新高考新教材1.7解三角形与平面向量问题-2020-2021学年高二数学尖子生同步培优(人教A版必修5)(解析版)
- 格式:docx
- 大小:591.73 KB
- 文档页数:8
专题1.5 全称量词与存在量词姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列命题中是全称量词命题并且是真命题的是()A.∃x>1,x2-2x-3=0B.若2x为偶数,则x∈NC.所有菱形的四条边都相等D.π是无理数2.命题“每一个四边形的四个顶点共圆”的否定是()A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆3.下列命题为真命题的是()A.存在x∈Q,使方程2x-2=0有解B.存在一个实数x,使x2+2x+4=0C.有些整数只有两个正因数D.所有的质数都是奇数4.设非空集合P,Q满足P∩Q=P,则()A .∀x ∈Q ,有x ∈PB .∀x ∉Q ,有x ∉PC .∃x ∉Q ,使得x ∈PD .∃x ∈P ,使得x ∉Q5.已知命题p :∃x >0,x +a -1=0,若p 为假命题,则a 的取值范围是( )A .{a |a <-1}B .{a |a ≥1}C .{a |a >1}D .{a |a ≤-1}6.(2020·沈阳二中北校高三模拟)已知命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( )A .(,1)-∞-B .(1,3)-C .(3,)-+∞D .(3,1)-7.(多选)下列命题的否定中,是全称量词命题且为真命题的有( )A .∃x ∈R ,x 2-x +41<0 B .所有的正方形都是矩形C .∃x ∈R ,x 2+2x +2≤0D .至少有一个实数x ,使x 3+1=08.(多选)下列命题错误的是( )A .∀x ∈{-1,1},2x +1>0B .∃x ∈Q ,x 2=3C .∀x ∈R ,x 2-1>0D .∃x ∈N ,|x |≤0二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.下列存在量词命题是真命题的序号是________.①有些不相似的三角形面积相等;②存在实数x ,使x 2+2<0;③存在实数a ,使函数y =ax +b 的值随x 的增大而增大;④有一个实数的倒数是它本身.10.若命题p :∀x ∈R ,21 x <0,则綈p :________________. 11.若命题p :∀a ,b ∈R ,方程ax 2+b =0恰有一解,则綈p :________________.12.某中学开展小组合作学习模式,某班某组小王同学给组内小李同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m 范围.小李略加思索,反手给了小王一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m 范围.你认为,两位同学题中m 范围是否一致?________(填“是”“否”中的一种)三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.14.写出下列命题的否定,并判断真假:(1)正方形都是菱形;(2)∃x ∈R ,使4x -3>x ;(3)∀x ∈R ,有x +1=2x ;(4)集合A 是集合A ∩B 或集合A ∪B 的子集.15.写出下列命题的否定并判断真假:(1)所有自然数的平方都是正数;(2)任何实数x 都是方程5x -12=0的根;(3)∀x ∈R ,x 2+3<0;(4)有些质数不是奇数.16.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅.(1)若命题p:“∀x∈B,x∈A”是真命题,求m的取值范围;(2)命题q:“∃x∈A,x∈B”是真命题,求m的取值范围.专题1.5 全称量词与存在量词姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列命题中是全称量词命题并且是真命题的是()A.∃x>1,x2-2x-3=0B.若2x为偶数,则x∈NC.所有菱形的四条边都相等D.π是无理数【答案】C【解析】对于A,是存在量词命题,故A不正确;对于B,是真命题,但不是全称量词命题,故B不正确;对于C,是全称量词命题,也是真命题,故C正确;对于D,是真命题,但不是全称量词命题,故D不正确,故选C.2.命题“每一个四边形的四个顶点共圆”的否定是()A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆【答案】A【解析】根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形的四个顶点不共圆”,故选A.3.下列命题为真命题的是()A.存在x∈Q,使方程2x-2=0有解B.存在一个实数x,使x2+2x+4=0C.有些整数只有两个正因数D.所有的质数都是奇数【答案】C【解析】A.2x-2=0⇔x=2∉Q,故A错误;B.∵x2+2x+4=(x+1)2+3≥3,∴存在一个实数x,使x2+2x+4=0错误.C.∵2=1×2,∴有些整数只有两个正因数正确,D.2是质数,但2不是奇数,故D错误,故选C.4.设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,有x∈P B.∀x∉Q,有x∉PC.∃x∉Q,使得x∈P D.∃x∈P,使得x∉Q【答案】B【解析】∵P∩Q=P,∴P⊆Q,如图,∴A错误;B正确;C错误;D错误.故选B.5.已知命题p:∃x>0,x+a-1=0,若p为假命题,则a的取值范围是()A .{a |a <-1}B .{a |a ≥1}C .{a |a >1}D .{a |a ≤-1}【答案】B【解析】∵p 为假命题, ∴綈p 为真命题,即:∀x >0,x +a -1≠0,即x ≠1-a ,∴1-a ≤0,则a ≥1.∴a 的取值范围是a ≥1,故选B.6.(2020·沈阳二中北校高三模拟)已知命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( )A .(,1)-∞-B .(1,3)-C .(3,)-+∞D .(3,1)-【答案】B 【解析】因为命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,所以212(1)02x a x +-+>恒成立,所以2()114202a ∆=--⨯⨯<,解得13a -<<,故实数a 的取值范围是(1,3)-, 故选B, 7.(多选)下列命题的否定中,是全称量词命题且为真命题的有( )A .∃x ∈R ,x 2-x +41<0 B .所有的正方形都是矩形C .∃x ∈R ,x 2+2x +2≤0D .至少有一个实数x ,使x 3+1=0【答案】AC【解析】命题的否定是全称量词命题,即原命题为存在量词命题,故排除B.再根据命题的否定为真命题,即原命题为假命题.又D 为真命题,故选A 、C.8.(多选)下列命题错误的是( )A .∀x ∈{-1,1},2x +1>0B .∃x ∈Q ,x 2=3C .∀x ∈R ,x 2-1>0D .∃x ∈N ,|x |≤0【答案】ABC【解析】对于A ,x =-1时,不合题意,A 错误;对于B ,x =±3,B 错误;对于C ,比如x =0时,-1<0,C 错误;D 选项正确.二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.下列存在量词命题是真命题的序号是________.①有些不相似的三角形面积相等;②存在实数x ,使x 2+2<0;③存在实数a ,使函数y =ax +b 的值随x 的增大而增大;④有一个实数的倒数是它本身.【答案】①③④【解析】①为真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x ∈R ,x 2+2>0,所以不存在实数x ,使x 2+2<0,为假命题;③中当实数a 大于0时,结论成立,为真命题;④中如1的倒数是它本身,为真命题.故真命题的序号是①③④. 10.若命题p :∀x ∈R ,21-x <0,则綈p :________________. 【答案】∃x ∈R ,21-x >0或x -2=0 11.若命题p :∀a ,b ∈R ,方程ax 2+b =0恰有一解,则綈p :________________.【答案】∃a,b∈R,方程ax2+b=0无解或至少有两解12.某中学开展小组合作学习模式,某班某组小王同学给组内小李同学出题如下:若命题“∃x∈R,x2+2x+m≤0”是假命题,求m范围.小李略加思索,反手给了小王一道题:若命题“∀x∈R,x2+2x+m>0”是真命题,求m范围.你认为,两位同学题中m范围是否一致?________(填“是”“否”中的一种)【答案】是【解析】∵命题“∃x∈R,x2+2x+m≤0”的否定是“∀x∈R,x2+2x+m>0”.而命题“∃x∈R,x2+2x+m≤0”是假命题,则其否定“∀x∈R,x2+2x+m>0”为真命题.∴两位同学题中m范围是一致的.三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.【解析】(1)是全称量词命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形其内角和不等于180°.(2)是全称量词命题且为假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)是存在量词命题且为真命题.命题的否定:所有的四边形都是平行四边形.14.