人教版八年级上册数学 期中综合提升训练(附答案)
- 格式:doc
- 大小:293.50 KB
- 文档页数:8
新人教版八年级上学期数学期中综合试题(含答案解析)新人教版2021八年级上学期数学期中综合试题(含答案解析)一选择题〔12小题,每题4分〕1.以下长度的三条线段能组成三角形的是〔〕A.1, 2 ,4 B.4, 5,9 C.6,8, 10 D.5, 15, 8 2.以下分式是最简分式的是〔〕A. B. C. D.3.如图,在以下条件中,不能证明△ABD≌△ACD的条件是〔〕.A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD="DC"C.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB="AC"4.以下轴对称图形中,可以用没有刻度的直尺画出对称轴的有〔〕A.1个 B.2个 C.3个 D,4个5.多项式的最小值为〔〕A.4 B.5 C.16 D.256.a÷b× ÷c× ÷d× 等于〔〕A.a B. C. D.ab c d7.一个多边形内角和是1080°,那么这个多边形是〔〕A.五边形 B.六边形 C.七边形 D.八边形8.如图,在△ABC中,∠A,∠1,∠2的大小关系是( ) A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠19.假定分式的值为0,那么x的值为〔〕A.2或-2 B.2 C.-2 D.410.△ABC,求作一点P,使P到三角形三边的距离相等,那么点P是 ( )A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点D.三个内角的角平分线的交点〔cx+d〕,11.假定多项式33x2﹣17x﹣26可因式分解成〔ax+b〕其中a、b、c、d均为整数,那么|a+b+c+d|之值为何?〔〕A.3 B.10 C.25 D.2912.如图,直线是一条河,A、B两地相距10 ,A、B两地到的距离区分为8 、14 ,欲在上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,那么铺设的管道最短的是〔〕二、填空题〔共6题,每题4分〕13.,,那么 = .14.化简: = 。
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。
3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。
若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。
10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。
11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。
八年级上册期中综合能力测评(附答案)一.选择题1.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4B.3C.5D.﹣32.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查杭州市出租车数量D.了解全班同学的家庭经济状况4.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)25.将点P(﹣2,﹣3)向左平移3个长度单位,再向上平移2个长度单位得到点Q,则点Q的坐标是()A.(1,﹣3)B.(﹣2,1)C.(﹣5,﹣1)D.(﹣5,5)6.下列运算正确的是()A.2m3+3m2=5m5B.m3÷(﹣m)2=mC.m•(m2)3=m6D.(m+n)(n﹣m)=m2﹣n27.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°8.古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米2020石,验得米内夹谷,抽样取米一把,数得270粒内夹谷30粒,则这批米内夹谷约为()A.222石B.224石C.230石D.232石9.若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()A.4a2﹣1B.4a2﹣4a+1C.4a2+4a+1D.2a2﹣10.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A的度数为()A.31°B.62°C.87°D.93°11.已知a+b=﹣5,ab=﹣4,则a2﹣ab+b2=()A.29B.37C.21D.3312.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A.AE⊥BC B.BE=CE C.∠ABD=∠DBE D.△ABD≌△ACD二.填空题13.如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于厘米.14.计算:xy2•(﹣6x)2=.15.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是.16.如图,在△ABC中,BD平分∠ABC,DE∥BC,交AB于点E,若AB=7cm,AE=4cm.则DE的长为cm.17.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6.按照这种运算规定,当x=时,=0.18.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2020=.三.解答题19.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.20.先化简,再求值:(2x+y)(2x﹣y)﹣(x﹣2y)2+y(﹣4x+5y+1),其中x=2,y=2008.21.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?22.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A 点除外)23.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ的形状,并加以证明.24.如图,四边形ABCD是边长为1的正方形,分别延长BD,DB至点E,F,且BF=DE=.连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)求四边形AECF的面积;(3)如果M为AF的中点,P为线段EF上的一动点,求PA+PM的最小值.25.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案一.选择题1.解:在平面直角坐标系中,点P(4,﹣3)到x轴的距离为3.故选:B.2.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.3.解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查杭州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.4.解:A.(x+y)2=x2++2xy+y2,故本选项不合题意;B.(x+3)(x﹣3)=x2﹣9,故本选项不合题意;C.(m﹣n)(n﹣m)=﹣n2+2mn﹣m2,故本选项不合题意;D.(x﹣y)2=(y﹣x)2,正确.故选:D.5.解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.6.解:A.2m3与3m2不是同类项,所以不能合并,故本选项不合题意;B.m3÷(﹣m)2=m,正确;C.m•(m2)3=m7,故本选项不合题意;D.(m+n)(n﹣m)=n2﹣m2,故本选项不合题意.故选:B.7.解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.8.解:这批米内夹谷约为2020×≈224(石);故选:B.9.解:三角形的面积为:(2a+1)(2a﹣1)=2a2﹣,故选:D.10.解:∵DE垂直平分BC,∴DB=DC,∴∠DBC=∠C=31°,∵BD平分∠ABC,∴∠ABD=∠CBD=31°,∴∠A=180°﹣31°×3=87°,故选:C.11.解:把a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=﹣4代入得:a2+b2=33,则a2﹣ab+b2=33﹣(﹣4)=37.故选:B.12.解:∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;BE=CE,故选项B正确;在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.二.填空题13.解:当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故答案为:17.14.解:xy2•(﹣6x)2==12x3y2,故答案为:12x3y2.15.解:若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为3,则点的坐标为(3,﹣2),故答案为:(3,﹣2).16.解:∵AB=7cm,AE=4cm,∴BE=7﹣4=3cm,∵BD平分∠ABC,∴∠EBD=∠CBD,∵DE∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EBD,∴DE=BE=3cm;故答案为:3.17.解:由题意得(x+2)(x﹣2)﹣(x+4)(x﹣3)=0,x2﹣4﹣(x2+x﹣12)=0,解得x=8.故答案为:8.18.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,又∵∠3=60°,∴∠OB1A2=60°+30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,∴a2=2a1=2,同理;a3=4a1=4,a4=8a1=8,a5=16a1,…,以此类推:所以a2020=22019.故答案是:22019.三.解答题19.解:(1)(2x﹣3)m+2m2﹣3x=2mx﹣3m+2m2﹣3x=(2m﹣3)x+2m2﹣3m,∵其值与x的取值无关,∴2m﹣3=0,解得,m=,答:当m=时,多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关;(2)∵A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,∴3A+6B=3[(2x+1)(x﹣1)﹣x(1﹣3y)]+6(﹣x2+xy﹣1)=3(2x2﹣2x+x﹣1﹣x+3xy]﹣6x2+6xy﹣6=6x2﹣6x+3x﹣3﹣3x+9xy﹣6x2+6xy﹣6=15xy﹣6x﹣9=3x(5y﹣2)﹣9,∵3A+6B的值与x无关,∴5y﹣2=0,即y=;(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),∴S1﹣S2=a(x﹣3b)﹣2b(x﹣2a)=(a﹣2b)x+ab,∵当AB的长变化时,S1﹣S2的值始终保持不变.∴S1﹣S2取值与x无关,∴a﹣2b=0∴a=2b.20.解:原式=4x2﹣y2﹣x2+4xy﹣4y2﹣4xy+5y2+y=3x2+y∵x=2,y=2008,∴原式=3×22+2008=202021.解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).22.解:(1)∵A(﹣4,3),C(﹣2,5),∴A′(﹣4,﹣3),C'(1,3);故答案为:﹣4,﹣3;1,3;(2)如图所示:即为所求;(3)△ABC与△PBC全等,这样的P点有3个.故答案为:3.23.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.24.(1)证明:连接AC交BD于O,∵四边形ABCD是正方形,∴BD⊥AC,BO=DO,AO=CO,∵BF=DE=,∴OE=OF,∴四边形AECF是菱形;(2)解:∵四边形ABCD是边长为1的正方形,∴AB=AD=1,∴BD=AC=,∴EF=3,∴四边形AECF的面积=AC•EF=×3=3;(3)解:∵四边形AFCE是菱形,∴点A与点C关于直线EF对称,连接CM交EF于P,则此时,PA+PM=CM最小,过C作CN⊥AF于N,则AC2﹣AN2=CN2=CF2﹣NF2,设AN=x,∴()2﹣x2=()2﹣(﹣x)2,解得:x=,∴MN=,∵CM2﹣MN2=AC2﹣AN2,∴CM2﹣()2=12﹣()2,解得:CM=,故PA+PM的最小值=.25.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.八年级上册同步练习:期中考试冲刺(四)(附答案)一.选择题1.下列四个图案中,是轴对称图形的是()A.B.C.D.2.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形B.五边形C.六边形D.七边形3.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.54.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或105.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S=15,则CD的长为()△ABDA.3 B.4 C.5 D.66.如图,△ABC与△DEF关于直线l对称,则∠F等于()A.60°B.40°C.80°D.60°或80°7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB8.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD9.将一副三角板如图放置,且两条直角边重叠,则∠1的度数是( )A .30°B .45°C .70°D .75°10.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线; ②∠ADC =60°; ③点D 在AB 的中垂线上; ④S △ACD :S △ACB =1:3. 其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④二.填空题11.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是 .12.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是 .13.一个三角形的两边长为5和7,则第三边a的取值范围是.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.如图,在等边三角形ABC中,AE=CD,AD、BE相交于P点.∠BPD=°.16.如图∠1,∠2,∠3分别是△ABC的外角,则∠1+∠2+∠3=°.三.解答题17.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.18.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.19.已知:如图,CA=CB(A、B、C三点不共线).(1)请分别作出线段CA、CB的垂直平分线(用尺规作图,保留作图痕迹,不必写作法);(2)设所作两垂直平分线交于点O,连接CO,请问CO平分∠ACB吗?请说明理由.四.解答题20.如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午11时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时60千米,求∠ASB的度数及AB的长.21.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.22.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,点B、C、E 在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(结论中不得含有未标识的字母);(2)试判断DC与BE是否垂直?并说明理由.五.解答题23.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.24.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案一.选择题1.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故选:D.2.解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故选:B.3.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.4.解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.故选:B.5.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.6.解:∵△ABC与△DEF关于直线l对称∴∠A=∠D=40°,∠B=∠E=60°∴∠F=180°﹣100°=80°.故选:C.7.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.8.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.9.解:如图,∠2=90°﹣45°=45°,∠3=∠2=45°,所以,∠1=∠3+30°=45°+30°=75°.故选:D.10.解:根据作图方法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,故②正确;∵∠B=30°,∠DAB=30°,∴AD =DB ,∴点D 在AB 的中垂线上,故③正确; ∵∠CAD =30°, ∴CD =AD , ∵AD =DB , ∴CD =DB , ∴CD =CB ,S △ACD =CD •AC ,S △ACB =CB •AC ,∴S △ACD :S △ACB =1:3,故④正确, 故选:D .二.填空11.解:木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是:三角形的稳定性. 12.解:∵在△CBA 1中,∠B =30°,A 1B =CB , ∴∠BA 1C ==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=∠BA 1C =×75°;同理可得∠EA 3A 2=()2×75°,∠FA 4A 3=()3×75°, ∴第n 个三角形中以A n 为顶点的内角度数是() n ﹣1×75°.故答案为:() n ﹣1×75°. 13.