八年级上册数学期中综合练习题及答案
- 格式:docx
- 大小:349.32 KB
- 文档页数:5
2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
新人教版八年级上学期数学期中综合试题(含答案解析)新人教版2021八年级上学期数学期中综合试题(含答案解析)一选择题〔12小题,每题4分〕1.以下长度的三条线段能组成三角形的是〔〕A.1, 2 ,4 B.4, 5,9 C.6,8, 10 D.5, 15, 8 2.以下分式是最简分式的是〔〕A. B. C. D.3.如图,在以下条件中,不能证明△ABD≌△ACD的条件是〔〕.A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD="DC"C.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB="AC"4.以下轴对称图形中,可以用没有刻度的直尺画出对称轴的有〔〕A.1个 B.2个 C.3个 D,4个5.多项式的最小值为〔〕A.4 B.5 C.16 D.256.a÷b× ÷c× ÷d× 等于〔〕A.a B. C. D.ab c d7.一个多边形内角和是1080°,那么这个多边形是〔〕A.五边形 B.六边形 C.七边形 D.八边形8.如图,在△ABC中,∠A,∠1,∠2的大小关系是( ) A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠19.假定分式的值为0,那么x的值为〔〕A.2或-2 B.2 C.-2 D.410.△ABC,求作一点P,使P到三角形三边的距离相等,那么点P是 ( )A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点D.三个内角的角平分线的交点〔cx+d〕,11.假定多项式33x2﹣17x﹣26可因式分解成〔ax+b〕其中a、b、c、d均为整数,那么|a+b+c+d|之值为何?〔〕A.3 B.10 C.25 D.2912.如图,直线是一条河,A、B两地相距10 ,A、B两地到的距离区分为8 、14 ,欲在上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,那么铺设的管道最短的是〔〕二、填空题〔共6题,每题4分〕13.,,那么 = .14.化简: = 。
八年级上册数学期中测试题及答案本文根据题目要求,以八年级上册数学期中测试题及答案为题材,以整洁美观的排版和流畅通顺的语句,为您呈现以下内容。
---八年级上册数学期中测试题及答案第一部分选择题1. 在下列选项中,哪个是素数?A) 6 B) 7 C) 8 D) 9答案:B2. 下列哪个是等差数列?A) 1, 2, 4, 8, 16 B) 1, 3, 5, 7, 9 C) 1, 3, 6, 10, 15 D) 1, 2, 5, 10, 17答案:C3. 三角形ABC中,∠ACB=90°,AD是BC的中线,AC=8,AB=15,求BD的长度。
A) 7 B) 8 C) 12 D) 15答案:A4. 若直线L1:y=2x-1,直线L2:2x-y+4=0,则L1与L2的交点坐标为:A) (2, 3) B) (1, -3) C) (-2, -2) D) (-1, 2)答案:B第二部分填空题1. 若a:b=3:4,b:c=2:5,则a:b:c的比值为______。
答案:6:8:202. 角A的补角是120°,则角A的余角是______。
答案:60°3. 一辆汽车以每小时60公里的速度行驶,10小时行驶的路程为______公里。
答案:600公里第三部分解答题1. 已知等差数列的前两项分别为a和b,前n项和为S_n。
若第n 项为c,求证:S_n = (n/2)(a + c)。
解答:设等差数列的公差为d。
则根据等差数列的性质,有 b = a + d,c = a + (n-1)d。
根据等差数列前n项和公式,有 S_n = (n/2)(a + a + (n-1)d) = (n/2)(2a + (n-1)d) = (n/2)(a + c)。
因此,S_n = (n/2)(a + c)成立,证毕。
2. 一张长方形纸的长比宽大5,它的长和宽的乘积是36平方单位,请问该长方形纸的长和宽各是多少?解答:设该长方形纸的长为x,宽为x-5。
人教版数学八年级上册期中测试题(一)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.243.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.117.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB 于点G.求证:CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.24【考点】一次函数图象上点的坐标特征.【专题】数形结合.【分析】求出直线y=3x+6与两坐标轴的交点坐标,画出函数图象,再根据三角形的面积公式求出三角形的面积.【解答】解:设直线与x轴交点坐标为A(x,0),与y轴交点为B(0,y).将A、B两点分别代入解析式得,x=﹣2,y=6.故A、B两点坐标为A(﹣2,0)、B(0,6).于是S=×2×6=6.△ABC如图:3.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o【考点】直角三角形的性质.【专题】计算题.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)【考点】坐标与图形性质.【专题】计算题.【分析】因为四边形为正方形,四条边相等,根据正方形的性质与边长为:|AB|=4,从而可计算出D的坐标.