写出下列命题的否定,并判断真假:(1)正方形都是菱形;(2)∃x∈R,使4x-3>x;(3)∀x∈R,有x+1=2x;(4)集合A是集合A∩B或集合A∪B的子集.【解析】(1)命题的否定:正方形不都是菱形,是假命题.(2)命题的否定:∀x∈R.有4x-3≤x.因为当x=2时,4×2-3=5>2,所以“∀x∈R,有4x-3≤x”是假命题.(3)命题的否定:∃x∈R.使x+1≠2x.因为当x=2时,x+1=2+1=3≠2×2,所以“∃x∈R,使x+1≠2x”是真命题.(4)命题的否定:集合A既不是集合A∩B的子集也不是集合A∪B的子集,是假命题.15.写出下列命题的否定并判断真假:(1)所有自然数的平方都是正数;(2)任何实数x都是方程5x-12=0的根;(3)∀x∈R,x2+3<0;(4)有些质数不是奇数.【解析】(1)命题的否定:至少存在一个自然数的平方不是正数.真命题.(2)命题的否定:∃x∈R,5x-12≠0.真命题.(3)命题的否定:∃x∈R,x2+3≥0.真命题.(4)命题的否定:所有的质数都是奇数.假命题.16.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅.(1)若命题p:“∀x∈B,x∈A”是真命题,求m的取值范围;(2)命题q:“∃x∈A,x∈B”是真命题,求m的取值范围.【解析】(1)由于命题p:“∀x∈B,x∈A”是真命题,所以B⊆A,B≠∅,所以⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解得2≤m ≤3.(2)q 为真,则A ∩B ≠∅,因为B ≠∅,所以m ≥2.所以⎪⎩⎪⎨⎧≥-≥-≤+221251m m m ,解得2≤m ≤4.。
【最新】高中数学《空间向量与立体几何》专题解析一、选择题1.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222+B .232+C .62+D .72+【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.2.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B 【解析】 【分析】画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为α,SE 与平面ABC D 所成的角为β,二面角S-AB-C 的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .a βγ≤≤D .γβα≤≤【答案】C 【解析】 【分析】根据题意,分别求出SE 与BC 所成的角α、SE 与平面ABC D 所成的角β、二面角S-AB-C 的平面角γ的正切值,由正四棱锥的线段大小关系即可比较大小. 【详解】四棱锥S ABCD -的底面是正方形,侧棱长均相等, 所以四棱锥为正四棱锥,(1)过E 作//EF BC ,交CD 于F ,过底面中心O 作ON EF ⊥交EF 于N ,连接SN ,取AB 中点M ,连接OM ,如下图(1)所示:则tan SN SN NE OMα==;(2)连接,OE 如下图(2)所示,则tan SO OEβ=;(3)连接OM ,则tan SOOMγ=,如下图(3)所示:因为,,SN SO OE OM ≥≥ 所以tan tan tan αγβ≥≥, 而,,αβγ均为锐角, 所以,αγβ≥≥ 故选:C. 【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.4.如图,正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为a ,侧棱长2a ,则1AC 与侧面11ABB A 所成的角是( )A .30°B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法能求出1AC 与侧面11ABB A 所成的角. 【详解】解:以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系, 则3(a A ,2a ,0),1(0C ,02)a ,13(a A 2a 2)a ,(0B ,a ,0), 13(a AC =u u u u r ,2a -2)a ,3(a AB =u u u r ,2a ,0),1(0AA =u u u r ,02)a , 设平面11ABB A 的法向量(n x =r,y ,)z , 则13·022·20a an AB x y n AA az ⎧=-+=⎪⎨⎪==⎩u u u v v u u u v v ,取1x =,得(1n =r 3,0),设1AC 与侧面11ABB A 所成的角为θ,则111||31sin |cos ,|2||||23n AC a n AC n AC a θ=<>===r u u u u rr u u u u r g r u u u ur g , 30θ∴=︒,1AC ∴与侧面11ABB A 所成的角为30°.故选:A .【点睛】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.5.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140C .150D .160【答案】D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A =,可得221156AC AC A A =-= 同理可得2211200102BD D B D D =-==,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分, 所以2211()()1450822AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.6.以下说法正确的有几个( )①四边形确定一个平面;②如果一条直线在平面外,那么这条直线与该平面没有公共点;③过直线外一点有且只有一条直线与已知直线平行;④如果两条直线垂直于同一条直线,那么这两条直线平行; A .0个 B .1个C .2个D .3个【答案】B 【解析】 【分析】对四个说法逐一分析,由此得出正确的个数. 【详解】①错误,如空间四边形确定一个三棱锥. ②错误,直线可能和平面相交. ③正确,根据公理二可判断③正确. ④错误,在空间中,垂直于同一条直线的两条直线可能相交,也可能异面,也可能平行.综上所述,正确的说法有1个,故选B. 【点睛】本小题主要考查空间有关命题真假性的判断,属于基础题.7.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2π B .3π C .4π D .6π 【答案】C 【解析】 【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r ,所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r ,所以异面直线A F '与AC 所成的角为4π. 故选:C【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.8.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤⎥⎝⎦④三棱锥1D APC -的体积不变 A .①② B .①②④C .③④D .①④【答案】B 【解析】 【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.9.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( ) A .13B.3 C .223D .6 【答案】C 【解析】 【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF nEF n EF n ⋅〈〉=u u u r ru u u r r u u ur r ,即可得出答案. 【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系, 又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点所以(0,0,2),(2,2,0)E F故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r.设平面ACD 的法向量为(,,)n x y z =r,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 令1,x = 则1y z ==;所以(1,1,1)n =r 1cos ,3||||332EF n EF n EF n ⋅〈〉===⨯u u u r r u u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以222cos 1sin 3θθ=-=故选:C【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.10.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案.【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂,当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r 成立,反之当a b ⊥r r时,此时a 与l 不一定是垂直的, 所以a l ⊥是a b ⊥r r 的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.11.