解:∵三角形的两边长分别为5、7, ∴第三边a 的取值范围是则2<a <12. 故答案为:2<a <12.14.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.解:∵AE=CD,∴CE=BD,∵∠ABD=∠BCE,AB=BC,∴△ABD≌△CBE,故∠BAD=∠CBE,∵∠ABD+∠BAD+∠ADB=180°,∠CBE+∠ADB+∠BPD=180°,∴∠BPD=∠ABD,∵∠ABD=60°,∴∠BPD=60°,故答案为 60°.16.解:∵三角形的外角和为360°,∴∠1+∠2+∠3=360°,故答案为:360°.三.解答题17.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.18.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.19.解:(1)出线段CA的垂直平分线GH,线段CB的垂直平分线MN如图所示;(2)设GH交AC于F,MN交BC于E.∵AC=BC,BE=CE,CF=AF,∴CE=CF,∵CO=CO,∴Rt△OCE≌Rt△OCF(HL),∴∠OCE=∠OCF,∴OC平分ACB.四.解答题20.解:如图:由图可知∠SAB=90°﹣∠DAS=90°﹣60°=30°,∠ABS=90°﹣∠SBC=90°﹣30°=60°,因为在△ABS中,∠SAB=30°,∠ABS=60°,所以∠ASB=180°﹣∠ABS﹣∠SAB=180°﹣60°﹣30°=90°.60×(11﹣8)=180(千米).所以AB长为180千米.21.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.22.解:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠EAC=∠DAE+∠EAC,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)DC⊥BE,∵△ABE≌△ACD,∴∠AEB=∠ADC,∵∠ADC+∠AFD=90°,∴∠AEB+∠AFD=90°,∵∠AFD=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴DC⊥BE.五.解答题23.解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.24.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.25.(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.2020-2021学年湖南省长沙市天心区长郡教育集团八年级(上)期中数学试卷(附答案)一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣95.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣510.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣2512.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④二、填空题(共6小题).13.(3分)等腰三角形的一个角是110°,则它的底角是.14.(3分)计算:3a2b•(﹣2ab3)2=.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为.17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是,,;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,这点的坐标为.23.(9分)已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.24.(9分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,CE=DB.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEB+∠FEC的度数;(3)当∠EDF=60°时,求∠A的度数.25.(10分)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.26.(10分)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.参考答案一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四解:∵1>0,﹣2<0,∴点M(1,﹣2)在第四象限.故选:D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式解:A.调查市场上酸奶的质量情况,适合采用抽样调查方式,故本选项符合题意;B.了解长沙市居民日平均用水量,适合采用抽样调查方式,故本选项不符合题意;C.乘坐飞机前的安检,适合采用全面调查方式,故本选项不符合题意;D.某LED灯厂要检测一批灯管的使用寿命,适合采用抽样调查方式,故本选项不符合题意;故选:A.4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣9解:A.(m﹣n)(﹣m﹣n)=﹣(m+n)(m﹣n)=﹣(m2﹣n2)=n2﹣m2,故本选项不合题意;B.(﹣1+mn)(1+mn)=(mn)2﹣12=m2n2﹣1,故本选项不合题意;C.(﹣m+n)(m﹣n)=﹣(m﹣n)(m﹣n)=﹣(m﹣n)2=﹣m2+2mn﹣n2,故本选项不合题意;D.(2m﹣3)(2m+3)=4m2﹣9,故本选项符合题意.故选:D.5.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度解:∵点A(﹣2,3),A'(﹣5,7),∴点A沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度得到点A′,故选:D.6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a解:A.a2•a3=a5,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.(2a)2=4a2,故本选项符合题意;D.3a2÷a2=3,故本选项不合题意.故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石解:根据题意得:1500×=150(石),答:这批米内夹谷约为150石;故选:B.9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣5解:∵(x+3)(x﹣5)=x2﹣2x﹣15,∴﹣m=﹣2,则m=2.故选:A.10.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=10,∵△ABD的周长为16,∴AB+BD+AD=AB+BD+DC=AB+BC=16,∴△ABC的周长=AB+BC+AC=16+10=26(cm),故选:A.11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣25解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19,故选:A.12.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④解:∵△ADE、△DFG,△ABC为等边三角形,∴DA=DE,DG=DG,∠ADE=∠FGD=∠AED=∠ACB=∠DAE=∠BAC=60°,∴∠ADG=∠EDF,∠DAB=∠CAE,∴△ADG≌△EDF(SAS),故①正确∴∠DEF=∠DAG,∵∠DEF+∠AED=∠EAC+∠ACE=∠EAC+∠ABC﹣∠BCF,∴∠EAC﹣∠DEF=∠BCF,∵∠BAG=∠DAB﹣∠DAG=∠CAE﹣∠DEF,∴∠BAG=∠BCF,故④正确,∵DF+EG=DG+GE≥DE,∴DF+GE≠AD,故③错误.设AG交CF于点O,DG交CF于K.∵△ADG≌△EDF,∴∠OGK=∠FKD,EF=AG,∵∠GKO=∠FKD,∴∠GOK=∠FDK=60°,∴∠AOC=∠GOK=∠ABC=60°,∴∠BAG=∠BCE,∵EF=CE,∴AG=CE,∵AB=CB,∴△BAG≌△BCE(SAS),∴BG=BE,∠ABG=∠CBE,∴∠EBC=∠ABC=60°,∴△EBG是等边三角形,∴∠EGB=60°,故⑤正确,无法判断AC=EC或AE=EC或AE=EC,故△ACE不一定是等腰三角形,故②错误,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)等腰三角形的一个角是110°,则它的底角是35°.解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.14.(3分)计算:3a2b•(﹣2ab3)2=12a4b7.解:3a2b•(﹣2ab3)2=3a2b•4a2b6=12a4b7.故答案为:12a4b7.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为﹣2.解:∵点P(a﹣1,a+2)在x轴上,∴a+2=0,解得a=﹣2,故答案为:﹣2.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为13.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=6,AC=7,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=6+7=13.故答案为:13..17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=3.解:根据题意得(x+2)2+(x+2)(2﹣x)=20,∴x2+4x+4+4﹣x2=20,∴4x+8=20,4x=12,解得x=3,故答案为:3.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是22n﹣2.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,∴OA1=A1B1=A1A2=2,∴等边三角形边上的高为,∴△A1B1A2的面积是:2×=;∵△A2B2A3、△A3B3A4是等边三角形,同理可得:OA2=A2B2=A2A3=4,∴高为2,∴△A2B2A3的面积是:4×2=4;∵OA3=A3B3=A3A4=23=8,∴高为4,∴△A3B3A4的面积是:8×4=16=24;…△A n B n A n+1的面积是:22n﹣2;故答案为:,22n﹣2.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).解:(1)x(4x2﹣x)+x3÷x=4x3﹣x2+x2=4x3;(2)(x﹣y)(x+3y)﹣x(x+2y)=x2+3xy﹣xy﹣3y2﹣x2﹣2xy=﹣3y2.20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.解:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2=4﹣9x2+5x2﹣5x+4x2﹣4x+1=﹣9x+5,当时,原式=﹣9×(﹣)+5=3+5=8.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是(﹣3,3),(3,﹣3),(﹣1,﹣3);(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,。
北京市陈经纶中学分校2020---2021 学年度第一学期期中检测八年级 数学试卷(无答案)(考试时间 90 分钟 满分 100 分)一、选择题(本题共有 8 小题,各题均附有四个备选答案,其中有且只有一个是正确的,每小题 2 分,共 16 分)1.如图,在△ABC 中,BC 边上的高为( )(A ) AB(B ) B D (C ) AE(D ) B E2.下列运算正确的是考生须知1、 在试卷和答题卡上认真填写班级、姓名、考号。
2、 试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。
3、 在答题卡上,选择题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
4、考试结束后,将试卷和答题卡一并交回。
(A ) 2a + 3b = 5ab(B )(ab )2= a 2b 2(C ) a 2 ⋅ a 3 = a 6(D ) (a 2 )3 = a 5 3.如图, AB 与CD 相交于点,则下列结论一定正确的是( )(A ) ∠1 > ∠3 (C ) ∠3 = ∠4(B ) ∠2 < ∠4 + ∠5 (D ) ∠3 = ∠54.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是(A ) (B ) (C ) (D )5.已知: 2m = 1, 2n = 3,则 2m + n =( )(A ) 2 (B ) 3 (C ) 4 (D ) 66. 如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°, 则∠EAC的度数为 ( )(A )40° (B )35° (C )30° (D )25° 7.如果等腰三角形的一个内角等于 110°,则它的底角是()(A )35° (B )55° (C ) 70° (D )35°或 70°8.如图,△ABC 中,∠ABC =∠ACB ,D 为BC 上一点,BF =CD ,CE =BD ,则∠EDF 等于( )1 (A )90° -∠A (B )90° - ∠A21 (C )180° -∠A (D )45° - ∠A2学校________________________班级_________________姓名____________________学号____________二、填空题(本题共有8 小题,每小题 2 分,共16 分)9.若4m ⋅23 = 27 ,则m=.10.比较大小:233 322 .11.如图,点B、F、C、E 在同一条直线上,欲证△ABC≌△DEF,已知A C=DF,AB=DE,还需要添加条件.第11 题第12 题12.如图所示,将正五边形A BCDE 的C点固定,并依顺时针方向旋转,若旋转n度,可使得新五边形A′B′C′D′E的顶点D′落在直线B C 上,则n的值是.13.如图1,已知三角形纸片ABC,AB=AC,∠A = 50°,将其折叠,如图2,使点A 与点B重合,折痕为E D,点E,D 分别在A B,AC 上,则∠DBC 的大小为.第13 题第14 题14.边长分别为a和2a 的两个正方形按如图的样式摆放,则图中的阴影部分的面积为.15.写出点A(2,3)关于直线l(直线l 上各点的横坐标都是-1 )的对称点B 的坐标.16.如图,两车从南北方向的路段AB 的A 端出发,分别向东、向西行进相同的距离,到达C,D 两地,此时可以判断C,D 到B 的距离相等,用到的数学道理是.16 题图⎩三、解答题(第 17-22 题共 6 题各 5 分,第 23-26 题共 4 题各 6分,第 27-28 题共 2 题各 7 分,共 68 分)17.解下列方程组⎧⎪3x < x + 8,18.解不等式组 ⎨⎪4 ( x +1) ≤ 7 x +10.并把它的解集在数轴上表示出来。
2022年人教版八年级数学第一学期期中能力提升测试卷一、选择题(共10小题,每小题3分,共30分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF3.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点4.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD5.一个多边形的每一个外角都等于45°,那么这个多边形的内角和为()A.1260°B.1080°C.1620°D.360°6.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去7.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短8.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.9.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=102°,则∠EAF为()A.38°B.40°C.24°D.44°10.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1B.2C.3D.4二、填空题(共5小题,每小题3分,共15分)11.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为.12.一个三角形的三边为2、4、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.13.若一个三角形的三条高所在直线的交点在三角形外部,此三角形是三角形.14.如图所示,∠A=∠E,AC⊥BE,AB=EF,BE=18,CF=8,则AC=.15.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数是.三、解答题(共8小题,共75分)16.(8分)如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?17.(8分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.18.(9分)已知:如图,∠A=∠D=90°,AC=BD.求证:AB=CD.19.(9分)如图,在△ABC中,∠B=26°,∠BAC=30°,过点A作BC边上的高,交BC的延长线于点D,CE平分∠ACD,交AD于点E.求∠AEC的度数.20.(10分)已知:如图,∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=CD,BE =CF.求证:△OEF是等腰三角形.21.(10分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR 分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.22.(10分)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.23.(11分)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.参考答案12345678910D B C D B C C B C C11.40°或140°12.1013.钝角14.1015.60°三、解答题16.解:设这个多边形的边数为n,根据题意,得(n﹣2)•180=360×3+180,解得:n=9.即这个多边形的边数是9.17.解:(1)如图所示:△A1B1C1即为所求,A1(2,﹣4),B1(3,﹣1),C1(﹣2,1).(2)S△ABC=5×5−12×4×5−12×1×3−12×2×5=172.18.证明:连接BC,∵∠A=∠D=90°,∴△ABC和△DCB都是直角三角形.在Rt △ABC 和Rt △DCB 中,{BC =CBAC =DB ,∴Rt △ABC ≌Rt △DCB (HL ). ∴AB =CD .19.解:∵∠B =26°,∠BAC =30°, ∴∠ACD =56°, ∵CE 平分∠ACD , ∴∠ACE =∠ECD =28°, ∵AD ⊥BD , ∴∠CDE =90°,∴∠AEC =∠ECD +∠D =118°. 20.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE , 在Rt △ABF 和Rt △DCE 中,{AB =DC BF =CE ,∴Rt △ABF ≌Rt △DCE (HL ) ∴∠AFB =∠DEC , ∴OE =OF ,∴△OEF 是等腰三角形. 21.解:(1)∵P ,Q 关于OA 对称, ∴OA 垂直平分线段PQ , ∴MQ =MP =4, ∵MN =5,∴QN =MN ﹣MQ =5﹣4=1.(2)∵P ,R 关于OB 对称, ∴OB 垂直平分线段PR , ∴NR =NP =4,∴QR =QN +NR =1+4=5. 22.(1)证明:∵△ABD ≌△CFD , ∴∠BAD =∠DCF , 又∵∠AFE =∠CFD , ∴∠AEF =∠CDF =90°, ∴CE ⊥AB ;(2)解:∵△ABD ≌△CFD ,∴BD =DF ,∵BC =7,AD =DC =5, ∴BD =BC ﹣CD =2, ∴AF =AD ﹣DF =5﹣2=3.23.证明:(1)∵AD ∥BC , ∴∠ADB =∠CBE ,在△ABD 和△ECB 中,{∠A =∠BECAD =BE ∠ADB =∠CBE ,∴△ABD ≌△ECB (ASA ); (2)∵△ABD ≌△ECB , ∴BD =BC ,∴∠BDC =∠BCD =70°, ∴∠DBC =40°, ∴∠ADB =∠CBD =40°.。
