统表(简化)。 角度基准:角度量与长度量不同。由于常用角度单位(度)是由圆周角定义的,即圆周角等于360°,而弧度与度、分、秒又有确定的换算关系,因此无需建立角度的自然基准。 1.3 量块 量块是一种平行平面端度量具,又称块规。它是保证长度量值统一的重要常用实物量具。除了作为工作基准之外,量块还可以用来调整仪器、机床或直接测量零件。

相关主题
文本预览
相关文档 最新文档