已知某几何体的三视图如图所示,则该几何体的体积为A.273B.276C.274D.272【答案】D【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V⨯⨯⨯⨯,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.12.一个几何体的三视图如图所示,则该几何体的体积为A.238B.823+C.283D.10【答案】A【解析】【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可.【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+232832V=⨯⨯=,故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.13.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( )A .若//a α,//b α,则//a bB .若a α⊥,//a b ,则b α⊥C .若a α⊥,a b ⊥r r ,则//b αD .若//a α,a b ⊥r r ,则b α⊥【答案】B【解析】【分析】 利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解.【详解】若//a α,//b α,则a 与b 相交、平行或异面,故A 错误;若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确;若a α⊥,a b ⊥r r ,则//b α或b α⊂,故C 错误;若//a α,a b ⊥r r ,则//b α,或b α⊂,或b 与α相交,故D 错误.故选:B .【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.14.等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B AD C --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πCD 【答案】D【解析】分析:详解:由题意,设BCD ∆所在的小圆为1O ,半径为r ,又因为二面角B AD C --为060,即060BDC ∠=,所以BCD ∆为边长为3的等边三角形,又正弦定理可得,032sin 60r ==BE = 设球的半径为R ,且4=AD ,在直角ADE ∆中,()2222224428R AD DE R =+⇒=+=,所以R =,所以球的体积为3344333V R ππ==⨯=,故选D .点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.15.在空间中,下列命题正确的是A .如果一个角的两边和另一角的两边分别平行,那么这两个角相等B .两条异面直线所成的有的范围是0,2π⎡⎤⎢⎥⎣⎦C .如果两个平行平面同时与第三个平面相交,那么它们的交线平行D .如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行【答案】C【解析】【分析】根据两个角可能互补判断A ;根据两条异面直线所成的角不能是零度,判断B ;根据根据两个平面平行的性质定理知判断C ;利用直线与这个平面平行或在这个平面内判断D.【详解】如果一个角的两边和另一个角的两边分别平行,这两个角相等或互补,故A 不正确; 两条异面直线所成的角不能是零度,故B 不正确;根据两个平面平行的性质定理知C 正确;如果一条直线和一个平面内的一条直线平行,那么这条直线与这个平面平行或在这个平面内,故D 不正确,综上可知只有C 的说法是正确的,故选C.【点睛】本题考查平面的基本性质及推论,考查等角定理,考查两个平面平行的性质定理,考查异面直线所成的角的取值范围,考查直线与平面平行的判断定理,意在考查对基础知识的掌握情况,本题是一个概念辨析问题.16.已知直线和不同的平面,下列命题中正确的是A .//m m αβαβ⊥⎫⇒⎬⊥⎭B .m m αββα⊥⎫⇒⊥⎬⊂⎭C .//////m m ααββ⎫⇒⎬⎭D .////m m αββα⎫⇒⎬⊂⎭【答案】D【解析】【分析】对各个选项逐一进行分析即可【详解】 A ,若αβ⊥,m β⊥,则有可能m α⊂,故A 错误B ,若αβ⊥,m α⊂,则m 与β不一定垂直,可能相交或平行,故B 错误C ,若//m α,//m β则推不出//αβ,面面平行需要在一个面内找出两条相交线与另一个平面平行,故C 错误D ,若//αβ,m α⊂,则有//m β,故D 正确故选D【点睛】本题考查了线面平行与面面平行的判断和性质,在对其判定时需要运用其平行的判定定理或者性质定理,所以要对课本知识掌握牢固,从而判断结果17.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A .2B .5C 13D 22【答案】D【解析】【分析】 根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥P ABC -.13PAC PAB S S ∆∆=22PAC S ∆=,2ABC S ∆=22.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.18.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32D .52【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可.【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点,俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】 本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.19.设,αβ是两个不同的平面,,l m 是两条不同的直线,且l α⊂,m β⊂,则( )A .若//αβ,则//l mB .若//m a ,则//αβC .若m α⊥,则αβ⊥D .若αβ⊥,则//l m【答案】C【解析】【分析】 根据空间线线、线面、面面的位置关系,对选项进行逐一判断可得答案.【详解】A. 若//αβ,则l 与m 可能平行,可能异面,所以A 不正确.B. 若//m a ,则α与β可能平行,可能相交,所以B 不正确.C. 若m α⊥,由m β⊂,根据面面垂直的判定定理可得αβ⊥,所以C 正确. D 若αβ⊥,且l α⊂,m β⊂,则l 与m 可能平行,可能异面,可能相交, 所以D 不正确.【点睛】本题考查空间线线、线面、面面的位置判断定理和性质定理,考查空间想象能力,属于基础题.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( )A .6πB .12πC .32πD .48π【答案】B【解析】【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积.【详解】由题得几何体原图如图所示,其中SA⊥平面ABC,BC⊥平面SAB,SA=AB=BC=2,所以2,3SC=设SC中点为O,则在直角三角形SAC中,3,在直角三角形SBC中,OB=13 2SC=所以3所以点O3所以四面体外接球的表面积为43=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。
姓名,年级:时间:9。
2。
2 向量的数乘学习目标核心素养1.掌握向量数乘的运算及其几何意义.(重点)2.理解两个向量共线的含义,掌握向量共线定理.3。
了解向量线性运算的性质及其几何意义.1.通过向量数乘概念的学习,培养数学抽象素养;2。
通过向量数乘的运算及其运算律的应用,培养数学运算素养。
一只兔子向东一秒钟的位移对应的向量为a,那么它在同一方向上按照相同的速度行走3秒钟的位移对应的向量怎样表示?是3a吗?兔子在相反方向上按照相同的速度行走3秒钟的位移对应的向量又怎样表示?是-3a吗?1.向量的数乘定义一般地,实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)|λa|=|λ||a|;(2)若a≠0,则当λ>0时,λa与a方向相同;当λ<0时,λa 与a方向相反;当a=0时,λa=0;当λ=0时,λa=0.实数λ与向量a相乘的运算,叫作向量的数乘.向量的数乘λa的几何意义:当λ>0时,把向量a沿着a的相同方向放大或缩小,当λ<0时,把向量a沿着a的相反方向放大或缩小.思考:λa=0,一定能得到λ=0吗?提示:不一定.λa=0,则λ=0或a=0.2.向量数乘的运算律(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb。
3.向量共线定理一般地,对于两个向量a(a≠0),b,设a为非零向量,如果有一个实数λ,则b=λa,那么b与a是共线向量;反之,如果b与a是共线向量,那么有且只有一个实数λ,使b=λa.4.向量的线性运算向量的加法、减法和数乘统称为向量的线性运算.1.思考辨析(正确的画“√”,错误的画“×”)(1)a=0,则λa=0.()(2)对于非零向量a,向量-3a与向量3a方向相反.()(3)对于非零向量a,向量-6a的模是向量3a的模的2倍.( ) [答案](1)√(2)√(3)√2.5×(-4a)=________。