人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案一、选择题(每题4分,共40分)1. 已知数列:2, 4, 6, 8, 10, ...,该数列的第20项是()A. 40B. 42C. 38D. 412. 下列函数中,正比例函数是()A. y = 2x + 3B. y = 3x^2C. y = 5xD. y = x^33. 若平行线l1:3x - 4y + 5 = 0,l2:6x - 8y + 10 = 0,则两平行线的距离为()A. 5/2B. 5/3C. 10/3D. 104. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = x^35. 若直角坐标系中,点A(a, b)关于原点的对称点是B,则B的坐标是()A. (-a, b)B. (-a, -b)C. (a, -b)D. (b, a)6. 已知函数y = kx + b(k≠0)的图像经过第一、二、四象限,则()A. k > 0, b > 0B. k < 0, b < 0C. k > 0, b <0 D. k < 0, b > 07. 下列说法中,正确的是()A. 两个一次函数的图像平行,则它们的斜率相等B. 两个一次函数的图像垂直,则它们的斜率乘积为1C. 两个一次函数的图像重合,则它们的斜率相等D. 两个一次函数的图像相交,则它们的斜率之和为08. 下列图形中,一定是中心对称图形的是()A. 矩形B. 等边三角形C. 梯形D. 平行四边形9. 下列关于勾股定理的说法,正确的是()A. 直角三角形的两条直角边的平方和等于斜边的平方B. 直角三角形的两条直角边的平方差等于斜边的平方C. 直角三角形的斜边的平方等于两条直角边的平方和D. 直角三角形的斜边的平方等于两条直角边的平方差10. 若a^2 + b^2 = 25,且a > 0, b < 0,则a + b的取值范围是()A. a + b > 5B. a + b < 5C. a + b = 5D. a + b ≠ 5二、填空题(每题4分,共40分)11. 已知数列:3, 6, 9, 12, 15, ...,该数列的通项公式是an = _______。
八年级期中综合素质调研检测数 学(本卷满分120分,考试时间:120分钟)题号一二三总分1—1213—18 19 20 21 22 23 24 25 26 得分一、选择题:(本题共12小题,每小题3分,共36分, 请将正确的答案写在题后的括号内)。
1. 通常把自行车的车身设计为三角架结构,这是因为三角形具有 ( )A .对称性B .稳定性C .全等性D .以上说法都正确2. 下列各组数中,能组成三角形的一组是( )1,1,2B .1,2,4C .2,3,5D .2,3,43.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为 公共边的“共边三角形”有( )对。
A. 2 B. 3 C. 4 D. 54. 下列说法:①全等三角形的形状相同、大小相等②全等三角形的面积相等 ③周长相等的两个三角形全等 ④全等三角形的对应边相等、对应角相等其中正确的说法为( ) A .②③④B. ①②③C. ①②④D. ①②③④5.一副三角板有两个直角三角形,按如图的方式叠放在一起,则∠α的度数是( ) A. 165⁰B. 150⁰C. 135⁰D. 120⁰6. 下列四组条件中,可以判定△ABC 与△111C B A 全等的是( )A. ,,1111C A AC C B BC ==∠A=∠1AB. ,11B A AB = ∠C=∠1C =090C. ,11C A AC = ∠A=∠1A ∠B=∠1BD. ∠A=∠1A ∠B=∠1B ,∠C=∠1C7. 下列计算正确的是( )A.3332a a a =•B. 422x x x =+C.236a a a =÷D.6328)2(m m -=-8. 若,)()(22A b a b a +-=+则A 为 ( ) A.-2abB.2abC. 4abD. -4ab9. 已知43))((2--=+-x x n x m x ,则n m -的值为 ( ) A. 1B .3C. -2D . -310. 下列因式分解正解的是( )A. 2)()()(y x x y y y x x -=-+-B.)(2y x x x xy x +=++C. )2)(2(442-+=+-x x x xD.)4(42+-=+-x x x x11. 如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是 ( ) A. ∠AOB=90⁰ B. AD+BC=AB C. 点O 是CD 的中点 D. 图中与∠CBO 互余的角有两个12. 矩形ABCD 中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图 中空白部分的面积为 ( ) A. 2c ac bc ab +-- B.2c ac ab bc ++-C.ab a bc b -+-22D. ac bc ab a -++2二、填空题:(本大题6小题,每小题3分,共18分,请将正确的答案填写在相应题中的横线上)13. 正n 边形的一个外角是40⁰,则n 为 . 14. 已知方程{512=+=-a b b a 的解恰好是△ABC 的两边长,则△ABC 的第三边C 的取值范围是 .15. 在△ABC 中,点D 、E 、F 分别 是BC 、AD 、CE 的中点,且△ABC 的面积等于82cm ,则阴影S = . 16. 已知51=+x x ,则221xx +的值是 . 17. 如图所示,在△ABC 中,∠A=70⁰,∠B=50⁰,点D 、E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处, 若△EFC 为直角三角形,则∠BDF= .18. 如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平 分线交于点1A ,∠1A BC 的平分线与∠1A CD 的平分线交于点2A ,,∠BC A n 1-的平分线与∠CD A n 1-交于点n A ,的平分线交于点n A ,若∠A=θ,则∠=n A .三、解答题:(本大题共8小题,共66分,解答应写出文字说明或演算步骤或推理过程) 19.因式分解(每小题4分,共12分)(1))(9)(3a b b a -+- (2)m mx mx 1682+-(3)))((6-2+n n +7.20. 化简求值(每小题5分,共10分)(1)2215()()2()3(),5x y x y x y x y x y +--+--其中=-2,=(2)6423323(420126)(2),2,2a a b a b a b a a b ⎡⎤---+÷--=-=⎣⎦其中21.(5分)已知在△ABC 中,三边长分别为a ,b ,c 满足等式,0222222=--++bc ab c b a 请判断△ABC 的形状,并证明你的结论。
人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。
八年级上册:期中测试(附答案)一.选择题(每小题3分,满分30分)1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm2.若按给定的三个条件画一个三角形,图形唯一,则所给条件不可能是()A.两边一夹角B.两角一夹边C.三边D.三角3.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是()A.21:05 B.21:15 C.20:15 D.20:124.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形5.如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE=AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12 B.20 C.30 D.406.若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2 B.﹣2 C.12 D.﹣127.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64 B.48 C.32 D.428.如图所示,已知△ABC中,∠A=80°,若沿图中虚线剪去∠A,则∠1+∠2等于()A.90°B.135°C.260°D.315°9.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个10.如图,在10×10的正方形网格纸中,线段AB,CD的长均等于5.则图中到AB和CD所在直线的距离相等的网格点的个数有()A.2个B.3个C.4个D.5个二.填空题(每小题3分,满分18分)11.等边三角形有条对称轴.12.若四边形ABCD的面积为25cm2,它关于y轴对称的图形为A′B′C′D′,则四边形A′B′C′D′的面积是cm2.13.一个多边形的每一个外角为30°,那么这个多边形的边数为.14.一个三角形的两边长为5和7,则第三边a的取值范围是.15.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.16.如图在△ABC中,AB=AC=5,S=12,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,△ABC则CF+EF的最小值为.三.解答题(共9小题,满分72分)17.(7分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.18.(7分)将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.19.(7分)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.20.(7分)已知:如图,在△ABC中,AB=AC,BD、CE是高.求证:BD=CE.21.(8分)作图题:(1)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.(2)利用方格纸画出△ABC关于直线l的对称图形△A′B′C′.(3)如图,已知在△ABC中,AB=AC,AD是BC边上的高,P是AB边上的一点,试在高AD上找一点E,使得△PEB的周长最短.22.(8分)如图,已知△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则(1)BP=cm,BQ=cm.(用含t的代数式表示)(2)当t为何值时,△PBQ是直角三角形?23.(8分)如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.24.(10分)在△ABC中,AB=5,AC=7,AD是BC边上的中线.求中线AD的取值范围.25.(10分)如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值.参考答案一.选择题1.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.2.解:两边一夹角,只能画出唯一三角形;两角一夹边,只能画出唯一三角形;三边,只能画出唯一三角形;只给定三个角不能确定一个图形,可作出无数个图形.故选:D.3.解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.故选:A.4.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.5.解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.6.解:∵点A(m,n)和点B(5,﹣7)关于x轴对称,∴m=5,n=7,则m +n 的值是:12. 故选:C .7.解:连接AM ,过M 作ME ⊥AB 于E ,MF ⊥AC 于F ,∵MB 和MC 分别平分∠ABC 和∠ACB ,MD ⊥BC ,MD =4, ∴ME =MD =4,MF =MD =4, ∵△ABC 的周长是16, ∴AB +BC +AC =16,∴△ABC 的面积S =S △AMC +S △BCM +S △ABM ==×AC ×4++=2(AC +BC +AB ) =2×16=32, 故选:C .8.解:∵∠A =80°, ∴∠B +∠C =100°, ∵∠1+∠2+∠B +∠C =360°, ∴∠1+∠2=260°. 故选:C . 9.解:如图所示:与△ABC成轴对称,顶点在格点上,且位置不同的三角形有8个,故选:D.10.解:延长DC,BA,使其相交于E,作∠DEB的角平分线,与网格点重合的点有4个,故到AB和CD所在直线的距离相等的网格点的个数有4个.故选:C.二.填空题11.解:等边三角形有3条对称轴.故答案为:3.12.解:∵四边形ABCD与四边形A′B′C′D′关于y轴对称,∴四边形ABCD≌四边形A′B′C′D′,∵四边形ABCD的面积为25cm2,∴四边形A′B′C′D′的面积是25cm2.故答案为:25.13.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.14.解:∵三角形的两边长分别为5、7,∴第三边a的取值范围是则2<a<12.故答案为:2<a<12.15.解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:316.解:方法一:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,=×AB×CN12,∵S△ABC∴CN=,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,方法二:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴点C与点B关于AD对称,过B作BE⊥AC于E,交AD于F,连接CF,则此时,CF+EF的值最小,且最小值=BE,=•AC•BE=12,∵S△ABC∴BE=,∴CF+EF的最小值,为故答案为:.三.解答题17.解:设∠1=∠2=x°,则∠3=∠4=2x°,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.18.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.19.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.20.证明:∵AB=AC,BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=CE.21.解:(1)如图1所示,点P即为所求;(2)如图2所示:△A′B′C′即为所求;(3)如图1所示,点E即为所求.22.解:(1)BP=3﹣t cm,BQ=t cm,故答案为:3﹣t;t;(2)在△PBQ中,∠B=60°,若△PBQ是直角三角形,则点P或点Q为直角顶点①若点P为直角顶点,∵∠B=60°,∴∠PQB=30°,∴BQ=2BP,即t=2(3﹣t),解得t=2②若点Q是直角顶点,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,即3﹣t=2t,解得t=1答:当t=1s或t=2s时,△PBQ是直角三角形.23.证明:如图所示:(1)∵AD=AC+CD,BC=BD+CD,AC=BD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(AAS),(2)∵△AED≌△BFC,∴∠ADE=∠BCF,又∵∠BCF=65°,∴∠ADE=65°,又∵∠ADE+∠BCF=∠DMF∴∠DMF=65°×2=130°.24.解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,∴△ADC≌△EDB(SAS),∴EB=AC,根据三角形的三边关系得:AC﹣AB<AE<AC+AB,∴2<AE<12∵AE=2AD∴1<AD<6,故答案为:1<AD<6.25.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.八年级上册:期中测试(附答案)一.选择题(满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.2.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形3.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2 B.8 C.10 D.124.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB的度数是()A.35°B.70°C.85°D.95°5.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS7.