【解答】解:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的从坐标相等,∴y=﹣3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=﹣3,∴D的坐标为(﹣3,﹣3),故选A.5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【考点】函数的图象.【专题】计算题;应用题;函数及其图像.【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【考点】角平分线的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.13.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【考点】轴对称的性质.【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【考点】角平分线的性质.【专题】压轴题.【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的性质;全等三角形的判定;角平分线的性质.【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【考点】作图—基本作图;等边三角形的性质.【专题】作图题.【分析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.。
八年级上册数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的高为多少cm?A. 5cmB. 12cmC. 16cmD. 24cm5. 下列哪一个数是偶数?A. 101B. 103C. 105D. 107二、判断题(每题1分,共5分)1. 两个等腰三角形的底边长相等,则这两个三角形全等。
()2. 任何两个奇数的和都是偶数。
()3. 一个正方形的对角线长度等于它的边长的平方根。
()4. 一个等边三角形的面积可以用公式“底×高÷2”来计算。
()5. 任何两个质数的和都是偶数。
()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高为______cm。
2. 两个质数的积一定是______。
3. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积为______cm³。
4. 若一个等边三角形的边长为6cm,则这个三角形的面积为______cm²。
5. 下列哪一个数是合数?A. 11B. 13C. 15D. 17答案:______四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述等边三角形的性质。
3. 请简述长方体的体积公式。
4. 请简述等腰三角形的性质。
5. 请简述质数和合数的区别。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为12cm,腰长为15cm,求这个三角形的高。
八年级期中 综合专项练习一、单选题1.有下列实数:317,-π,3.141 5912.其中无理数有( ). A .2个B .3个C .4个D .5个【答案】A【解析】试题分析:在下列实数中,317是分数,3.14159是小数,-3均是有理数,-π故选A . 考点:无理数的定义.2.下列式子中,属于最简二次根式的是( )A B C D 【答案】B【解析】【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.【详解】解:A. =2,故不符合题意;B.C.,故不符合题意;5D.故选:B.【点睛】本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.3.有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【答案】D【解析】试题分析:根据二次根式的意义:被开方数为非负数,即2+x≥0,解得x≥-2.故选D考点:二次根式的意义4.直角三角形的两直角边长分别为1)A.2B C1D.4【答案】A【解析】【分析】根据勾股定理及常用的勾股数可以直接求得答案.【详解】解:由已知,直角三角形的斜边长度为2,故选A.【点睛】本题考查勾股定理的应用,熟记常用的勾股数是解题关键.-,这四个数中,最大的数是()5.在1,02A.0B.2C.D.1-【答案】B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】解:4个数中,-1,2为正数,正数大于0,0大于负数,∴最大的数是2.故选B.【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.6.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】解:∴∴-a3b≥0∴a>b,∴a>0,b<0=-,a ab故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.7)A.±2B.±4C.4D.2【答案】D【解析】【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∴64的算术平方根是8∴8的立方根是2∴∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.8的整数部分是x ,小数部分是y ,则y ()的值是( )A .1B .2C .3D .4【答案】A【解析】 试题解析:3104,<<3, 3.3,3,x y ∴==原式)33 1.