2020-2021学年八年级数学上册尖子生同步培优题典【人教版】专题1.2三角形的内角(人教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【分析】设∠A=x,则∠B=2x,∠C=3x,再根据三角形内角和定理求出x的值,进而可得出结论.【解析】∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.2.(2020春•江阴市期中)将一副三角板如图放置,作CF∥AB,则∠EFC的度数是()A.90°B.100°C.105°D.110°【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【解析】∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF∥AB,∴∠ACF=∠BAC=45°,∵∠E=30°,故选:C.3.(2020春•赣榆区期中)下列条件能说明△ABC是直角三角形的是()A.∠A=∠B=2∠C B.∠A=∠B+∠CC.∠A:∠B:∠C=2:3:4D.∠A=40°,∠B=55°【分析】利用三角形内角和定理结合已知条件求出三角形的内角即可判断.【解析】A、∵∠A=∠B=2∠C,∴∠A=∠B=72°,∠C=36°,∴△ABC不是直角三角形,本选项不符合题意.B、∵∠A=∠B+∠C,∴∠A=90°,∴△ABC是直角三角形,本选项符合题意.C、∵∠A:∠B:∠C=2:3:4,∴∠C=49×180°=80°,∴△ABC是锐角三角形,本选项不符合题意.D、∵∠A=40°,∠B=55°,∴∠C=85°,∴△ABC是锐角三角形,本选项不符合题意,故选:B.4.(2019秋•宜兴市期中)如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.40°B.45°C.50°D.60°【分析】根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.【解析】∵∠A=75°,∠B=65°,∴∠C=180°﹣(65°+75°)=40°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60°.故选:D.5.(2019春•姑苏区期中)如图,在△ABC中,∠ABC=75°,∠ABD=∠BCD,则∠BDC的度数是()A.115°B.110°C.105°D.100°【分析】根据三角形内角和定理得到∠ABD+∠DBC=75°,根据三角形内角和定理计算,得到答案.【解析】∵∠ABC=75°,∴∠ABD+∠DBC=75°,∵∠ABD=∠BCD,∴∠BCD+∠DBC=75°,∴∠BDC=180°﹣(∠BCD+∠DBC)=105°,故选:C.6.(2019春•常州期中)下列条件:①∠A﹣∠B=∠C;②∠A:∠B:∠C=2:3:5;③∠A=12∠B=13∠C;④∠A=∠B=2∠C;⑤∠A=∠B=12∠C,其中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【分析】根据三角形内角和定理、直角三角形的定义解答.【解析】①∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∴∠A=90°,即△ABC为直角三角形;②设∠A、∠B、∠C分别为2x、3x、5x,由三角形内角和定理得,2x +3x +5x =180°, 解得,x =18°,∠C =5x =90°,即△ABC 为直角三角形; ③∠A =12∠B =13∠C , 则∠C =3∠A ,∠B =2∠A ,由三角形内角和定理得,∠A +2∠A +3∠A =180°, 解得,∠A =30°,∴∠C =3∠A =90°,即△ABC 为直角三角形; ④∠A =∠B =2∠C ,由三角形内角和定理得,2∠C +2∠C +∠C =180°,解得,∠C =36°,∠A =∠B =2∠C =72°,即△ABC 不是直角三角形; ⑤∠A =∠B =12∠C ,由三角形内角和定理得,12∠C +12∠C +∠C =180°,解得,∠C =90°,即△ABC 是直角三角形; 故选:C .7.(2019春•兴化市期中)在△ABC 中,∠C =40°,∠B =4∠A ,则∠A 为( )度. A .30B .28C .26D .40【分析】根据三角形内角和定理构建方程即可解决问题. 【解析】∵∠A +∠B +∠C =180°, ∴5∠A +40°=180°, ∴∠A =28°, 故选:B .8.(2019春•垦利区期中)如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将∠C 沿DE 对折,使点C 落在△ABC 外的点C ′处,若∠1=20°,则∠2的度数为( )A.80°B.90°C.100°D.110°【分析】根据三角形内角和定理求出∠C,根据折叠的性质求出∠C′,根据三角形的外角的性质计算,得到答案.【解析】∵∠A=65°,∠B=75°,∴∠C=180°﹣65°﹣75°=40°,由折叠的性质可知,∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠2=∠C+∠3=100°,故选:C.9.(2019春•南京期中)如图,在△ABC中,∠A=α,∠B=∠C,点D,E,F分别在BC,AB,AC上,且∠EDF=∠B,若∠2=2∠1,则∠EDB的度数为()A.120°﹣a B.60°+13a C.90°−12a D.45°+23a【分析】根据∠EDB=180°﹣∠B﹣∠1,求出∠B,∠1(用α表示)即可解决问题.【解析】∵∠EDC=∠EDF+∠FDC=∠B+∠1,∠EDF=∠B,∴∠FDC=∠1,∵∠A+∠B+∠C=180°,∠B=∠C,∠A=α,∴∠B=90°−12α,∵2∠1+∠1+∠C=180°,∴∠1=13(90°+12α),∴∠EDB=180°﹣∠B﹣∠1=180°﹣(90°−12α)−13(90°+12α)=60°+13α,故选:B.10.(2019春•泰兴市校级月考)如图,在△ABC中,∠A=40°,高BE、CF交于点O,则∠BOC为()A.40°B.110°C.130°D.140°【分析】根据∠BOC=∠CEO+∠ECO,求出∠CEO,∠ECO即可.【解析】∵△ABC中,高BE、CF交于点O,∴∠AEB=∠ADFC=90°,∵∠A=40°,∴∠ACF=50°,∴∠BOC=∠CEO+∠ECO=90°=50°=140°,故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019春•京口区校级月考)如图,点D在三角形ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=20°,则∠ACE的大小是50度.【分析】由∠A=80°,∠B=20°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD =∠B+∠A,然后利用角平分线的定义计算即可.【解析】∵∠ACD=∠B+∠A,而∠A=80°,∠B=20°,∴∠ACD=80°+20°=100°.∵CE平分∠ACD,∴∠ACE=50°,故答案为:50.12.(2019春•广陵区校级月考)一个三角形三个内角度数的比是2:5:4,那么这个三角形是锐角三角形.【分析】根据三角形内角和定理可分别求得每个角的度数,从而根据最大角的度数确定其形状.【解析】依题意,设三角形的三个内角分别为:2x,5x,4x,∴2x+5x+4x=180°,∴5x≈81.82°.∴这个三角形是锐角三角形.故答案为:锐角.13.(2019春•崇川区校级月考)若△ABC为钝角三角形,且∠A=50°,则∠B的取值范围为130°>∠B>90°或0°<∠B<40°.【分析】根据钝角三角形的定义即可判断.【解析】当130°>∠B>90°时,△ABC是钝角三角形,当∠C>90°时,△ABC是钝角三角形,此时0°<∠B<40°,故答案为130°>∠B>90°或0°<∠B<40°.14.(2019春•江宁区校级月考)如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的外部,用∠1和∠2表示出∠A,则关系式是2∠A=∠1﹣∠2.【分析】此题求的是∠A、∠1、∠2之间的数量关系,首先画出折叠前的三角形,设为△BCF,可根据三角形的外角性质,首先表示出∠DEF的度数,进而根据三角形内角和定理,得到所求的结论.【解析】如右图,设翻折前A点的对应点为F;根据折叠的性质知:∠3=∠4,∠F=∠A;由三角形的外角性质知:∠DEF=∠5+∠3=∠A+∠2+∠3;△DEF中,∠DEF=180°﹣∠4﹣∠F;故180°﹣∠4﹣∠F=∠A+∠2+∠3,即:180°﹣∠4﹣∠A=∠A+∠2+∠3,180°﹣∠4﹣∠3=2∠A+∠2,即∠1=2∠A+∠2,2∠A=∠1﹣∠2,故答案为:2∠A=∠1﹣∠2.15.(2019春•长春月考)当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”,如果一个“梦想三角形”有一个角为120°,那么这个“梦想三角形”的最小内角的度数为20°或15°.【分析】分两种情况,根据三角形内角和定理计算即可.【解析】①120°÷3=40°,180°﹣120°﹣40°=20°,则这个“梦想三角形”的最小内角的度数为20°;②设这个“梦想三角形”的其它两个内角的度数分别为3x、x,则3x+x+120°=180°,解得,x=15°,则这个“梦想三角形”的最小内角的度数15°,故答案为:20°或15°.16.(2018秋•新抚区校级月考)在△ABC中,若2(∠A+∠C)=3∠B,则∠B的度数为72°.