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.58.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12 B.13 C.14 D.189.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水.某同学用直线(虛线)l表示小河,P,Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是()A.B.C.D.二.填空题(满分18分,每小题3分)11.如图,已知∠B=30°,则∠A+∠D+∠C+∠G=°.12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.13.如图,在△ABC中,AB=AC,∠BAD=∠CAD,BD=5cm,则BC=cm.14.课间,顽皮的小刚拿着老师的等腰直角三角板放在黑板上画好了的平面直角坐标系内(如图),已知直角顶点H的坐标为(0,1),另一个顶点G的坐标为(4,4),则点K的坐标为.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.16.如图,等腰△ABC的底边BC的长为2cm,面积是6cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F.若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为.三.解答题(共8小题,满分72分)17.(8分)在△ABC中,已知∠A=∠B=∠C,按角判断△ABC的形状.18.(8分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.19.(8分)用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.20.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.21.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.(10分)综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.23.(10分)【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.【材料理解】(1)在图1中证明小明的发现.【深入探究】(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).【延伸应用】(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.24.(12分)如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,将线段AD绕点D顺时针旋转90°,得到线段DE,连接CE,过点D作CE的垂线,与CE交于点F,与线段AB交于点G.(1)依题意补全图形;(2)设∠ABC=α,求∠CDF的度数(用含α的代数式表示);(3)探究DG,DF和CE之间的等量关系,并给出证明.参考答案一.选择题1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.解:正方形,长方形,等腰三角形,平行四边形中只有等腰三角形具有稳定性.故选:C.3.解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.4.解:∵在△ABC中,∠B=60°,∠C=50°,∴∠BAC=180°﹣60°﹣50°=70°.∵AD平分∠BAC,∴∠BAD=∠BAC=35°.∵在△ABD中,∠BDA=180°﹣∠B﹣∠BAD.∴∠BDA=180°﹣60°﹣35°=85°故选:C.5.解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.6.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.7.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.8.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选:B.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:作点P关于直线l的对称点C,连接QC交直线l于M.根据两点之间,线段最短,可知选项C铺设的管道最短.故选:C.二.填空题11.解:∵∠B=30°,∴∠BEF+∠BFE=180°﹣30°=150°,∴∠DEF+∠GFE=360°﹣150°=210°.∵∠DEF=∠A+∠D,∠GFE=∠C+∠G,∴∠A+∠D+∠C+∠G=∠DEF+∠GFE=210°,故答案为:210.12.解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=﹣3,∴ab=﹣6,故答案为:﹣6.13.解:∵AB=AC,∠BAD=∠CAD,∴BC=2BD=2CD,∵BD=5cm,∴BC=2BD=10cm,故答案为10.14.解:作GP⊥y轴,KQ⊥y轴,如图,∴∠GPH=∠KQH=90°∵GH=KH,∠GHK=90°,∴∠GHP+∠KHQ=90°.又∠HKQ+∠KHQ=90°∴∠GHP=∠HKQ.在△GPH和△HQK中,Rt△GPH≌Rt△KHQ(AAS),KQ=PH=4﹣1=3;HQ=GP=4.∵QO=QH﹣HO=4﹣1=3,∴K(3,﹣3),故答案为:(3,﹣3).15.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.16.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×2×AD=6,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×2=6+1=7cm.故答案为7cm.三.解答题17.解:∵∠A=∠B=∠C,∴∠B=3∠A,∠C=5∠A,∵∠A+∠B+∠C=180°,∴∠A+3∠A+5∠A=180°,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形.18.证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中,∴△ECA≌△BDF,∴AE=FB.19.解:(1)设底边长为xcm,则腰长为2xcm.依题意,得2x+2x+x=18,解得x=.∴2x=.∴三角形三边的长为cm、cm、cm.(2)若腰长为4cm,则底边长为18﹣4﹣4=10cm.而4+4<10,所以不能围成腰长为4cm的等腰三角形.若底边长为4cm,则腰长为(18﹣4)=7cm.此时能围成等腰三角形,三边长分别为4cm、7cm、7cm.20.解:如图所示,(1)△A1B1C1即为所求;(2)△ABC的面积为:2×3﹣2×2﹣1×1﹣1×3=2;21.证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.22.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.23.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°﹣∠ADB﹣∠DGO=180°﹣∠AEC﹣∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,连接CF,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°﹣∠OFC=120°,∴∠AOE=180°﹣∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.24.解:(1)图形如图所示.(2)∵∠BAC=90°,BD=CD,∴AD=DB=DC,∴DBA=∠DAB=α,∴∠ADC=∠DBA+∠DAB=2α,∵DA⊥DC,∴∠ADE=90°,∴∠CDE=90°﹣2α,∵DE=DA=DC,DF⊥EC,∴∠CDF=∠EDF=∠CDF=45°﹣α.(3)结论:2(DF﹣DG)=EC.理由:如图,作BH⊥FG交FG于H.∵∠H=90°,∴∠DBH+∠BDH=90°,∵∠BDH=45°﹣α,∴∠DBH=45°+α,∵∠ABC=α,∴∠HBG=45°,∴∠HBG=∠BGH=45°,∴BH=HG,∵∠H=∠DFC=90°,BD=DC,∠BDH=∠CDF,∴△BDH≌△CDF(ASA),∴CF=BH,DF=DH,∵DC=DE,DF⊥EC,∴CF=EF,EC=2CF,∴DF﹣DG=DH﹣DG=HG=BH=CF,∴2(DF﹣DG)=EC.期中测试卷(附答案)《满分:100分时间:90分钟》一.选择题(每题3分,满分36分)1.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A.4 B.5 C.9 D.143.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC4.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数为()A.60°B.70°C.75°D.80°5.若点P(2a﹣1,3)关于y轴对称的点为Q(3,b),则点M(a,b)关于x轴对称的点的坐标为()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)6.如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cm B.6cm C.9cm D.12cm7.下列各选项中的两个图形属于全等形的是()A.B.C.D.8.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP 就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD11.如图,以△ABD的顶点B为圆心,以BD为半径作弧交边AD于点E,分别以点D、点E为圆心,BD长为半径作弧,两弧相交于不同于点B的另一点F,再过点B和点F作直线BF.则作出的直线是()A.线段AD的垂线但不一定平分线段ADB.线段AD的垂直平分线C.∠ABD的平分线D.△ABD的中线12.平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.则平面上等边△ABC的巧妙点有()个.A.7 B.8 C.9 D.10二.填空题(满分18分,每小题3分)13.如果将一副三角板按如图方式叠放,那么∠1=.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.△ABC中,AB=AC,∠A=∠C,则∠B=度.16.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC 上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.17.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.18.如图,在△ABC中,AB=6,AC=9,BO、CO分别是∠ABC、∠ACB的平分线,MN经过点O,且MN∥BC,MN分别交AB、AC于点M、N,则△AMN的周长是.三.解答题(共7小题,满分46分)19.(6分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣1)、B (﹣3,3)、C (﹣4,1)(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 的对应点B 1的坐标;(2)画出△ABC 绕点A 按顺时针旋转90°后的△AB 2C 2,并写出点C 的对应点C 2的坐标.20.(6分)如图,在四边形ABCD 中,∠B +∠ADC =180°,CE 平分∠BCD 交AB 于点E ,连结DE . (1)若∠A =50°,∠B =85°,求∠BEC 的度数; (2)若∠A =∠1,求证:∠CDE =∠DCE .21.(6分)问题1现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠.研究(1):如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由. 问题2研究(4):将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A、∠B之间的数量关系是.22.(6分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.23.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.24.(8分)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.25.(8分)如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,△ADE的周长为6cm.∠BAC=110°(1)求BC的长及∠DAE的度数;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.参考答案一.选择题1.解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有9符合条件.故选:C.3.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.4.解:∵AB=AC,∴∠B=∠C,∵∠A=40°,∴∠B=(180°﹣40°)÷2=70°.故选:B.5.解:∵点P(2a﹣1,3)关于y轴对称的点为Q(3,b),∴2a﹣1=﹣3,b=3,解得:a=﹣1,故M(﹣1,3),关于x轴对称的点的坐标为:(﹣1,﹣3).故选:C.6.解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=3cm,在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选:D.7.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.8.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.11.解:由题意可知,BF是线段ED的垂直平分线,垂直AD但不一定平分AD,故选:A.12.解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心,(2)点P在三角形外部时,一个对称轴上有三个点,如图:共有9个点符合要求,∴具有这种性质的点P共有10个.故选:D.二.填空题13.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.14.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.解:∵△ABC中,AB=AC∴∠B=∠C∵∠A=∠C∴∠A=∠C=∠B=60°故填60.16.解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2.17.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.18.解:∵在△ABC中,∠BAC与∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴BM=OM,CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=9+6=15.故答案为:15.三.解答题19.解:(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).20.(1)解:∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD,∴∠BCE=∠BCD=65°,∵∠B=85°,∴∠BEC=180°﹣∠BCE﹣∠B=180°﹣65°﹣85°=30°;(2)证明:∵由(1)知:∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠CDE=∠DCE.21.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.22.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).23.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.24.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.25.解:(1)∵在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,△ADE的周长为6cm,∠BAC=110°,∴DA=DB,EA=EC,AD+DE+AE=6,∠B+∠C=70°,∴BD+DE+EC=6,∠B=∠BAD,∠C=∠EAC,∴BC=6cm,∠DAE=110°﹣70°=40°,即BC的长是6cm,∠DAE的度数是40°;(2)由题意可得,OA=OB,OA=OC,BC=6cm,∴OB=OC,∵△OBC的周长为16cm,∴OB=OC=5cm,∴OA=5cm,即OA的长是5cm.。