== 故选A.9.如图,∴ACB =90°,AC =BC ,AD∴CE ,BE∴CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2 C.D【答案】D【解析】【分析】根据条件可以得出∴E =∴ADC =90°,进而得出∴CEB∴∴ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∴BE∴CE ,AD∴CE ,∴∴E =∴ADC =90°,∴∴EBC +∴BCE =90°.∴∴BCE +∴ACD =90°,∴∴EBC =∴DCA .在∴CEB 和∴ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∴CEB∴∴ADC (AAS ),∴CE =AD =3,在Rt∴BEC中,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.10.已知2x ,x}表示取三个数中最大的那个数﹒例如:当x 9=,2x ,x}=29,9}=81﹒当2x ,x}=116时,则x 的值为( ) A .1512 B .1256 C .164 D .116【答案】B【解析】【分析】直接利用已知分别分析得出符合题意的答案.【详解】解:当2x ,x}=116时,116=,解得:x=1256,此时2x x <<若2116x =,解得:x=14,此时2x x <<若x=116,此时2x x << 综上,x=1256, 故答案为:B.【点睛】本题主要考查实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.二、填空题11.利用计算器进行如下操作:,屏幕显示的结果为5.625,那么进行如下操作:,那么屏幕显示的结果为_____.【答案】0.5625【解析】【分析】因为被开方数向左移动了三位,所以立方根向左移动一位.【详解】,0.5625,故屏幕显示的结果为0.5625,故答案为0.5625【点睛】本题考查了计算器的使用﹣数的开方,熟知被开方数移动的位数是立方根移动位数的3倍是解题的关键.12_____.【答案】8【解析】【分析】利用利用“夹逼法”【详解】解:∴89,∴8,故答案为:8.【点睛】本题考查了估算无理数的大小,解决本题的关键是利用“夹逼法”13.如果y ,则2x +y 的值是_______.【答案】9【解析】解:由题意得x=4,y=1,则2x +y=9.14.在Rt ABC 中,90,3,1,C AB cm BC cm ∠=︒==则AB 上的高为___________cm .【解析】【分析】根据题意得到AB 为斜边,BC 为直角边,因此应根据勾股定理求得另一条直角边AC 的长,然后根据三角形面积公式即可求解.【详解】∴Rt ABC 中,∴C=90°,AB=3cm ,BC=1cm ,=, ∴1122Rt ABC S AC BC AB h =⨯⨯=⨯⨯,整理得,111322h ⨯=⨯⨯,∴斜边AB上的高h=.故答案为:3.【点睛】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方以及三角形面积公式的综合运用,本题要注意AB为斜边.15.实a∴b在数轴上的位置如图所示,则化简a b++=___________.【答案】2a-【解析】由数轴得∴a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.16.已知x,则x2﹣2x﹣3=_____.【答案】1【解析】【分析】将x 的值代入原式,再依据二次根式的混合运算顺序和运算法则计算可得.【详解】解:当x 时,)2﹣2)﹣3=2﹣3=1,故答案为1.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的运算顺序和运算法则.17.已知a ,b ,c ++.【答案】a b c ++【解析】【分析】根据三角形的三边关系定理、二次根式的性质计算即可.【详解】由三角形的三边关系定理得:,,a b c a c b b c a +>+>+>0,0,0a b c b a c b c a ∴+->--<+->++a b c a c b b c a =+-++-++-a b c=++++.故答案为:a b c【点睛】本题考查了三角形的三边关系定理、二次根式的运算,掌握理解三角形的三边关系定理是解题关键.18.观察下列等式:=,第1个等式:a11=,第2个等式:a2=2第3个等式:a3=,第4个等式:a42…按上述规律,回答以下问题:(1)请写出第n个等式:a n=__________.(2)a1+a2+a3+…+a n=_________=1【解析】【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∴第1个等式:a11=,第2个等式:a2=,第3个等式:a3=2第4个等式:a42=,……∴第n==(2)123(21)(32)(23)(1) na a a a n n+++=-+-+-+++-121n++1;1.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题三、解答题19.计算:(1(2.【答案】(1)0.5;(2)4【解析】【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1-3242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.20.计算:(1)(2【答案】(1)(2)【解析】【分析】(1)先将二次根式化为最简二次根式,然后合并同类二次根式即可;(2)先将二次根式化为最简二次根式,然后合并同类二次根式即可.