【分析】根据三角形内角和定理,得出∠A+∠C=180°﹣∠B,再根据2(∠A+∠C)=3∠B,得出关于∠B的方程,求得∠B即可.【解析】∵在△ABC中,∠A+∠C=180°﹣∠B,且2(∠A+∠C)=3∠B,∴2(180°﹣∠B)=3∠B,∴360°=5∠B,∴∠B=72°.故答案为:72°17.如图,AE是△ABC的角平分线,AD⊥BC,垂足为D.若∠ABC=66°,∠C=34°,则∠DAE=16°.【分析】先求出∠BAC的度数,再求出∠BAD的度数和∠CAE的度数,再求出∠DAE的度数.【解析】∵∠BAC=180°﹣66°﹣34°=80°,又∵AE是△ABC的角平分线,∴∠CAE=40°,∵∠ABC=66°,AD是BC边上的高.∴∠BAD=90°﹣66°=24°,∴∠DAE=∠BAE﹣∠BAD=∠CAE﹣∠BAD=40°﹣24°=16°.故答案为:16.18.(2020春•如皋市期末)在△ABC中,将∠B、∠C按如图所示方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=82°,则∠MGE=82°.【分析】由折叠的性质可知:∠B=∠MGB,∠C=∠EGC,根据三角形的内角和为180°,可求出∠B+∠C的度数,进而得到∠MGB+∠EGC的度数,问题得解.【解析】∵线段MN、EF为折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=82°,∴∠B+∠C=180°﹣82°=98°,∴∠MGB+∠EGC=∠B+∠C=98°,∴∠MGE=180°﹣98=82°,故答案为:82.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019春•崇川区校级月考)如图,已知,在△ABC中,∠C=∠ABC,BE⊥AC,∠DBE=60°,求∠C的度数.【分析】由直角三角形的性质得出∠A=30°,再由三角形内角和定理即可得出答案.【解析】∵BE⊥AC,∴∠AEB=90°,∵∠DBE=60°,∴∠A=90°﹣60°=30°,∴∠C=∠ABC=12(180°﹣30°)=75°.20.(2019春•东台市校级月考)如图,在△ABC中,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C、∠B之间的数量关系(不必说明理由).【分析】(1)由AD是BC边上的高可得出∠ADE=90°,在△ABC中利用三角形内角和定理可求出∠BAC的度数,由角平分线的定义可求出∠BAE的度数,再根据三角形外角的性质可求出∠AED的度数,在△ADE中利用三角形内角和定理可求出∠DAE的度数;(2)∠DAE=12(∠C﹣∠B),理由同(1).【解析】(1)∵AD是BC边上的高,∴∠ADE=90°.∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C=100°.∵AE是∠BAC平分线,∴∠BAE=12∠BAC=50°,∴∠AED=∠B+∠BAE=30°+50°=80°.∵∠ADE+∠AED+∠DAE=180°,∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣80°=10°.(2)∠DAE=12(∠C﹣∠B),理由如下:∵AD是BC边上的高,∴∠ADE=90°.∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C.∵AE是∠BAC平分线,∴∠BAE=12∠BAC=90°−12(∠B+∠C),∴∠AED=∠B+∠BAE=90°+12(∠B﹣∠C).∵∠ADE+∠AED+∠DAE=180°,∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣[90°+12(∠B﹣∠C)]=12(∠C﹣∠B).21.(2018秋•江都区月考)如图:有一张直角三角形纸片ABC,∠ACB=90°,∠A=50°,将其沿CD折叠,使点A落在边CB上的点A′处,求∠A′DB的度数.【分析】先根据直角三角形两锐角互余求得∠B=40°,由翻折的性质可知∠DA′C=50°,最后根据三角形外角的性质可知∠A′DB=10°.【解析】由折叠可得,∠CA'D=∠A=50°,∵∠ACB=90°,∠A=50°,∴∠B=40°,∵∠B+∠A'DB=∠CA'D,∴∠A'DB=50°﹣40°=10°.22.(2020春•常熟市期中)如图,在△ABC中,点D在BC上,∠ADB=∠BAC,BE平分∠ABC,过点E 作EF∥AD,交BC于点F.(1)求证:∠BAD=∠C;(2)若∠C=20°,∠BAC=110°,求∠BEF的度数.【分析】(1)利用三角形内角和定理证明即可.(2)想办法求出∠BHD,再利用平行线的性质求解即可.【解答】(1)证明:∵∠ABC+∠BAC+∠C=180°,∠ABC+∠BDA+∠BAD=180°,∠BDA=∠BAC,∴∠BAD=∠C.(2)解:∵∠C=20°,∠BAC=110°,∴∠ABC=180°﹣20°﹣110°=50°,∵BE平分∠ABC,∴∠EBF=12∠ABC=25°,∵∠BDA=∠BAC=110°,∴∠BHD=180°﹣∠HBD﹣∠BDA=180°﹣25°﹣110°=45°,∵AD∥EF,∴∠BEF=∠BHD=45°.23.(2020春•赣榆区期中)如图1,AD、BC交于点O,得到的数学基本图形我们称之为‘8’字形ABCD.(1)试说明:∠A+∠B=∠C+∠D;(2)如图2,∠ABC和∠ADC的平分线相交于E,尝试用(1)中的数学基本图形和结论,猜想∠E与∠A、∠C之间的数量关系并说明理由.【分析】(1)利用三角形内角和定理证明即可.(2)利用(1)中结论,设∠ABE=∠EBC=x,∠ADE=∠EDC=y,可得∠A+x=∠E+y,∠C+y=∠E+x,两式相加可得结论.【解答】(1)证明:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,又∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)解:结论:2∠E=∠A+∠C.理由:∵∠ABC和∠ADC的平分线相交于E,∴可以假设∠ABE=∠EBC=x,∠ADE=∠EDC=y,∵∠A+x=∠E+y,∠C+y=∠E+x,∴∠A+∠C=∠E+∠E,∴2∠E=∠A+∠C,24.(2020春•相城区期中)已知(如图1)在△ABC中,∠B>∠C,AD平分∠BAC,点E在AD的延长线上,过点E作EF⊥BC于点F,设∠B=α,∠C=β.(1)当α=80°,β=30°时,求∠E的度数;(2)试问∠E与∠B,∠C之间存在着怎样的数量关系,试用α、β表示∠E,并说明理由;(3)若∠EFB与∠BAE平分线交于点P(如图2),当点E在AD延长线上运动时,∠P是否发生变化,若不变,请用α、β表示∠P;若变化,请说明理由.【分析】(1)根据三角形的内角和和角平分线的定义即可得到即可;(2)根据三角形的内角和和角平分线的定义即可得到即可;(3)根据三角形的内角和和角平分线的定义即可得到即可.【解析】(1)∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵AD平分∠BAC,∴∠BAD=12∠BAC=35°,∴∠EDF=∠ADB=180°﹣35°﹣80°=65°,∵EF⊥BC,∴∠EFD=90°,∴∠E=90°﹣65°=25°;(2)∵∠EDF=∠C+∠CAD,∠CAD=12∠BAC=12(180°﹣α﹣β),∴∠EDF=∠C+90°−12α−12β=90°−12(α﹣β),∵∠EFD=90°,∴∠DEF=12(α﹣β);(3)设AP与BC交于G,∵AD平分∠BAC,∴∠BAD=12∠BAC=12(180°﹣α﹣β),∵AP平分∠BAE,∴∠BAP=12∠BAD=14(180°﹣α﹣β),∴∠PGF=∠AGB=180°﹣∠B﹣∠BAP=180°﹣α−14(180°﹣α﹣β)=135°−34α+14β,∵PF平分∠EFB,∴∠PFB=45°,∴∠P=180°﹣∠PFB﹣∠PGF=180°﹣45°﹣(135°−34α+14β)=34α−14β,故∠P不会发生变化.。
2020-2021学年新教材人教B 版必修第二册 第六章 平面向量初步 单元测试(时间:120分钟 满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知向量a =(1,m ),b =(m,2),若a ∥b ,则实数m 等于( C ) A .- 2 B . 2 C .-2或 2D .0[解析] 由a ∥b 知1×2=m 2,解得m =2或m =-2.2.如图在梯形ABCD 中,AD ∥BC ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,且E ,F 分别为AB ,CD 的中点,则( C )A .EF →=12(a +b +c +d )B .EF →=12(a -b +c -d )C .EF →=12(c +d -a -b )D .EF →=12(a +b -c -d )[解析] 连接OE ,OF .因为EF →=OF →-OE →=12(OC →+OD →)-12(OA →+OB →)=12(c +d )-12(a +b ),所以EF →=12(c +d -a -b ).3.已知M ,P ,Q 三点不共线,且点O 满足8OM →-3OP →-4OQ →=0,则下列结论正确的是( D )A .OM →=-MP →-MQ →B .OM →=-3MP →-MQ →C .OM →=-MP →-4MQ →D .OM →=3MP →+4MQ →[解析] 由8OM →-3OP →-4OQ →=0,得OM →+3(OM →-OP →)+4(OM →-OQ →)=0,则OM →+3PM →+4QM →=0,即OM →=3MP →+4MQ →.