期中测试题(一)内容:三角形全等三角形轴对称一、选择题1.如图,AE⊥BC, BF⊥AC, CD⊥AB,则△ABC中AC边上的高是哪条垂线段( )A.AEB.CDC.BFD.AF第1题第2题第3题第4题2.如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,连接AE.若AD =4,△ABC的周长为 24,则△ACE 的周长为( )A.12B.16C.18D.203.如图,在△ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,EB的长是( )A.3cmB.4 cmC.5cmD.不能确定4.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠OEB=46°,则∠AOC的度数( )A.92°B.88°C.46°D.86°5.如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积( )A.10B.7C.5D.4第5题第6题第7题第8题6.如图,在等边三角形ABC中,D,E分别为边AB,BC上的两个动点,且总使BD=CE,AE与CD相交于点F,AG⊥CD 于点G,以下结论:①△ACE≌△CBD②AF=2FG③AC=2CE.其中正确的有( )A.3个B.2个C.1个D.0个7.如图,如果∠1=100°,∠2=145°,那么∠3的度数是( )A.55°B.65°C.75°D.85°8.如图,AB//CD,∠BCD=90°,AB=2,CD=8,E为AD的中点,连接BE,∠CBE=45°,则BC的长为 ( )A.5B.6C.7D.89.在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是( )A.AC=DFB.∠B=∠EC.BC=EFD.∠C=∠F10.如图,△ABC≌△EBD,AB=4,BD=7,则CE的长度为( )A.1B.2C.3D.4第10题第11题第12题11.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于点M,交AC于点N,若BM+CN=9,则线段MN的长为( )A.6B.7C.8D.912.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD②∠AMB= 40°③OM平分∠BOC ④MO平分∠BMC.其中正确的结论有( )A.①B.①②C.①②③D.①②④二、填空题13.一木工师傅现有两根木条,木条的长分别为40cm和50cm,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条长为xcm,则x的取值范围为______.14.如图,点A,C,B,D在同一条直线上,MB=ND,MB//ND,要使△ABM≌△CDN,还需要添加一个条件为______.第14题第15题第16题第17题15.如图,点D在边BC上,△ABC≌△ADE, ∠EAC=40°,则∠B的度数为_____.16.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为______.17.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是____.18.如图,在锐角三角形ABC外作等边三角形ACD和等边三角形ABE,则∠α的度数为______.第18题第19题第20题19.如图,在等边三角形ABC中,BD⊥AC于点D.若AB=4,则AD=______.20.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=_____时,以A,B,C为顶点的三角形和以P,Q,A为顶点的三角形全等.三、解答题21.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,AB=DE, BF=CE,AB//DE,求证:△ABC≌△DEF.22.如图,点E在△ABC外部,点D在边BC上,DE交AC于点F,若∠1=∠2 =∠3,AB = AD,求证:(1)∠E=∠C;(2)△ABC≌△ADE.24.如图,AD是△ABC的高,E为AC上一点,BE与AD相交于点F,且BF=AC,FD=CD.(1)求∠ABC的度数.(2)求证:BE⊥AC.25.如图1,以△ABC的两边AB,AC为边分别向外作等边△ABD与等边△ACE.(1)连接BE,CD,求证:△ABE≌△ADC;(2)设BE,DC交于点P,求∠DPE的度数;(3)如图2,若HD=HE,且∠DHE=120°,求证:点H在BC的垂直平分线上.26.在△ABC,AB=AC,点D是直线BC上一点(不与点B,C重合),把线段AD绕着点A逆时针旋转至AE(即AD=AE),使得∠DAE=∠BAC,连接DB,CE.(1)如图①,点D在线段BC上,若∠BAC=90°,则∠BCE=_____.(2)如图②,当点D在线段BC上时,若∠BAC=60°,则∠BCE =_.(3)如图③,设∠BAC=a,∠BCE=β,当点D在线段BC上移动时,a,β的数量关系是什么?请说明理由.(4)设∠BAC=a,∠BCE=β,当点D在直线BC上移动时,请直接写出a,β的数量关系,不用证明.期中测试题(二)内容:三角形全等三角形轴对称一、选择题1.如图,△ABC中,AB=AC,AD⊥BC,下列结论不正确的是( )A.∠B=∠CB.BD=CDC.AB=2BDD.AD平分∠BAC第1题第2题第3题第4题2.如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接PA,PE,若PA+PE 最小,则点P满足( )A.PA=PCB.PA=PEC.∠APE=90°D.∠APC=∠DPE3.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4B. 3C.2D.14.如图,AD是△ABC的角平分线,DF⊥AB,,DE=DG,△ADG和△AED的面积分别为60和35,△EDF的面积( )A.25B.5.5C.7.5D.12.55.如果等腰三角形的两边长分别为2和5,那么它的周长为( )A.9B.7C.12D.9或126.如图,△ABC≌△ADE,点D落在BC上,且∠B=60°,则∠EDC的度数等于( )A.45°B.30°C.60°D.75°第6题第7题第8题第9题7.如图,BC=10cm,∠B=∠BAC=15°,AD⊥BC于点D,则AD的长为( )A.3cmB.4cmC.5cmD.6cm8.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.则AD的长是( )A.5B.6C.7D.89.如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点Bˊ.若点Bˊ刚好落在边AC上,∠CBˊE=30°,CE=3,则BC的长为( )A.6B.8C.9D.1010.如图,在△ABC中,AD是∠BAC的平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD为( )A.9:16B.3:4C.16:9D.4:3第10题第11题第12题第13题11.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1B.2C.3D.412.如图,点P是△ABC内部的一点,点P到三边AB,AC,BC的距离PD=PE=PF,∠BPC=130°,∠BAC的度数( )A.65°B.80°C.100°D.70°13.如图,画∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,以下结论:①∠BPC =120°②AP平分∠BAC③AP= PC④BD+CE =BC⑤S△PBD+S△PCE=S△PBC,其中结论正确的是( )A.①②①⑤B. ②③⑤C. ①②⑤D.①②③④二、填空题14.已知点A(a,3)和点B(2,b)关于x轴对称,则(a+b)2025的值为______.第15题第16题第17题第18题15.如图,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点P1,P2,连接P1P2交OA于点M,交OB于点N,△PMN的周长为15,则P1P2长为______.16.如图,DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF =______.17.如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为________.18.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点 P,BF⊥AE于点F.若PF=4,PD=1,则AE的长为______.19.如图,∠1+∠2+∠3+∠4的度数是______.第19题第20题第21题第22题20.如图,在△ABC中,点D在AB上,∠ACB=70°,现将△ABC中的∠B折过去,使顶点B落在点E处,CD为折痕,且AC交ED于点F,若∠ECA=20°,则∠ACD的大小为______.21.如图,在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C,那么B,C两地相距______.22.如图,∠BOC=60°,A是BO的延长线上一点,OA=12cm,动点P从点A出发,沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,若点P,Q同时出发,当△OPQ是等腰三角形时,移动的时问是______.三、解答题23.如图,已知AD=AE,∠B=∠C.求证:△ACD≌△ABE.24.如图,在△ABC中,D是BC的中点,DE⊥AB于E, DF⊥AC于点F,且∠BDE=∠CDF.求证:AD平分∠BAC.25.如图,在△ABC中,AD⊥BC于点D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.(1)求证:BD=CD;(2)若AF=BC,求证:AC-CE=EF.26,如图,在平面直角坐标系中,(1)作出△ABC关于y轴对称的△A1B1C1, 并写出△A1B1C1三个顶点的坐标: A1____,B1____,C1____.(2)△ABC的面积为______.(3)在x轴上找一点P,使PA+PC的值最小.27.如图,BM,CN是△ABC的高,点P在直线BM上,点Q在直线CN上,且BP=AC,CQ=AB.(1)猜想AQ与AP的大小关系,并证明你的结论;(2)判断AQ与AP有何特殊的位置关系?并证明你的结论.28.如图(1),在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:①△ABD≌△CAE ②BD=DE+CE;(2)若直线AE绕点A旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明.(3)若直线AE绕点A旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果,不需证明.期中测试题(一)参考答案一、选择题1-5 CBABC 6-10 BBBCC 11-12 DD二、填空题13.10<x<9014.AB=CD,答案不唯一.15.70º16.360º17. 318.120º19. 220. 5或10三、解答题21.略22.略23(1)45º(2)略24(1)略(2)120º(3)略25(1)90º(2)120º(3)α+β=180º(4)α+β=180º或α=β期中测试题(二)参考答案一、选择题1-5 CDDDC 6-10 CCCCD 11-13 BBA二、填空题14. 115. 1516.150º17.90º18. 919. 300º20. 250º21.200m22.4s或12s三、解答题23.略24.略25.略26(1) (0,-2),(-2,-4) ,(-4,-1)(2)5(3)略27(1)AP=AQ(2)AP⊥AQ28(1)略(2)DE=BD+CE(3)DE=BD+CE11。
人教版八年级数学上册期中考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合题目要求)1.某同学手里拿着长为3 和2 的两根木棍,想要找一根长为整数的木棍,用它们围成一个三角形,则他所找的这根木棍的长可以是( ).A.1,3,5B.1,2,3C.2,3,4D.3,4,52.下列四个图形:其中是轴对称图形,且对称轴的条数为2 的图形的个数是( ).A.1B.2C.3D.43.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,DE∥BC.若∠A=62°,∠AED=54°,则∠B 的大小为( ).A.54°B.62°C.64°D.74°4.在四边形ABCD 中,∠A=∠B=∠C,点E 在边AB 上,∠AED=60°,则一定有( ).A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 ADCD.∠ADE=1ADC∠∠2 35.如图,AC 是线段BD 的垂直平分线,则图中全等三角形的对数是( ).A.1B.2C.3D.46.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于y 轴对称,则a+b 的值为( ).A.33B.-33C.-7D.77.如图,在△ABC 中,∠BAC=90°,∠C=30°,AD⊥BC 于点D,BE 是∠ABC 的平分线,且交AD 于点P, 交AC 于点E.如果AP=2,那么AC 的长为( ).A.8B.6C.4D.28.如图,已知AE=CF,∠AFD=∠CEB,添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( ).A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC9.如图,A,B,C 三点在同一条直线上,∠A=52°,BD 是AE 的垂直平分线,垂足为点D,则∠EBC 的度数为( ).A.52°B.76°C.104°D.128°10.如图,过边长为1 的等边三角形ABC 的边AB 上的一点P 作PE⊥AC 于点E,Q 为BC 的延长线上一点.当PA=CQ 时,连接PQ 交AC 边于点D,则DE 的长为( ).A.13 B.12C.23D.不能确定二、填空题(本大题共6 小题,每小题4 分,共24 分)11.如图,在△ABC 中,AB=AC,∠A=36°,BD,CE 分别为∠ABC,∠ACB 的平分线,且相交于点O,则图中等腰三角形共有个.12.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.13.如图,在Rt△ABC 中,∠BAC=90°,∠B=30°,BC=8,AD⊥BC 于点D,则DC= .14.如图,在4×4 的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .15.已知等腰三角形的两边长a,b 满足|a-b-2|+ 2�-3�-1=0,则此等腰三角形的周长为.16.如图,在△ABC 中,∠B=90°,AC=DC,∠D=15°,AB=18 cm,则CD 的长为cm.三、解答题(本大题共8 小题,共66 分)17.(6 分)如图,已知△ABC.(1)画出BC 边上的高AD 和中线AE;(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.18.(6 分)△ABC 在平面直角坐标系中如图所示,其中点A,B,C 的坐标分别为(-2,1),(-4,5),(-5,2).(1)作△ABC 关于直线l:x=-1 对称的△A1B1C1,其中点A,B,C 的对应点分别为A1,B1,C1;(2)写出点A1,B1,C1 的坐标.19.(6 分)如图,点C,F,E,B 在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE.写出CD 与AB 之间的关系, 并证明你的结论.20.(8 分)两个大小不同的等腰直角三角尺按如图①所示放置,图②是由它抽象出的几何图形,点B,C,E 在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.21.(8 分)如图,在△ABC 中,AB=AC,点D,E 分别在AC,AB 上,BD=BC,AD=DE=BE,求∠A 的度数.22.(8 分)如图,已知D,E,F 分别是△ABC 三边上的点,BF=CE,且△DBF 和△DCE 的面积相等.求证:AD 平分∠BAC.23.(12 分)如图①,②,③,点E,D 分别是等边三角形ABC,正方形ABCM,正五边形ABCMN 中以点C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于点P.(1)图①中,∠APD 的度数为;(2)图②中,∠APD 的度数为,图③中,∠APD 的度数为;(3)根据前面的探索,你能否将本题推广到一般的正n 边形的情况?若能,写出推广问题和结论;若不能, 请说明理由.24.(12 分)如图,已知△DCE 的顶点C 在∠AOB 的平分线OP 上,CD 交OA 于点F,CE 交OB 于点G.(1)如图①,若CD⊥OA,CE⊥OB,则图中有哪些相等的线段?请直接写出你的结论: .(2)如图②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与线段CG 的数量关系,并加以证明.答案与解析一、选择题1.C 设他所找的这根木棍的长为x,由题意得3-2<x<3+2,∴1<x<5.∵x 为整数,∴x=2,3,4,故选C.2.C3.C4.D 如图,在△AED 中,∵∠AED=60°,∴∠A=180°-∠AED-∠ADE=120°-∠ADE.在四边形 DEBC 中,∵∠DEB=180°-∠AED=180°-60°=120°,∴∠B=∠C=(360°-∠DEB-∠EDC )÷2=120 -1EDC. ° ∠2∵∠A=∠B=∠C ,∴120°-∠ADE=120 -1 EDC. ° 2∠∴∠ADE=1 EDC. ∠2 ∵∠ADC=∠ADE+∠EDC=1 EDC+∠EDC=3EDC ,∴∠ADE=1 ∠ ∠ 2 2ADC.故选D .∠ 35.C 全等三角形有 3 对,分别为 Rt △ABO ≌Rt △ADO ,Rt △CDO ≌Rt △CBO ,△ADC ≌△ABC.6.A 点(x ,y )关于 y 轴对称的点是(-x ,y ),故 b=20,a=13,则 a+b=33,故选A .7.B8.B ∵AE=CF ,∴AE+EF=CF+EF ,即 AF=CE.∠� = ∠�,选项A,在△ADF 和△CBE 中, A = C ,∠A � = ∠C �,∴△ADF ≌△CBE (ASA);选项B,根据 AD=CB ,AF=CE ,∠AFD=∠CEB 不能推出△ADF ≌△CBE;A = C,选项C,在△ADF 和△CBE 中, ∠A�= ∠C�,A = C,∴△ADF≌△CBE(SAS);选项D,∵AD∥BC,∴∠A=∠C,易知△ADF≌△CBE(ASA).故选B.9.C ∵BD 是AE 的垂直平分线,∴AB=BE.∴∠E=∠A=52°,∴∠EBC=∠E+∠A=104°.故选C.10.B 如图,过点P 作PM∥BC,交AC 于点M.易知△APM 是等边三角形.∵PE⊥AM,∴AE=EM.∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q.又PM=PA=CQ,∴△PMD≌△QCD.∴CD=DM,∴DE=ME+DM=1(AM+MC)=1AC=1,故选B.2 2 2二、填空题11.8 设CE 与BD 的交点为点O.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=180°-36°=72°.2∵BD 是∠ABC 的平分线,∴∠ABD=∠DBC=1 ABC=36°=∠A,∠2∴AD=BD.同理,∠A=∠ACE=∠BCE=36°,AE=CE.∴∠DBC=∠BCE=36°,∴OB=OC.∵∠DBC=36°,∠ACB=72°,∴∠BDC=180°-72°-36°=72°,∴BD=BC,同理CE=BC.∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°.∴CD=CO,BO=BE.∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC 都是等腰三角形,共8 个.12.24 13.214.315°由题图可知∠4=1×90°=45°,∠1 和∠7 所在的三角形全等,2∴∠1+∠7=90°.