【详解】(1)===(246=⨯3==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式.21.已知实数a,b,c满足4b=,c的平方根等于它本身.求a+.【答案】5.【解析】【分析】【详解】解:∴-(a-3)2≥0,∴a=3.把a=3代入4b=得b=4.∴c的平方根等于它本身,∴c=0,∴35a==.22.已知a∴b分别为等腰三角形的两条边长,且a∴b满足b【答案】10.【解析】试题分析:首先由结合二次根式的被开方数是非负数列出不等式组求得a的值,进一步求得b的值,再分a为腰和b为腰两种情况讨论计算即可.试题解析∴∴∴36020aa-≥⎧⎨-≥⎩,解得:a=2∴∴b=4∴∴1∴当边长为4∴2∴2时,不符合实际情况,舍去;∴2∴当边长为4∴4∴2时,符合实际情况,∴ 4×2∴2∴10∴∴此三角形的周长为10.点睛:解答本题有两个要点:(1∴由4b =+不等式组36020a a -≥⎧⎨-≥⎩;(2)有关三角形三边的问题需用三角形三边间的关系检验是否能够围成三角形. 23.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA AB ⊥于点A ,CB AB ⊥于点B .已知15km DA =,10km CB =,现在要在铁路AB 上建一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在离A 点多远处?【答案】收购站E 应建在离A 点10千米处.【解析】【分析】设km AE x =,则()25km BE x =-.在Rt DAE ∆中,根据勾股定理,得22215DE x =+.在Rt EBC ∆中,根据勾股定理,得()2221025CE x =+-.【详解】解:设km AE x =,则()25km BE x =-.在Rt DAE ∆中,根据勾股定理,得22215DE x =+.在Rt EBC ∆中,根据勾股定理,得()2221025CE x =+-.因为DE CE =,所以()2222151025x x +=+-.解得10x =.即收购站E 应建在离A 点10千米处.【点睛】考核知识点:勾股定理运用.根据勾股定理得22215DE x =+,再得()2222151025x x +=+-是解题关键. 24.计算:(1∴()115662311⎛⎫-⨯-⨯ ⎪⎝⎭∴ ∴2∴()223232---+∴∴3∴4∴()22--【答案】∴1∴-23∴(2)232-;(3)12-;(4) 6π- 【解析】【分析】 ∴1∴原式利用乘法分配律计算即可得到结果;∴2∴原式先计算乘方运算,再算加减运算即可得到结果;∴3)原式利用平方根、立方根定义计算即可得到结果;∴4)原式利用平方根、立方根定义计算即可得到结果.【详解】∴1∴原式()156666*********=-⨯+⨯=-+=-∴ ∴2∴原式3231322=-+=-∴ ∴3)原式131442=-=-∴ ∴4∴原式()()4π3234π3236π=-----=-++-=-∴25.细心观察图,认真分析下列各式,然后解答问题.212+=,12S =;213+=,22S =214+=,32S =;.... (1)请用含有n (n 是正整数)的等式表示上述变化规律.(2)推算出10OA 的长.(3)求2221210S S S +++的值.【答案】(1)211n +=+,2n S =.(n 是正整数);(2)10OA =(3)554 【解析】【分析】(1)利用已知可得OA n 2,注意观察数据的变化,(2)结合(1)中规律即可求出OA 102的值即可求出,(3)将前10个三角形面积相加,利用数据的特殊性即可求出.【详解】(1)211n +=+,n S =(n 是正整数)(2)由(1)得,2n =,即OA n 2=n ,∴10OA = (3)222222121012101234105522244S S S ⎛⎫⎛⎫⎛⎫++++⋯+++++++== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【点睛】本题主要考查勾股定理以及作图的知识点,解答本题的关键是熟练掌握勾股定理的知识,此题难度不大. 26.如图,一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米.(1)求BC 的长;(2)梯子滑动后停在DE 的位置,当AE 为多少时,AE 与BD 相等?【答案】(1)4m ;(2)1m.【解析】【分析】(1)直接在Rt ∴ABC 中应用勾股定理即可作答;(2)先设AE=x ,然后根据题意用x 表示出CD 和CE 的长,然后使用勾股定理即可完成解答。
八年级上册数学期中考试试卷及答案读书之乐何处寻,数点梅花天地心。
书是我生活中的一大乐趣。
我坚信,只有让我们的灵魂融入书的海洋,让书的内容融入我们的生命,才能有一个比水海更为宽敞的心灵空间!下面给大家共享一些关于〔八年级〕上册数学期中考试试卷及答案,希望对大家有所关怀。
试卷:一、选择题(每题3分,共30分)1、在,-2ab2,,中,分式共有()A.2个B.3个C.4个D.5个2、以下各组中的三条线段能组成三角形的是()A.3,4,5B.5,6,11C.6,3,10D.4,4,83、以下各题中,所求的最简公分母,错误的选项是()A.与最简公分母是6x2B.与最简公分母是3a2b3cC.与的最简公分母是(m+n)(m-n)D.与的最简公分母是ab(x-y)(y-x)4、不转变的值,把它的分子和分母中的各项系数都化为整数,所得的结果为()A.B.C.D.5、若分式,则x的值是()A.3或-3B.-3C.3D.96、如图,将三角尺的直角顶点放在直线a上,a‖b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°7、以下式子:①(-2)-2=;②错误!未找到引用源。