故选D .4.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →等于( B )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)[解析] AC →=2AQ →=2(PQ →-P A →)=2(-3,2)=(-6,4), BC →=3PC →=3(P A →+AC →)=3(-2,7)=(-6,21).5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( A )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直[解析] AD →+BE →+CF →=AB →+BD →+BC →+CE →+BF →-BC →=AB →+13BC →+BC →-23AC →-13AB →-BC →=23(AB →-AC →)+13BC →=23CB →+13BC →=-13BC →. 6.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足P A →+PB →=PC →,下列结论中正确的是( D )A .P 在△ABC 的内部B .P 在△ABC 的边AB 上 C .P 在AB 边所在直线上D .P 在△ABC 的外部[解析] 由P A →+PB →=PC →可得P A →=PC →-PB →=BC →,∴四边形PBCA 为平行四边形. 可知点P 在△ABC 的外部.故选D .7.已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb ,λ,μ∈R ,若A ,B ,C 三点共线,则( D )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1[解析] ∵A ,B ,C 三点共线,∴AB →∥AC →,∴存在m ∈R ,使得AB →=mAC →,∴⎩⎪⎨⎪⎧λ=m 1=mμ,∴λμ=1,故选D .8.设M 是△ABC 所在平面上一点,且MB →+32MA →+32MC →=0,D 是AC 的中点,则|MD →||BM →|的值为( A )A .13B .12C .1D .2[解析] 因为D 为AC 的中点,所以MB →=-32(MA →+MC →)=-32×2MD →=-3MD →,故|MD →||MB →|=13,故选A . 二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列命题不正确的是( AB ) A .单位向量都相等B .若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量C .|a +b |=|a -b |,则a ⊥bD .若a 与b 是单位向量,则|a |=|b |[解析] 单位向量仅仅长度相等而已,方向也许不同;当b =0时,a 与c 可以为任意向量;|a +b |=|a -b |,即对角线相等,此时为矩形,邻边垂直.10.下列命题中正确的是( ABD ) A .OA →-OB →=BA → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →[解析] 起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0;AB →+BC →+CD →=AD →,故选ABD .11.若e 是直线l 上的一个单位向量,这条直线上的向量a =-32e ,b =23e ,则下列说法正确的是( BD )A .a =-bB .b =-49aC .a +b 的坐标为0D .|a ||b |=1[解析] 因为a =-32e ,b =23e ,所以|a |=32,|b |=23,|a ||b |=1,b =-49×(-32e )=-49a ,a+b =(-32+23)e =-56e .a +b 的坐标为-56.12.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( BC ) A .λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个C .若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2)D .若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0[解析] 由平面向量基本定理可知,A ,D 是正确的.对于B ,由平面向量基本定理可知,若一个平面的基底确定,那么该平面内的任意一个向量在此基底下的实数对是唯一的.对于C ,当两个向量均为零向量时,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,或当λ1e 1+μ1e 2为非零向量,而λ2e 1+μ2e 2为零向量(λ2=μ2=0),此时λ不存在.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.若OA →=(2,8),OB →=(-7,2),则13AB →=__(-3,-2)__.[解析] AB →=OB →-OA →=(-9,-6),所以13AB →=(-3,-2).14.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =__-1__. [解析] ∵a =(2,-1),b =(-1,m ), ∴a +b =(1,m -1), ∵(a +b )∥c ,c =(-1,2), ∴2-(-1)·(m -1)=0.∴m =-1.15.已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则a +b +c 的模等于__22__.[解析] |a +b +c |=|AB →+BC →+AC →| =|2AC →|=2|AC →|=22.16.如图所示,已知△OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).(1)若D 为AB 中点,OD →=__12(OA →+OB →)__(用OA →,OB →表示);(2)已知下列四个向量:①OM 1→=OA →+2OB →; ②OM 2→=34OA →+13OB →;③OM 3→=12OA →+13OB →;④OM 4→=34OA →+15OB →.对于点M 1,M 2,M 3,M 4,落在阴影区域内(不含边界)的点有__M 1,M 2__(把所有符合条件点都填上).[解析] (1)若D 为AB 中点,则由向量的加法法则可得OD →=12(OA →+OB →).(2)设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N ,则存在实数t ∈(0,1],使得ON →=tOA →+(1-t )OB →,且存在实数r ≥1,使得OM →=rON →,从而OM →=rtOA →+r (1-t )OB →,且rt +r (1-t )=r ≥1.又由于0<t ≤1,故r (1-t )≥0.对于①中rt =1,r (1-t )=2,解得r =3,t =13,满足r ≥1也满足r (1-t )≥0,故①满足条件.对于②中rt =34,r (1-t )=13,解得r =1312,t =913,满足r ≥1也满足r (1-t )≥0.故①满足条件.对于③中rt =12,r (1-t )=13,解得r =56,t =35,不满足r ≥1,故③不满足条件.对于④中rt =34,r (1-t )=15,解得r =1920,t =1519,不满足r ≥1,故④不满足条件.四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限?[解析] 因为OP →=OA →+tAB →=(1,2)+t (3,3)=(1+3t,2+3t ), 若点P 在x 轴上,则2+3t =0, 所以t =-23.若点P 在y 轴上,则1+3t =0, 所以t =-13.若点P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0.所以-23<t <-13.18.(本小题满分12分)在平行四边形ABCD 中,AB →=a ,AD →=B .(1)如图①,如果E ,F 分别是BC ,DC 的中点,试用a ,b 分别表示BF →,DE →; (2)如图②,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a ,b 表示AG →.[解析] (1)BF →=BC →+CF →=AD →+12CD →=AD →-12AB →=-12a +B .DE →=DC →+CE →=AB →-12AD→=a -12B .(2)BD →=AD →-AB →=b -A .因为O 是BD 的中点,G 是DO 的中点, 所以BG →=34BD →=34(b -a ),所以AG →=AB →+BG →=a +34(b -a )=14a +34B .19.(本小题满分12分)设OA →=(2,-1),OB →=(3,0),OC →=(m,3). (1)当m =8时,将OC →用OA →和OB →表示.(2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件. [解析] (1)m =8时,OC →=(8,3),设OC →=λ1OA →+λ2OB →, 所以(8,3)=λ1(2,-1)+λ2(3,0)=(2λ1+3λ2,-λ1),所以⎩⎪⎨⎪⎧2λ1+3λ2=8,-λ1=3.