同理,∠2+∠6=90°,∠3+∠5=90°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.15.11 或13 由题意可得a-b-2=0,2a-3b-1=0,解得a=5,b=3,即三角形的三边长为5,5,3 或3,3,5. 所以此等腰三角形的周长为11 或13.16.36 在△ACD 中,∵AC=DC,∠D=15°,∴∠D=∠DAC=15°.∵∠ACB 是△ACD 的一个外角,∴∠ACB=∠D+∠DAC=15°+15°=30°.在Rt△ABC 中,∠ACB=30°,∴AC=2AB=2×18=36(cm),即CD=36 cm.三、解答题17.解(1)如图.(2)∠BAD=90°-30°=60°(直角三角形的两个锐角互余),∠ACD=180°-130°=50°(邻补角的定义),∠CAD=90°-50°=40°(直角三角形的两个锐角互余).18.解(1)如图.(2)A1(0,1),B1(2,5),C1(3,2).19.证明CD 与AB 之间的关系为CD=AB,且CD∥AB.∵CE=BF,∴CF=BE.A = C,在△CDF 和△BAE 中, ∠A�= ∠C�,A = C,∴△CDF≌△BAE.∴CD=AB,∠C=∠B,∴CD∥AB.20.(1)解题图②中△ABE≌△ACD.证明如下:∵△ABC 与△AED 均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∴△ABE≌△ACD.(2)证明由(1)知△ABE≌△ACD,∠ACD=∠ABE=45°.又∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.21.解∵AD=DE,∴∠A=∠2.∵DE=BE,∴∠3=∠4.又∠2=∠3+∠4,∴∠4=1 2=1 A.∠∠2 2∵BD=BC,∴∠1=∠C.又∠1=∠4+∠A=1 A+∠A=3 A,∠∠2 2∴∠C=3 A.∠2∵AB=AC,∴∠ABC=∠C=3 A.∠2在△ABC 中,∵∠A+∠ABC+∠C=180°,∴∠A+3 A+3 A=180°,即4∠A=180°,∠∠2 2∴∠A=45°.22.证明如图,作DM⊥AB 于点M,DN⊥AC 于点N.∵△DBF 和△DCE 的面积相等,1BF ·DM=1CE ·DN. 2 2 ∵BF=CE ,∴DM=DN.又 DM ⊥AB ,DN ⊥AC ,∴AD 平分∠BAC.23.解 (1)60° (2)90° 108°(3) 能.如图,点 E ,D 分别是正 n 边形 ABCM …中以点 C 为顶点的相邻两边上的点,且 BE=CD ,BD与 AE 交于点 P ,则∠APD的度数为(�-2)×180°.� 24.解 (1)CF=CG ,OF=OG.(2)CF=CG.证明如下:如图,过点 C 作 CM ⊥OA 于点 M ,CN ⊥OB 于点 N ,则∠CMF=∠CNG=90°.①又 OC 平分∠AOB ,∴CM=CN ,②∠AOC=∠BOC.又∠AOB=120°,∴∠AOC=∠BOC=60°,∴∠MCN=360°-∠AOB-∠CMF-∠CNO=60°. ∴∠DCE=∠AOC=60°.∴∠MCN=∠FCG.∴∠MCN-∠FCN=∠FCG-∠FCN,即∠1=∠2.③由①②③得△CMF≌△CNG,∴CF=CG.。
⼈教版⼋年级数学上册期中测试题(含答案)⼈教版初中⼋年级数学上册期中模拟试题⼀、选择题(每⼩题3分,共30分)1.(2020独家原创试题)2020年的春节,对于所有⼈来说真的不⼀般.为了打好疫情攻坚战,医护⼈员在岗位上同时间赛跑,与病魔较量,⽽我们每个⼈都能为打赢这场仗贡献⼀份⼒量.勤洗⼿,戴⼝罩,少聚会,积极配合防控⼯作,照顾好⾃⼰和家⼈,还有,说出⼀句简单的:中国加油,武汉加油.在“中国加油”这4个汉字中,不可以看作轴对称图形的个数为?()A.1B.2C.3D.42.(2019⼭东济宁邹城期中)如图,将△ABC的三个顶点坐标的横坐标都乘-1,并保持纵坐标不变,则所得图形与原图形的关系是?()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负⽅向平移了1个单位D.将原图形沿y轴的负⽅向平移了1个单位3.已知等腰三⾓形的周长为17 cm,⼀边长为4 cm,则它的腰长为?()A.4 cmB.6.5 cmC.6.5 cm或9 cmD.4 cm或6.5 cm4.如图,已知∠1=∠2,下列添加的条件不能使△ADC≌△CBA的是?()?A.AB∥DCB.AB=CDC.AD=BCD.∠B=∠D5.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是?()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE6.如图,在△ABC中,AB=AC,D为BC边上⼀点,E点在AC边上,AD=AE,若∠BAD=24°,则∠EDC=?()A.24°B.20°C.15°D.12°7.如图,正五边形ABCDE中,直线l过点B,且l⊥ED,下列说法:①l是线段AC的垂直平分线;②∠BAC=36°;③正五边形ABCDE有五条对称轴.其中说法正确的是?()A.①②B.①③C.②③D.①②③8.如图,等腰△ABC中,AB=AC,∠A=36°.⽤尺规作图作出线段BD,则下列结论错误的是?()A.AD=BDB.∠DBC=36°C.S△ABD=S△BCDD.△BCD的周长=AB+BC9.如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的动点,要使PA+PB的值最⼩,则点P应满⾜的条件是?()A.PB=PAB.PC=PDC.∠APB=90°D.∠BPC=∠APD10.如图,已知△ABC和△CDE都是等边三⾓形,且A、C、E三点共线.AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②∠AOB=60°;③AP=BQ;④△PCQ是等边三⾓形;⑤PQ∥AE.其中正确结论的个数是?()A.5B.4C.3D.2⼆、填空题(每⼩题3分,共24分)11.(2019四川资阳中考)若正多边形的⼀个外⾓是60°,则这个正多边形的内⾓和是 .12.图①是⼀张Rt△ABC纸⽚,如果⽤两张相同的这种纸⽚恰好能拼成⼀个正三⾓形,如图9②,那么在Rt△ABC中,BC=6,则AB= .13.如图,∠A=∠D,要使△ABC≌△DBC,还需要补充⼀个条件: (填⼀个即可).14.如图,在直⾓坐标系中,AD是Rt△OAB的⾓平分线,已知点D的坐标是(0,-4),AB的长是12,则△ABD的⾯积为 .15.我们规定:等腰三⾓形的顶⾓与⼀个底⾓度数的⽐值叫做等腰三⾓形的“特征值”,记作k.若k=2,则该等腰三⾓形的顶⾓为度.16.如图,已知△ABC关于直线y=1对称,C到AB的距离为2,AB 的长为6,则点A、点B的坐标分别为 .17.(2019江苏南通中考)如图,△ABC中,AB=BC,∠ABC=90°,F 为AB延长线上⼀点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=度.18.在△ABC中,AH是BC边上的⾼,若CH-BH=AB,∠ABH=70°,则∠BAC= .三、解答题(共66分)19.(6分)如图,学校要在两条⼩路OM和ON之间的S区域修建⼀处“英语⾓”,按照设计要求,英语⾓C到两栋教学楼A、B的距离必须相等,到两条⼩路的距离也必须相等,则英语⾓C 应修建在什么位置?请在图上标出它的位置.(尺规作图,保留痕迹)20.(6分)如图,在平⾯直⾓坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案):A1 ;B1 ;C1 ;(3)△A1B1C1的⾯积为 ;(4)在y轴上画出点P,使PB+PC最⼩.21.(2019四川眉⼭中考)(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.22.(7分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F,D是BC边上的中点,连接AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.23.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)连接DF,求证:AB垂直平分DF.24.(10分)定义:如果⼀个三⾓形的⼀个内⾓等于另⼀个内⾓的两倍,则称这样的三⾓形为“倍⾓三⾓形”.(1)如图①,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍⾓三⾓形;(2)如图②,△ABC的外⾓平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍⾓三⾓形,并进⾏证明.25.(10分)数学课上,王⽼师出⽰了下⾯的题⽬:在△ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的⼤⼩关系.⼩明与同桌⼩聪讨论后,进⾏了如下解答. (1)特殊情况,探索结论:在等边三⾓形ABC中,当点E为AB的中点时,点D在CB的延长线上,且ED=EC,如图①,确定线段AE 与DB的⼤⼩关系,请你直接写出结论 ;(2)特例启发,解答题⽬:王⽼师给出的题⽬中,AE与DB的⼤⼩关系是 .理由如下:如图②,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)26.(12分)如图,已知△ABC中,AB=AC=12厘⽶,BC=9厘⽶,点D 为AB的中点.(1)如果点P在线段BC上以3厘⽶/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD 与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以②的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,求多长时间点P与点Q 第⼀次在△ABC的哪条边上相遇参考答案1. 答案 C “中国加油”这4个汉字中,不可以看作轴对称图形的汉字有“国”“加”“油”,共三个,故选C.2. 答案 B 将△ABC 的三个顶点坐标的横坐标都乘-1,纵坐标不变,则横坐标互为相反数,纵坐标相等,所得图形与原图形关于y 轴对称,故选B.3. 答案 B 若4 cm 是腰长,则底边长为20-4-4=12(cm),∵4+4<12,不能组成三⾓形,∴舍去;若4 cm 是底边长,则腰长为?=6.5(cm).故它的腰长为6.5 cm.故选B.4. 答案 B A.由AB ∥CD ,可得∠DCA =∠CAB ,⼜因为∠1=∠2,AC =AC ,故能判定△ADC ≌△CBA ,故选项A 不符合题意;B.由AB =CD ,∠1=∠2,AC =AC ,不能判定△ADC ≌△CBA ,故选项B 符合题意;C.由AD =BC ,∠1=∠2,AC =AC ,能判定△ADC≌△CBA ,故选项C 不符合题意;D.由∠D =∠B ,∠1=∠2,AC =AC ,能判定△ADC ≌△CBA ,故选项D 不符合题意.故选B.5. 答案 B 连接BE ,∵DE 垂直平分AB ,∴AE =BE ,∴∠ABE =∠A =30°,∴∠CBE =∠ABC -∠ABE =30°.在Rt △BCE 中,BE =2CE ,∴AE =2CE ,17-42故选B.6.答案 D∵∠ADC是△ABD的外⾓,∴∠ADC=∠B+∠BAD=∠B+24°,∵∠AED是△CDE的外⾓,∴∠AED=∠C+∠EDC,∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∴∠C+∠EDC=∠ADC-∠EDC=∠B+24°-∠EDC,解得∠EDC=12°.故选D7.答案 D∵正五边形ABCDE中,直线l过点B,且l⊥ED,∴l 是线段AC的垂直平分线,∠BAC=36°,∴①②正确;正五边形ABCDE有五条对称轴,③正确.故选D.8.答案 C∵等腰△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,由作图痕迹可知BD平分∠ABC,∴∠A=∠ABD=∠DBC=36°,∴AD=BD,故A,B结论正确;∵AD≠CD,∴S△ABD=S△BCD 错误,故C结论错误;△BCD的周长=BC+CD+BD=BC+AC=BC+AB,故D结论正确.故选C.9.答案 D如图所⽰,作点A关于CD的对称点A',连接A'B,交CD于点P,连接AP,则PA+PB的最⼩值为A'B的长,点P即为所求.∵点A'与点A关于CD对称,∴∠APD=∠A'PD,∵∠BPC=∠A'PD,∴∠BPC=∠APD,故D符合题意.由图可知,选项A和选项B不成⽴,⽽C只有在PC=BC时才成⽴,故选项C不⼀定成⽴.故选D.10.答案 A①∵△ABC和△CDE为等边三⾓形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确.②∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三⾓形,∴∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正确.④在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,△PCQ是等边三⾓形,④正确.⑤∵∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,⑤正确.③同④得△ACP≌△BCQ(ASA),∴AP=BQ,③正确.故选A.11.答案720°解析这个正多边形的边数为360°÷60°=6,则这个正多边形的内⾓和为(6-2)×180°=720°.12.答案 12解析由题意得AB=2BC=12.13.答案∠ABC=∠DBC或∠ACB=∠DCB解析∵∠A=∠D,BC=BC,∴当∠ABC=∠DBC或∠ACB=∠DCB时,△ABC≌△DBC(AAS),∴还需要补充⼀个条件为∠ABC=∠DBC或∠ACB=∠DCB. 14.答案24解析如图,作DE⊥AB于E,∵点D的坐标是(0,-4),∴OD=4, ∵AD是Rt△OAB的⾓平分线, 12∴DE=OD=4,∴S△ABD= ×12×4=24.15. 答案 90解析∵k =2,∴设该等腰三⾓形的顶⾓=2α,则底⾓=α,∴α+α+2α=180°,∴α=45°,∴该等腰三⾓形的顶⾓为90°.16. 答案 (2,-2),(2,4)解析由题意可得点A 、B 的连线与直线y =1垂直,且两点到直线y =1的距离相等,∵AB =6,∴A 、B 两点的纵坐标分别为-2和4,⼜∵C 到AB 的距离为2,∴A 、B 两点的横坐标都为2.∴A 、B 两点的坐标分别为(2,-2),(2,4).17. 答案 70解析在Rt △ABE 与Rt △CBF 中,?∴Rt △ABE ≌Rt △CBF (HL).∴∠BAE =∠BCF =25°.∵AB =BC ,∠ABC =90°,∴∠ACB =45°,∴∠ACF =25°+45°=70°. 18. 答案 75°或35°解析当∠ABC 为锐⾓时,过点A 作AD =AB ,交BC 于点D ,如图1所⽰.,,AE CF AB BC =??=?∵AB =AD ,∴∠ADB =∠ABH =70°,BH =DH .∵CH -BH =AB ,∴AB +BH =CH ,⼜∵CH =CD +DH ,∴CD =AB =AD ,∴∠C =?∠ADB =35°,∴∠BAC =180°-∠ABH -∠C =75°.当∠ABC 为钝⾓时,作AH ⊥BC ,交CB 的延长线于H , 如图2所⽰.∵CH -BH =AB ,∴AB +BH =CH ,⼜∵BH +BC =CH ,∴AB =BC ,∴∠BAC =∠ACB = ∠ABH =35°.故∠BAC =75°或35°.图112图219. 解析如图所⽰,点C 即为英语⾓应修建的位置.20. 解析 (1)△A 1B 1C 1如图所⽰.(2)(3,2);(4,-3);(1,-1).(3)△A 1B 1C 1的⾯积=3×5- ×2×3-×1×5-×2×3=6.5.故填6.5.(4)如图所⽰,P 点即为所求.21. 证明∵AE =BE ,∴∠EAB =∠EBA ,∵AB ∥DC ,∴∠DEA =∠EAB ,∠CEB =∠EBA ,∴∠DEA =∠CEB ,∵点E 是CD 的中点,∴DE =CE.121212。
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