;③3a-2=;④-7.02×10-4=-0.000702.新$课$标$第$一$网其中正确的式子有()A.1个B.2个C.3个D.4个8、如图,D是线段AB,BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是()A.60°B.70°C.75°D.80°9、甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的选项是()A.=B.=C.=D.=10、以下命题中是假命题的()A、在同一平面内,垂直于同一条直线的两条直线平行。
数学八年级上册期中试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项是正确的?A. a b > 0B. a + b > 0C. a × b > 0D. a ÷ b > 02. 下列哪个数是负数?A. -(-5)B. -|3|C. -(+2)D. -(-2)3. 若 a = 3,b = -2,则 a + b 的值为?A. 1B. 5C. -5D. -14. 下列哪个选项是正确的?A. 0 是正数B. 0 是负数C. 0 既不是正数也不是负数D. 0 是最小的自然数5. 下列哪个选项是正确的?A. 正数都大于 0B. 负数都小于 0C. 正数大于一切负数D. 0 大于一切负数二、判断题(每题1分,共5分)1. 两个负数相加,和一定是负数。
()2. 两个正数相乘,积一定是正数。
()3. 0 除以任何不为零的数都得零。
()4. 任何正数都有两个平方根,这两个平方根互为相反数。
()5. 负数都小于正数。
()三、填空题(每题1分,共5分)1. 最大的负整数为______。
2. 如果 a > b,那么 a b = ______。
3. 如果 a < b,那么a ÷ b = ______。
4. 如果 a > 0,那么 -a = ______。
5. 如果 a < 0,那么 |a| = ______。
四、简答题(每题2分,共10分)1. 请简述有理数的概念。
2. 请简述相反数的概念。
3. 请简述绝对值的概念。
4. 请简述正数和负数的概念。
5. 请简述零的概念。
五、应用题(每题2分,共10分)1. 已知 a = 3,b = -2,求 a + b 的值。
2. 已知 a = -5,b = 4,求 a b 的值。
3. 已知 a = -3,b = -2,求a × b 的值。
4. 已知 a = 8,b = -4,求a ÷ b 的值。
八年级上册数学期中综合练习题及答案
一、选择题
1. (2011江西)如图下列条件中,不能..
证明△ABD ≌△ACD 的是( ). A.BD =DC ,AB =AC B.∠ADB =∠ADC
C.∠B =∠C ,∠BAD =∠CAD
D.∠B =∠C ,BD =DC
【答案】D
2. (2011上海)下列命题中,真命题是( ).
(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等;
(C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.
【答案】D
3. 8. (2011安徽芜湖,6,4分)如图,已知ABC △中,45ABC ∠= , F 是高AD 和BE 的交点,
4CD =,
则线段DF 的长度为( ).
A .
B . 4
C .
D .
【答案】B 4. (2011四川凉山州)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,
DE DE AB ⊥,垂足为点E ,则DE 等于( )
A .1013
B .1513
C .6013
D .7513
【答案】C[
5.(辽宁沈阳)如图,矩形ABCD 中,AB <BC ,对角线AC 、BD 相交于点O ,则图中的
等腰三角形有
A .2个
B .4个
C .6个
D .8个
【答案】B 。
6.(广西河池)如图,在△ABC 中,AB =AC ,∠A=36º,AB 的垂直平分线DE
交AC 于D ,交AB 于E .下列结论错误..
的是 A .BD 平分∠ABC B.△BCD 的周长等于AB +BC
C .A
D =BD =BC D .点D 是线段AC 的中点
【答案】D 。
【考点】等腰三角形的性质,线段垂直平分线的性质,三角形内角和定理,三角形外角定理。
【分析】根据等腰三角形的性质,线段垂直平分线的性质和三角形内角和定理可作出判断:
A.∵AB=AC,∠A=36º,∴根据等腰三角形等边对等角的性质和三角形内角和定理,得∠ABC=72º,又∵DE是AB的垂直平分线,∴根据线段垂直平分线的性质,得∠ABD=∠A=36º,∴∠DBC=36º,
∴∠ABD=∠DBC,∴BD平分∠ABC。
结论正确。
B.∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长AD+DC+BC=AB+BC。
结论正确。
C.∵DE是AB的垂直平分线,∴AD=BD,又∵∠BDC=∠ABD+∠A=72º=∠C,∴BD=BC,
∴AD=BD=BC。
结论正确。
D.∵在△BCD中,∠C=72º,∠CBD=36º,∴∠C>∠CBD,∴BD>CD,∴AD>CD,∴点D不是线段AC 的中点。
结论错误。
故选D。
7.(2011•南通)下面的图形中,既是轴对称图形又是中心对称图形的是()
A、B、 C、 D、
考点:中心对称图形;轴对称图形。
分析:结合轴对称图形与中心对称图形的定义进行分析
解答:解:A项是中心对称图形,不是轴对称图形,故本项错误,B项为中心对称图形,不是轴对称图形,故本项错误,C项为中心对称图形,也是轴对称图形,故本项正确,
D项为轴对称图形,不是中心对称图形,故本项错误故答案选择C.