解得⎩⎪⎨⎪⎧λ1=-3,λ2=143.所以OC →=-3OA →+143OB →.(2)若A ,B ,C 三点能构成三角形,则有AB →与AC →不共线,又AB →=OB →-OA →=(3,0)-(2,-1)=(1,1),AC →=OC →-OA →=(m,3)-(2,-1)=(m -2,4), 则有1×4-(m -2)×1≠0,所以m ≠6.20.(本小题满分12分)已知e 1,e 2是平面内两个不共线的非零向量,AB →=2e 1+e 2,BE →=-e 1+λe 2,EC →=-2e 1+e 2,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求BC →的坐标;(3)已知点D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.[解析] (1)AE →=AB →+BE →=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2. 因为A ,E ,C 三点共线,所以存在实数k ,使得AE →=kEC →, 即e 1+(1+λ)e 2=k (-2e 1+e 2), 得(1+2k )e 1=(k -1-λ)e 2.因为e 1,e 2是平面内两个不共线的非零向量,所以⎩⎪⎨⎪⎧1+2k =0,λ=k -1解得k =-12,λ=-32.(2)BC →=BE →+EC →=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)因为A ,B ,C ,D 四点按逆时针顺序构成平行四边形,所以AD →=BC →. 设A (x ,y ),则AD →=(3-x,5-y ),因为BC →=(-7,-2),所以⎩⎪⎨⎪⎧ 3-x =-7,5-y =-2.解得⎩⎪⎨⎪⎧x =10,y =7.即点A 的坐标为(10,7).21.(本小题满分12分)用向量法证明:三角形的三条中线交于一点. [解析] 如图,D ,E ,F 分别是△ABC 三边上的中点,设CA →=a ,CB →=b ,AD ∩BE =G .设AG →=λAD →,BG →=μBE →.则AG →=AB →+BG →=(b -a )+μBE →=(b -a )+μ(BC →+12CA →)=b -a +μ(12a -b )=12(μ-2)a +(1-μ)b ,又AG →=λAD →=λ(AC →+CD →)=λ(-a +12b )=-λa +12λb ,所以⎩⎨⎧-λ=12(μ-2),12λ=1-μ,解得⎩⎨⎧λ=23,μ=23.则CG →=CA →+AG →=a +23AD →=a +23(-a +12b ) =13a +13b ,CF →=12a +12b ,所以CG →=23CF →,所以G 在中线CF 上,所以三角形三条中线交于一点.22.(本小题满分12分)在△ABC 中,AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM →与CN →交于点P ,且AP →=xAB →+yAC →(x ,y ∈R ),求x +y 的值. [解析] (1)在△ABC 中,AM →=34AB →+14AC →,4AM →=3AB →+AC →,3(AM →-AB →)=AC →-AM →,即3BM →=MC →,即点M 是线段BC 靠近B 点的四等分点. 故△ABM 与△ABC 的面积之比为14.(2)因为AM →=34AB →+14AC →,AM →∥AP →,AP →=xAB →+yAC →(x ,y ∈R ),所以x =3y ,因为N 为AB 的中点,所以NP →=AP →-AN →=xAB →+yAC →-12AB →=(x -12)AB →+yAC →,CP →=AP →-AC →=xAB →+yAC →-AC →=xAB →+(y -1)AC →,因为NP →∥CP →,所以(x -12)(y -1)=xy ,即2x +y =1,又x =3y , 所以x =37,y =17,所以x +y =47.。
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题4.7第4章基本平面图形单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•雅安期末)如图所示,下列对图形描述不正确的是()A.直线AB B.直线BC C.射线AC D.射线AB【分析】依据直线,线段以及射线的定义进行判断即可.【解析】解:由图可得,直线AB,线段BC,射线AC,射线AB,图中不存在直线BC,故选:B.2.(2019秋•东湖区校级期末)下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象个数有()A.1B.2C.3D.4【分析】直接利用直线的性质和线段的性质分别判断得出答案.【解析】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:B.3.(2020春•肇东市期末)在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为() A.5cm B.8cm C.5cm或8cm D.5cm或11cm【分析】分两种情况:点C在线段AB上,点C在线段AB的延长线上.再根据线段的和差,可得线段BC的长.【解析】解:当点C在线段AB上时,BC=AB﹣AC=8﹣3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.故选:D.4.(2019秋•铁西区期末)如图,小明从A处沿北偏东40°方向行走至B处,又从B处沿东偏南21°方向行走至C处,则∠ABC的度数为()A.131°B.129°C.109°D.101°【分析】根据平行线性质求出∠ABE,再求出∠EBC即可得出答案.【解析】解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南21方向行走至点C处,∴∠DAB=40°,∠CBF=21°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∵∠EBF=90°,∴∠EBC=90°﹣21°=69°,∴∠ABC=∠ABE+∠EBC=40°+69°=109°,故选:C.5.(2019秋•青山区期末)如图,下列说法错误的是()A.∠ECA是一个平角B.∠ADE也可以表示为∠DC.∠BCA也可以表示为∠1D.∠ABC也可以表示为∠B【分析】角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况下,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.【解析】解:A、∠ECA是一个平角,故正确,不符合题意;B、∠ADE也可以表示为∠D,故正确,不符合题意;C、∠BCA也可以表示为∠1,故正确,不符合题意;D、∠ABC也不可以表示为∠B,故错误,符合题意;故选:D.6.(2019秋•兰考县期末)如图,OB平分平角∠AOD,∠AOB:∠BOC=3:2,则∠COD等于()A.30°B.45°C.60°D.75°【分析】先利用OB平分平角∠AOD得到∠AOB=∠DOB=90°,再利用∠AOB:∠BOC=3:2得到∠BOC=60°,然后回家互余计算出∠COD的度数.【解析】解:∵OB平分平角∠AOD,∴∠AOB =∠DOB =12×180°=90°,∵∠AOB :∠BOC =3:2,∴∠BOC =23×90°=60°,∴∠COD =90°﹣60°=30°.故选:A .7.(2019秋•海淀区期末)若扇形的半径为2,圆心角为90°,则这个扇形的面积为( )A .π2 B .π C .2π D .4π【分析】直接利用扇形的面积公式计算.【解析】解:这个扇形的面积=90⋅π⋅22360=π.故选:B .8.(2019秋•通州区期末)如图,OC 为∠AOB 内的一条射线,下列条件中不能确定OC 平分∠AOB 的是()A .∠AOC =∠BOCB .∠AOB =2∠BOCC .∠AOC +∠COB =∠AOBD .∠AOC =12∠AOB【分析】根据角平分线的定义即可判断.【解析】解:A .∵∠AOC =∠BOC∴OC 平分∠AOB .所以A 选项正确,不符合题意;B .∵∠AOB =2∠BOC∴OC 平分∠AOB .所以B 选项正确,不符合题意;C .∵∠AOC +∠COB =∠AOB∴OC 不一定平分∠AOB .所以C 选项错误,符合题意;D .∵∠AOC =12∠AOB∴OC平分∠AOB.所以D选项正确,不符合题意.故选:C.9.(2019秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=12∠AOBA.1个B.2个C.3个D.4个【分析】根据角平分线的定义即可判断.【解析】解:①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC=12∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选:A.10.(2019秋•埇桥区期末)已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,P A和PB.若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“巧分点”,线段AB的“巧分点”的个数是()A.3B.6C.8D.9【分析】根据“巧点”的定义即可求解.