乌鲁木齐市第四中学2020-2021学年度上学期阶段性诊断测试八年级数学试题(附答案)考试时间:100分钟;满分:100分一、选择题(本题共10小题,每题3分,共30分)1.下列图中,不是..轴对称图形的是()A.B.C.D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.10. 如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且△ABC的面积为4cm2,则△BEF的面积等于()第3题图第4题图第6题图A. 2cm2B. 1cm2C. 0.5 cm2D.0.25cm24.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°5.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有( ).A.7条B.8条C.9条D.10条6.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.∠A=∠D,∠B=∠DEF B.BC=EF,AC=DFC.AB⊥AC,DE⊥DF D.BE=CF,∠B=∠DEF7.如图,△ABC的三边AB,BC,CA的长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO等于( )第7题图第8题图A .1∶1∶1B .2∶3∶4C .2∶1∶3D .3∶4∶58.如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( ) A .5°B .13°C .15°D .20°9.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).第9题图 第10题图A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP10.如图,在△ABC 中,AD ⊥BC ,CE 平分∠ACB ,AD 交CE 于点F ,已知△AFC 的面积为5,FD =2,则AC 长是( ) A .2.5B .4C .5D .6二、填空题(本题共5小题,每题3分,共15分)11.若等腰三角形的两边长分别为7和8,则其周长为_____________.12.如图,已知AB 平分DAC ∠,D C ∠=∠,则根据“_________”,就可判断ABD ACD △≌△.第12题图 第15题图13.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为_______14. 已知点P (3,1)关于y 轴的对称点Q 的坐标是(a+b ,﹣1﹣b ),则ab 的值为_____.15.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF ,则下列结论:①DE =DF ;②AD 平分∠BAC ;③AE =AD ;④AC ﹣AB =2BE 中正确的是_____.三、解答题(16题6分,17题7分,18题,19题,20题,21题8分,22题10分)16.(本题6分)已知等腰三角形的周长为21cm ,一腰上的中线把等腰三角形分成周长之差为3cm 的两个三角形,求等腰三角形的腰长17.(本题7分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC=60°,∠ABE=25°.求∠DAC 的度数.18.(本题8分)已知△ABN 和△ACM 的位置如图,∠1=∠2,AB =AC ,AM =AN .求证:(1)∠M =∠N . A. BD =CE .19.(本题8分)如图,在直角坐标系中,A ,B ,C ,D 各点的坐标分别为(−7,7),(−7,1),(−3,1),(−1,4).(1)在给出的图形中,画出四边形ABCD 关于y 轴对称的四边形A 1B 1C 1D 1(不写作法); (2)写出点A 1和C 1的坐标;(3)求四边形A 1B 1C 1D 1的面积.20.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F .(1)求证:△DAE ≌△CFE ;(2)若AB =BC +AD ,求证:BE ⊥AF .21.(本题8分)如图,在ABC 中,AB AC =,DE 为AC 的垂直平分线,BD BA =,求BAC ∠.22.(本题10分)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1/cm s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t (s).(1)若点Q的运动速度与点P的运动速度相等,当t=1 时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;运动速度为x/若不存在,请说明理由.初二数学期中考试参考答案1、A2、B3、B4、A5、C6、C7、B8、C9、D 10、C 11、22或23 12. AAS 或角角边 13、35°或20° 14、2 15、①② 4ycm.(1)3,221,x 8,5;(2)y x 3,221,x 6,9;8cm 6cm x y x y y x y y -=+===-=+===16.解:设腰长为xcm,底边长为若腰比底边长,根据题意得解得若底边比腰长,根据题意得解得所以这个三角形的腰长是或17.°=?°°-50?=40?60?-40?=20?DAC BAC BAD ∠∴∠∠⨯∴∠∠∴∠=∠-∠=解:BE 平分ABC ,ABC=2ABE=22550,AD 是BC 边上的高,BAD=90?ABC=90,18.=().(2),12()BAN CAM BAN CAM SAS M N BAN CAM B CABD ACE B C AB AC ABD ACE AAS BD CE∠∠∴∠∆∆⎧⎪∠⎨⎪⎩∴∆≅∆∴∠=∠∆≅∆∴∠=∠∆∆∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆≅∆∴=证明:(1)2,BAN=CAM,且AB=AC,AM=AN,在和中,AB=AC,BAN=CAM,AM=AN,在和中,11111119.(1)2(7,7),(3,1);11(3)66236336392422A B C D A C S =⨯-⨯⨯-⨯⨯=--=四边形略()20.,//,DAE CFE AD BCADC ECF E CD ADE FCE ADC ECF ADE CFE ADE FCEADE FCEAE EF AD CF AB BC AD AB BC CF AB BF ABE FBE AB BF AE EF BE BE ABE FBE∆≅∆∴∠=∠∴∆∆∠=∠⎧⎪⎨⎪∠=∠⎩∴∆≅∆∆≅∆∴===+∴=+=∆∆=⎧⎪=⎨⎪=⎩∴∆≅∆证明:理由如下:是的中点DE=EC在和中DE=EC(ASA )(2)由(1)知即在和中°∴∠∠∴⊥(SSS )AEB=FEB=90BE AE.21.180?x?x+x+2x+x=180?x=36?BAC=2x+x=108?AB AC B CDE BDA C ABC B C BAC C =∴∠=∠∴∴∠∠∴∠∠∠∆∴∠=∠+∠∠∠∆∠+∠+∠=∠∠解:为AC 的垂直平分线DA=DC C=DAC BD=BA BDA=BADBDA 是ADC 的一个外角DAC=2C=BAD在中,,设为,则有解得,则()22.t ?90?90?2t ACP BPQ ACP BPQ SAS ACP BPQAPC BPQ APC ACP CPQ PC PQ ACP BPQ ACP BQP ∠∠∆∆⎧⎪∠∠⎨⎪⎩∴∆≅∆∴∠=∠∴∠+∠=∠+∠=∴∠=∆≅∆∆≅∆解:(1)当=1时,AP=BQ=1,BP=AC=3,又A=B=90,在和中AP=BQ A=B AC=BP 即线段与线段垂直()1.若,则AC=BP,AP=BQ,得=1,x=1;2.,则AC=BQ,AP=3t 23t 1,1,t 2,2x x ACP BPQ ====∆∆BP,得=2,x=综上所述,存在或使得与全等八年级上册同步练习:期中考试冲刺(五)(附答案)一.选择题(每题3分,满分30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm3.已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形4.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.105.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE6.已知点A的坐标为(﹣1,2),点A关于x轴的对称点的坐标为()A.(1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣1,﹣2)7.下列各选项中的两个图形属于全等形的是()A.B.C.D.8.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°9.如果一个等腰三角形的周长为17cm,一边长为5cm,那么腰长为()A.5cm B.6cm C.7cm D.5cm或6cm10.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形二.填空题(满分24分,每小题4分)11.我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的.12.一个多边形的每一个外角为30°,那么这个多边形的边数为.13.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC 上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC =2BF,其中正确的结论有(填序号).15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=.三.解答题17.(6分)如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD =CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)18.(6分)如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE,AC∥DF.19.(6分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于x轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.四.解答题20.(7分)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE 为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.21.(7分)将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.22.(7分)如图1,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,点C、B、F 在同一条直线上,分别连接AF和BE.(1)试找出图1中相等的线段(除CA=AB=CB和CF=FE=CE处),直接写出结论,不必说明理由;(2)若将图1中△ABC固定不动,将△CEF绕点C按顺时针方向旋转a(0°<a<60°)角度,(1)中的结论还成立吗?在图2中画出图形,并说明理由.五.解答题23.(9分)如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.24.(9分)如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M、N分别是BC、DE的中点.(1)猜想,MN与DE的位置关系,并证明;(2)若∠A=60°,求的值.25.在△ABC中,CG是∠ACB的角平分线,点D在BC上,且∠DAC=∠B,CG和AD交于点F.(1)求证:AG=AF(如图1);(2)如图2,过点G作GE∥AD交BC于点E,连接EF,求证:EF∥AB.参考答案一.选择题1.解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.2.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.4.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.5.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.6.解:∵点A的坐标为(﹣1,2),∴点A关于x轴的对称点的坐标为(﹣1,﹣2),故选:D.7.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.8.解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选:B.9.解:当5cm是等腰三角形的底边时,则其腰长是(17﹣5)÷2=6(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17﹣5×2=7(cm),能够组成三角形.故该等腰三角形的腰长为:6cm或5cm.故选:D.10.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.二.填空题11.解:用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为:稳定性.12.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.13.解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△CQP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.14.解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②④.15.解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.16.解:∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∠BAC=95°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=95°﹣85°=10°,故答案为:10°三.解答17.证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,∴∠GDF=∠E,∠DGB=∠ACB.在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GD=CE.∵BD=CE,∴BD=GD,∴∠B=∠DGB=∠ACB,∴△ABC是等腰三角形.18.证明:∵BE=CF,∴BE+EC=CF+EC,即CB=FE,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠DEF,∠ACB=∠F,∴AB∥DE,AC∥DF.19.解:(1)如图△A1B1C1即为所求作,B1(﹣2,﹣2);(2)△A1B1C1的面积S=4×5﹣(2×2+2×5+3×4)=7.四.解答题20.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.21.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22.解:(1)AF=BE;(2)AF=BE仍然成立;证明:如图,∵△ABC和△CEF是等边三角形,∴∠FCB+∠ECB∠=∠FCB+∠ACF=60°,∴∠ACF=∠BCE,∴在△AFC和△BEC中,∴△AFC≌△BEC,∴AF=BE.五.解答题23.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.∴FA=DA.∴AB=AD+BD=FA+BD.(2)如图2,当D在AB延长线上时,AF=AB+BD理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.24.(1)证明:MN⊥DE,理由是:连接EM、DM,∵BD⊥AC,CE⊥AB,点M是BC的中点,∴EM=BC,DM=BC,∴ME=MD,又点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴=.25.证明:(1)∵∠4=∠B+∠2,∠5=∠3+∠1,且∠3=∠B,∴∠4=∠5,∴AG=AF;(2)∵GE∥AD,∴∠EGF=∠4,在△GAC和△GEC中,,∴△AGC≌△EGC(ASA),∴AC=EC,在△AFC和△EFC中,,∴△AFC≌△EFC,∴∠FEC=∠3,∵∠B=∠3,∴∠FEC=∠B,∴EF∥AB.2020--2021学年第一学期期中教学质量检测八年级数学试题(附答案)一、选择题(共12小题,每小题4分,共48分.)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).A.B. C. D.2. 对于任意三角形的高,下列说法不正确的是( )A .锐角三角形有三条高B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部 3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 9 4. 等腰三角形的一个角是80°,则它的底角是( )A. 50°B. 80°C. 50°或80°D. 20°或80° 5. 点M (3,2)关于y 轴对称的点的坐标为 ( )。
人教版八年级期数学上学期中提升精选30题一、选择题(共8小题)1.(2022·山东·滨州市滨城区教学研究室八年级期中)下列所给的各组线段,能组成三角形的是:() A.2,11,13B.5,12,7C.5,5,11D.5,12,13【答案】D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.2.(2021·重庆市璧山中学校八年级期中)下列四幅图案中,不是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的定义逐项判断即可.【详解】解:A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项符合题意.故本题选:D.【点睛】本题主要考查了轴对称图形的识别.掌握轴对称图形的定义是解答本题的关键.轴对称:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.3.(2022·黑龙江双鸭山·七年级阶段练习)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是()A.3cm B.4cm C.5cm D.14cm【答案】C【分析】直接根据“三角形第三边大于两边之差小于两边之和”判断即可.【详解】解:设三角形的第三边长为acm,5+9=14,9-5=4,则4<a<14,故选C【点睛】本题考查了三角形三边的关系,解题的关键是熟记“三角形第三边大于两边之差小于两边之和”.4.(2022·江苏扬州·七年级期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高,判断即可.【详解】解:在四个图形中,只有第一个图形是过点B作线段AC所在直线的垂线段,其它三个都不是,故选:C.【点睛】本题考查的是三角形的高的概念,读懂题意是解题的关键.5.(2021·重庆·巴川初级中学校八年级期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.三边的垂直平分线的交点上C.三条高线的交点上【点睛】本题考查了角平分线性质的实际应用,角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.7.(2022·四川·渠县第二中学七年级阶段练习)如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为 E , //BF AC 交 ED 的延长线于点 F ,若 BC 恰好平分∠ABF .下 列结论:①DE =DF ;②DB =DC ;③AD ⊥BC ,其中正确的是( )A .①②B .①③C .②③D .①②③【答案】D 【分析】证明△ABC 为等腰三角形,根据等腰三角形的三线合一判断②③,证明△CDE ≌△BDF ,根据全等三角形的性质判断①.【详解】解:∵BC 平分∠ABF ,∴∠ABC =∠FBC ,∵BF AC ∥,∴∠ACB =∠FBC ,∴∠ABC =∠ACB ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴DB =DC ,AD ⊥BC ,②、③结论正确;在△CDE 和△BDF 中,C DBF DC DBCDE BDF Ð=Ðìï=íïÐ=Ðî,∴△CDE ≌△BDF (ASA ),∴DE =DF ,①结论正确;故①②③均正确,【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角即可得到边数【详解】解:∵多边形的每一个内角都等于160°∴ 多边形的每一个外角都等于180°-160°=20°∴ 边数n =360°÷20°=18故答案为:18【点睛】本题主要考查了多边形的内角与外角关系,求出每一个外角的度数是解题关键.10.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的___________.【答案】稳定性【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是掌握三角形具有稳定性.11.