点评:本题主要考察轴对称图象的定义和中心对称图形的定义,解题的关键是找到图形是否符合轴对称图形和中心对称图形的定义
8.(2011江苏无锡,6,3分)一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是()
A.B. C.D.
考点:轴对称图形。
专题:数形结合。
分析:轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.
解答:解:A、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故不符合题意;
B 、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故不符合题意;
C 、图象关于对角线所在的直线对称,有一条对称轴;故不符合题意;
D 、图象关于对角线所在的直线不对称;故符合题意;
故选D .
点评:本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
二、填空题
1. (2011湖南邵阳)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°
,则∠A=_______。
【答案】80°。
提示:∠A=180°-2×50°=80°
2. (2011广东湛江19,4分)如图,点,,,B C F E 在同一直线上, 12∠=∠,BC FE =,1∠
(填“是”或“不是”) 2∠的对顶角,要使ABC DEF ∆≅∆,还需添加一个条件,这个条件可以是 (只需写出一个).
【答案】AC DF =
3. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.
【答案】
4. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边
为 .
【答案】4或6
三、解答题
1. (2011山东菏泽,15)已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC
证明:在△ABC 与△DCB 中
(A B C D C B A C B D B C B C B C ∠=∠⎧⎪∠=∠⎨⎪=⎩
已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC ) ∴△ABC ≌△DCB
∴AB =DC 2. (2011山东德州19,8分)如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O .
(1)求证AD =AE ;(2) 连接OA ,BC ,
试判断直线OA ,BC 的关系并说明理由.
【答案】(1)证明:在△ACD 与△ABE 中,
∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC ,
∴ △ACD ≌△ABE .…………………… 3分
∴ AD=AE . ……………………4分
(2) 互相垂直 ……………………5分
在Rt △ADO 与△AEO 中,
∵OA=OA ,AD=AE ,
∴ △ADO ≌△AEO . ………6分
∴ ∠DAO =∠EAO .
即OA 是∠BAC 的平分线. …………7分
又∵AB =AC , ∴ OA ⊥BC .
3. (2011湖北鄂州,18)如图,在等腰三角形ABC 中,∠ABC=90°,
D 为AC 边上中点,过D 点作D
E ⊥D
F ,交AB 于E ,交BC 于F , 若AE=4,FC=3,求EF 长.
【答案】连结BD ,证△BED ≌△CFD 和△AED ≌△BFD ,
求得EF=5
4.(山东日照)如图,已知点D 为等腰直角△ABC 内一点,∠CAD=∠CBD=15°,E 为AD 延长线上的一点,且CE =CA .
(1)求证:DE 平分∠BDC;
(2)若点M 在DE 上,且DC =DM ,求证:ME =BD .
【答案】证明:(1)在等腰直角△ABC 中,
∵∠CAD=∠CBD=15o
,
∴∠BAD=∠ABD=45o -15o =30o 。
∴BD=AD 。
又∵CA=CB ,∴△BDC≌△ADC(SAS )。
∴∠DCA=∠DCB。
A
B E
C D
O 第18题图
B A E
F C
又∵∠ACB=90o,∴∠DCA=∠DCB=45o。
∵∠BDM=∠ABD+∠BAD=30o+30o=60o,∠EDC=∠DAC+∠DCA=15o+45o=60o,
∴∠BDM=∠EDC。
∴DE平分∠BDC。
(2)如图,连接MC。
∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD。
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC。
又∵CE=CA,∴∠DAC=∠CEM=15°。
∴△ADC≌△EMC(AAS)。
∴ME=AD=BD。
【考点】等腰(直角)三角形的性质,全等三角形的判定和性质,等量代换,等边三角形的判定和性质,三角形内角和定理。