(2020·北京·垂杨柳中学八年级期中)已知点()2x , 和点()3y ,关于y 轴对称,则()2011x y + =________.【答案】1【分析】根据关于y 轴对称的点的特征:横坐标互为相反数,纵坐标相同,进行求解即可.【详解】解:∵点()2x ,和点()3y ,关于y 轴对称,∴y =﹣2,x =3,∴x +y =1,∴()20111x y += .故答案为:1.【点睛】本题考查已知字母的值,求代数式的值.熟练掌握关于y轴对称的点的特征是解题的关键.12.(2022·山东泰安·七年级期末)如图,AD为∠BAC的平分线,请你添加一个适当的条件______,使得△≌△.ABD ACD【答案】AB=AC(答案不唯一)【分析】根据角平分线定义推出∠BAD=∠CAD,进而利用全等三角形的判定解答即可.【详解】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AD=AD,添加AB=AC,利用SAS可得△ABD≌△ACD;添加∠B=∠C,利用AAS可得△ABD≌△ACD;添加∠ADB=∠ADC,利用ASA可得△ABD≌△ACD;故答案为:AB=AC(答案不唯一).【点睛】本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.(2022·黑龙江大庆·七年级期末)琪琪画了一个等腰三角形,量得两条边长分别为12cm和5cm,那么它的周长为______.【答案】29cm##29厘米【分析】因为三角形为等腰三角形,应分两种情况:①12cm是底边时;②5cm是底边时分别求解.【详解】解:应分两种情况:当12cm是底边,5cm是腰时,此时等腰三角形的三边长分别为:12cm,5cm,5cm,∵5512+<,∴此时不能构成三角形;当5cm 是底边,12cm 是腰时,等腰三角形的三边长分别为:12cm ,12cm ,5cm ,此时51212+>,满足三角形的任意两边之和大于第三边,能构成三角形,∴三角形的周长为:12cm +12cm +5cm =29cm ,综上可得三角形的周长为29cm .故答案为:29cm .【点睛】本题考查了三角形的三边之间的关系,等腰三角形的定义及分类讨论的思想,熟记三角形任意两边之和大于第三边是解题的关键.14.(2022·辽宁·丹东市第十九中学八年级期末)如图,在△ABC 中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,这两条垂直平分线分别交BC 于点D 、E .已知△ADE 的周长为13cm .分别连接OA 、OB 、OC ,若△OBC 的周长为27cm ,则OA 的长为______cm .【答案】7【分析】根据线段垂直平分线的性质得DA DB =,EA EC =,OA OB OC ==,从而可得求出13BC =cm ,然后根据OBC V 的周长为27cm ,即可求出解.【详解】解:连接OB ,OC ,∵OM 是线段AB 的垂直平分线,∴DA DB =,OA OB =,∵ON 是AC 的垂直平分线,∴EA EC =,OA OC = ,∴OA OB OC ==.∵ADE V 的周长13cm ,∴13AD DE EA ++=cm ,∴13BC DB DE EC AD DE EA =++=++=cm .∵OBC V 的周长为27cm ,∴2714OB OC BC +=-=cm ,∴7OB OC ==cm ,∴7OA OC ==cm .故答案为:7.【点睛】本题主要考查了垂直平分线的性质,熟记线段垂直平分线上的点到线段两端点的距离相等是解决问题的关键.15.(2022·河南·漯河市第三中学八年级期末)如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ =PQ ,PR =PS ,那么下面四个结论:①AS =AR :②QP ∥AR ;③△BRP ≌△QSP :④BR =QS ,其中一定正确的是(填写编号)________.【答案】①②##②①【分析】通过证明△APR ≌△APS ,可得AS =AR ,∠BAP =∠PAS ,可证QP ∥AR ,可求解.【详解】解:如图,连接AP ,①∵PR ⊥AB ,PS ⊥AC ,PR =PS ,∴点P 在∠BAC 的平分线上,∠ARP =∠ASP =90°,∴∠SAP =∠RAP ,又AP =AP ,∠ARP =∠ASP =90°,【答案】见解析【分析】根据轴对称图形的概念作图即可.【详解】解:如图所示:.【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形沿某条直线折叠,直线两旁的部分能完全重合.20.(2022·河南·上蔡县第一初级中学七年级阶段练习)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD 沿AD 折叠得到△AED ,AE 与BC 交于点F .(1)填空:∠AFC =______度;(2)求∠EDF 的度数.【答案】(1)110(2)∠EDF 的度数为20°【分析】(1)根据折叠求出BAD DAF Ð=Ð,根据三角形外角性质求出即可;(2)根据三角形内角和定理求出ADB Ð,求出ADE Ð,根据三角形外角性质求出ADF Ð,即可求出答案.(1)解:∵ABD △沿AD 折叠得到AED V ,∴30BAD DAF Ð=Ð=°,∵50B Ð=°,30BAD Ð=°,∴110AFC B BAD DAF Ð=Ð+Ð+Ð=° .故答案为:110.(2)解:∵50B Ð=°,30BAD Ð=°,∴1805030100ADB Ð=°-°-°=°,503080ADC Ð=°+°=°,∵ABD △沿AD 折叠得到AED V ,∴100ADE ADB Ð=Ð=°,∴1008020EDF ADE ADC Ð=Ð-Ð=°-°=°.【点睛】本题考查了三角形内角和定理,三角形外角性质和折叠的性质,能根据定理求出各个角的度数,是解此题的关键.21.(2022·河南·金明中小学九年级阶段练习)如图,在平面直角坐标系中,已知△ABC 的顶点坐标分别是()5,2A -,()2,4B -,()1,1C -.(1)在图中作出111A B C △,使111A B C △和△ABC 关于x 轴对称,并写出点1A 的坐标;(2)在x 轴上求作一点P ,使得△APC 的周长最小.(不写作法,请保留作图痕迹)【答案】(1)见解析,()15,2A --(2)见解析【分析】(1)找出ABC V 各顶点关于x 轴的对称点111A B C 、、,再顺次连接即可.根据关于x 轴对称的点的坐标横坐标不变,纵坐标互为相反数即得出1A 点坐标;(2)连接1AC ,1AC 与x 轴的交点即为P 点.(1)如图,111A B C △为所求,()152A --,.(2)如图,点P 为所求.【点睛】本题考查作图—轴对称,轴对称的性质,两点之间线段最短.利用数形结合的思想是解题的关键.22.(2022·全国·八年级期中)如图,△ABC 中,AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD =DE .(1)若3x y ==,经过1秒后,此时(2)若x y ¹,当3x =,y (3)是否存在点P ,使BPD △【答案】(1)见解析(2)154,理由见解析(3)解:存在点P ,使BPD △ABC Q V 中,AB AC =,180472B C °-°\Ð=Ð==①当66.5B BPD Ð=Ð=(1)运动 秒时,AE =13DC (2)运动多少秒时,△ABD ≌△DCE (3)若△ABD ≌△DCE ,∠BAC =α27.(2021·甘肃·甘州区思源实验学校七年级期末)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.【答案】(1)证明见解析(2)点P、Q在运动的过程中,∠QMC不变.∠QMC=60°(3)点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.∠QMC=120°【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAPAP BQ=ìïÐ=Ðíï=î,(1)发现问题如图①当点D在边BC上时.①请写出BD和CE之间的数量关系为,位置关系为;②求证:CE+CD=BC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、立?若成立,请证明:若不成立,请写出新的数量关系,说明理由;(3)拓展延伸如图③,当点D 在边CB 的延长线上且其他条件不变时,若BC =6,CE =2,求线段CD 的长.【答案】(1)①BD =CE ,BD ⊥CE ;②见解析(2)不成立,存在的数量关系为CE =BC +CD ,理由见解析(3)8【分析】(1)①根据条件AB =AC ,∠ABC =∠ACB =45°,AD =AE ,∠ADE =∠AED =45°,判定△ABD ≌△ACE (SAS ),即可得出BD 和CE 之间的关系;②根据全等三角形的性质,即可得到CE +CD =BC ;(2)根据已知条件,判定△ABD ≌△ACE (SAS ),得出BD =CE ,再根据BD =BC +CD ,即可得到CE =BC +CD ;(3)根据条件判定△ABD ≌△ACE (SAS ),得出BD =CE ,进而得到CD =BC +BD =BC +CE ,最后根据BC =6,CE =2,即可求得线段CD 的长.(1)①如图1,∵AB =AC ,∠ABC =∠ACB =45°,AD =AE ,∠ADE =∠AED =45°,∴∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠B =∠ACE =45°,∴∠BCE =90°,即BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;②由①得△ABD ≌△ACE (SAS ),∴BD =CE ,∴BC =BD +CD =CE +CD ;(2)不成立,存在的数量关系为CE =BC +CD .理由:如图2,由(1)同理可得,【答案】证明见解析,证明见解析,5【分析】(1)根据图②,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证两三角形全等即可;(2)根据图③,运用三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证两三角形全等即可;(3)根据图④,由CD=2BD,△ABC的面积为15,可求出△ABD的面积为5,根据△ABE≌△CAF,得出△ACF与△BDE的面积之和等于△ABD的面积,据此即可得出答案.【详解】解:特例探究:∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∵ADB CFAABD CAFAB CAÐ=ÐìïÐ=Ðíï=î,∴△ABD≌△CAF(AAS);归纳证明:∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,∵ABE CAFAB CABAE ACFÐ=Ðìï=íïÐ=Ðî,∴△ABE≌△CAF(ASA);拓展应用:性质等知识点的综合应用,判断出两三角形全等是解本题的关键.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,归纳猜想:当点E为AB的中点时,如图1,确定线段AE与AE DB(填“>”,“<”或“=”).论:_____(2)特例启发,演绎证明:如图2,当点E为AB边上任意一点时,线段AE与∥,交AC于点F,请帮助小敏和小聪完成接下来的证(填“>”,“<”或“=”),小敏和小聪过点E作EF BC则CEF ECD Ð=Ð,AEF ÐAEF AFE A \Ð=Ð=Ð,AEF \D 是等边三角形,AE EF AF \==,F ,同(2)得:EBD EFC D D ≌32BD CF AE \===,31CD BD BC \=-=-=同(2)得:(EBD CFE AAS D D ≌。
人教版八年级上册数学
期中综合提升训练
一.选择题
1.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()
①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.
A.4个B.3个C.2个D.1个
2.已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为()
A.20 B.40 C.60 D.100
3.的立方根是()
A.﹣4 B.±4 C.±2 D.﹣2
4.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度
B.先向右平移4个单位长度,再向上平移6个单位长度
C.先向左平移4个单位长度,再向下平移6个单位长度
D.先向右平移4个单位长度,再向下平移6个单位长度
5.下列调查方式,你认为最合适的是()
A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式
B.旅客上飞机前的安检,采用抽样调查方式
C.了解A市居民日平均用水量,采用全面调查方式
D.了解A市每天的平均用电量,采用抽样调查方式
6.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()
A.3cm,4cm,8cm B.8cm,7cm,15cm C.13cm,12cm,20cm D.5cm,5cm,11cm
7.若一个多边形的内角和是1080度,则这个多边形的边数为()
A.6 B.7 C.8 D.10
8.如图,图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角,关于这七个角的度数关系,下列选项正确的是()
A.∠2=∠4+∠5 B.∠3=∠1+∠6 C.∠1+∠4+∠7=180° D.∠5=∠1+∠4
9.下列所示的四个图形中,∠1和∠2是同位角的是()
A.①④B.①②③C.①②④D.②③
10.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()
A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形 D.三角形有稳定性二.填空题
11.平面直角坐标系中有一点M在第四象限,它到x轴的距离是4,到y轴的距离是5,则点M的坐标为.12.已知对任意有理数a、b,关于x、y的二元一次方程(a﹣b)x﹣(a+b)y=a+b有一组公共解,则公共解为.13.不等式3(x﹣1)≤5﹣x的非负整数是.
14.已知BD是△ABC的中线,AB=7,BC=3,且△ABD的周长为15,则△BCD的周长为.
15.已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是cm.
三.解答题
16.解不等式并把解集表示在数轴上:
(1)2(x+1)﹣1≥4x+2,(2)﹣2≥﹣
17.计算:
18.在平面直角坐标系中,三角形ABC的位置如图所示,把三角形ABC平移后,三角形ABC内任意点P(x,y)对应点为P′(x+3,y﹣4).
(1)画出平移后的图形;
(2)三角形ABC是经过怎样平移后得到三角形A′B′C′?
(3)在三角形ABC平移到三角形A′B′C′的过程中,线段AB扫过的面积为.
19.(1)如图:画出△ABC的高AD、角平分线AE;
(2)若∠ABC=100°,∠C=30°,求∠DAE的度数.
20.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:
销售时段
销售数量
销售收入A种型号B种型号
第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
五.解答题
21.一次随机的问卷调查,共发放1000份调查问卷,并全部回收.根据调查问卷,将消费者年收入情况整理后,制成表格如下:
年收入(万元) 1.2 1.8 3.0 5.0 10.0
被调查的消费者人数(人)200 500 200 70 30
表1(被调查的消费者打算购买住房的面积的情况,注:住房面积取整数)
将消费者打算购买住房的面积的情况整理后,作出部分频数分布直方图(如图),
请你根据以上信息,回答下列问题:
(1)根据频数分布直方图可得,被调查的消费者平均年收入为万元;被调查的消费者年收入的中位数是万元;在平均数、中位数这两个数中,更能反映出被调查的消费者年收入的一般水平.(2)根据表1可得,打算购买100~120平方米房子的人数是人;打算购买住房面积小于100平方米的消费者的人数占被调查人数的百分数是.
(3)在图中补全这个频率分布直方图.
答案
一.选择题1.C.2.B.3.D.4.D.5.D.6.C.7.C.8.D.9.C.10.D.二.填空题
11.(5,﹣4).12.x=0,y=﹣1.13.0、1、2.14.11.15.8 三.解答题
16.解:(1)2x+2﹣1≥4x+2,
2x﹣4x≥2﹣2+1,
﹣2x≥1,
x≤﹣,
(2)3x﹣12≥﹣2(7﹣x),
3x﹣12≥﹣14+2x,
3x﹣2x≥﹣14+12,
x≥﹣2,
17.解:
=﹣3+2+1=
18.解:(1)如图所示,△A′B′C′即为所求;
(2)由题意知,△ABC先向右平移3个单位、再向下平移4个单位可以得到△A′B′C;
(3)线段AB扫过的面积为S▱ABED+S▱DEB′A′=3×5+3×4=27,
故答案为:27.
19.解:(1)
(2)∵∠DAB=∠ABE﹣∠ADB=100°﹣90°=10°,(三角形的外角等于不相邻两内角和)(5分)∠BAC=180°﹣∠ABC﹣∠C=180°﹣100°﹣30°=50°,(三角形内角和为180°)
又∵AE平分∠BAC,∴∠BAE=∠BAC=25°,(角平分线的定义)
∴∠DAE=∠DAB+∠BAE=10°+25°=35°.(8分)
20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得:,
解得:,
答:A、B两种型号电风扇的销售单价分别为200元、150元.
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.
依题意得:160a+120(50﹣a)≤7500,
解得:a≤37.
答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.
(3)根据题意得:
(200﹣160)a+(150﹣120)(50﹣a)>1850,
解得:a>35,
∵a≤37,且a应为整数,
∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:
当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;
当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.
21.解:(1)==2.39(万元);
将这组数据按从小到大排列为,由于有偶数个数,取最中间两个数的平均数,第500、501位都是1.8,被调查的消费者年收入的中位数是1.8万元;
中位数更能反映出被调查的消费者年收入的一般水平.
(2)由图可知,打算购买100~120平方米房子的人数是1000﹣(360+200+120+40)=240人,打算购买住房面积小于100平方米的消费者的人数占被调查人数的百分数是=52%.
(3)如图:。