【解析】解:线段AB的3个等分点都是线段AB的“巧分点”.同理,在线段AB延长线和反向延长线也分别有3个“巧分点”.∴线段AB的“巧分点”的个数是9个.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•新泰市期末)已知点A、B、C在一条直线上,AB=5cm,BC=3cm,则AC的长为2cm或8cm.【分析】分类讨论,C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解析】解:若C在线段AB上,则AC=AB﹣BC=5﹣3=2(cm);若C在线段AB的延长线上,则AC=AB+BC=5+3=8(cm),故答案为2cm或8cm.12.(2019秋•沙坪坝区期末)已知线段AB,延长AB至点C,使BC=13AB.若点D为线段AC的中点,点E为线段AB的中点,且DE=1cm,则线段AB=6cm.【分析】设BC=x,则AB=3x,于是得到AC=4x,根据线段中点的定义得到AD=12AC=2x,AE=12AB=32x,于是得到结论.【解析】解:设BC=x,则AB=3x,∴AC=4x,∵点D为线段AC的中点,点E为线段AB的中点,∴AD=12AC=2x,AE=12AB=32x,∴DE=AD﹣AE=2x−32x=12x=1,∴x=2,∴AB=6cm,故答案为:6.13.(2019秋•沙河口区期末)如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是两点确定一条直线.【分析】由直线公理可直接得出答案.【解析】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.14.(2020春•舒兰市期末)34°18′36″=34.31°.【分析】根据小单位华大单位除以进率,可得答案.【解析】解:34°18′36″=34.31°.故答案是:34.31.15.(2019秋•曲阳县期末)如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为2个①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.【分析】根据角平分线的定义进行判断即可.【解析】解:AD不一定平分∠BAF,①错误;AF不一定平分∠DAC,②错误;∵∠1=∠2,∴AE平分∠DAF,③正确;∵∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,∴AE平分∠BAC,④正确;故答案为:2个.16.(2019秋•兰考县期末)如图所示,OB是∠AOC的平分线,OC是∠AOD的平分线,若∠COD=76°,那么∠AOD=152°,∠BOC=38°.【分析】根据角平分线的定义,利用OC是∠AOD的平分线得到∠AOC=∠COD=76°,∠AOD=2∠COD=152°,然后利用OB是∠AOC的平分线得到∠BOC=12∠AOC.【解析】解:∵OC是∠AOD的平分线,∴∠AOC=∠COD=76°,∠AOD=2∠COD=2×76°=152°,∵OB是∠AOC的平分线,∴∠BOC=12∠AOC=12×76°=38°.故答案为152°;38°.17.(2019秋•北仑区期末)将两个正方形与直角三角板的一个直角顶点重合放置,如图所示,则∠1的度数为16°.【分析】根据角的和差进行计算即可.【解析】解:如图∵∠1+α+β=90°∠1+α=90°﹣46°∠1+β=90°﹣28°∴∠1=90°﹣46°+90°﹣28°﹣90°=16°.故答案为16°.18.(2019秋•吉州区期末)过一个多边形的一个顶点的所有对角线把多边形分成2019个三角形,则这个多边形的边数为2021.【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.【解析】解:设多边形有n条边,则n﹣2=2019,解得n=2021.故这个多边形的边数是2021.故答案是:2021.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•襄城县期末)如图,已知三点A、B、C.(1)请读下列语句,并分别画出图形①画直线AB;②画射线AC;③连接BC.(2)在(1)的条件下,图中共有6条射线.(3)从点C到点B的最短路径是CB,依据是两点间线段最短.【分析】(1)按题意,直接作图即可.(2)根据射线的定义进行判断,写出即可.(3)根据两点间线段最短的性质即可求解.【解析】解:(1)如图所示:直线AB、射线AC、线段BC即为所求.(2)图中共有3+2+1=6条射线.(3)最短路径是CB ,依据:两点间线段最短.故答案为:6;CB ,两点间线段最短.20.观察下面图形,并回答问题.(1)四边形有 2 条对角线;五边形有 5 条对角线;六边形有 9 条对角线?(2)根据规律七边形有 14 条对角线,n 边形有n(n−3)2 条对角线. 【分析】(1)根据图形查出即可;(2)根据对角线条数的数据变化规律进行总结,然后填写.【解析】解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;∵从一个顶点可以作(n ﹣3)条对角线,∴n 边形有n(n−3)2条对角线.(2)七边形有14条对角线,n 边形有n(n−3)2条对角线. 故答案为:(1)2,5,9,(2)14,n(n−3)2.21.(2019秋•潮州期末)如图所示,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∠EOC =65°,∠DOC =25°,求∠AOB 的度数.【分析】由角的和差求出∠DOE=40°,再根据角平分线的定义,角的和差求出∠AOB的度数为130°.【解析】解:如图所示:∵∠EOC=∠DOE+∠DOC,∠EOC=65°,∠DOC=25°,∴∠DOE=65°﹣25°=40°,∵OC是∠AOD的平分线,∠BOD=2∠EOD=2×40°=80°,同理可得:∠AOD=50°又∵∠AOB=∠AOD+∠BOD∴∠AOB=130°.22.(2020春•河口区期末)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b且(a﹣16)2+|2b﹣8|=0,求a,b的值:(2)在(1)的条件下,求线段CD的长,【分析】(1)由(a﹣16)2+|2b﹣8|=0,根据非负数的性质即可推出a、b的值;(2)根据(1)所推出的结论,即可推出AB和CE的长度,根据图形即可推出AC=8,然后由AE=AC+CE,即可推出AE的长度,由D为AE的中点,即可推出DE的长度,再根据线段的和差关系可求出CD的长度.【解析】解:(1)∵(a﹣16)2+|2b﹣8|=0,∴a﹣16=0,2b﹣8=0,∵a、b均为非负数,∴a=16,b=4,(2)∵点C为线段AB的中点,AB=16,CE=4,∴AC=12AB=8,∴AE=AC+CE=12,∵点D为线段AE的中点,∴DE=12AE=6,∴CD=DE﹣CE=6﹣4=2.23.(2019秋•宁都县期末)某一野外探险队由基地A处向北偏东30°方向前进了40千米到达B点,然后又向北偏西60°方向前进了30千米到达C点处工作.(1)请在图中画出行走路线图.(1厘米表示10千米)(2)通过度量,请你算出C点离基地A的距离.(精确到1千米)(3)若基地要派一指导员赶往C点,要求在2小时内赶到,问指导员应以不低于多大的平均速度前进才能按时到达?【分析】(1)根据方位角的意义,按要求的比例尺画图,确定B点位置,再在B点处画方位角以相同的比例尺确定C点;(2)连接AC,量出图上距离,再按比例尺算出实际距离;(3)根据速度=路程÷时间即可求解.【解析】解:(1)如图所示:(2)连接AC,度量出AC=5厘米,即C点离基地A的实际距离为50千米;(3)50÷2=25(千米/时).答:指导员的平均速度应不低于25千米/时.24.(2019秋•海州区校级期末)如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.【分析】(1)利用∠AOB =180°﹣∠AOM ﹣∠BON ,即可求出结论;(2)利用∠AOM +∠BON =180°+∠AOB ,即可得出关于t 的一元一次方程,解之即可得出结论;(3)分0≤t ≤18及18≤t ≤60两种情况考虑,当0≤t ≤18时,利用∠AOB =180°﹣∠AOM ﹣∠BON =90°,即可得出关于t 的一元一次方程,解之即可得出结论;当18≤t ≤60时,利用∠AOM +∠BON =180°+∠AOB (∠AOB =90°或270°),即可得出关于t 的一元一次方程,解之即可得出结论.综上,此题得解.【解析】解:(1)当t =3时,∠AOB =180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t +6t =180+72,解得:t =1265. 答:当∠AOB 第二次达到72°时,t 的值为1265.(3)当0≤t ≤18时,180﹣4t ﹣6t =90,解得:t =9; 当18≤t ≤60时,4t +6t =180+90或4t +6t =180+270,解得:t =27或t =45.答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9、27或45.25.(2019秋•肇庆期末)已知O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图①,若∠AOC =30°,求∠DOE 的度数.(2)在图①中,若∠AOC =a ,求∠DOE 的度数(用含a 的代数式表示).(3)将图①中的∠DOC 绕顶点O 顺时针旋转至图②的位置,且保持射线OC 在直线AB 上方,在整个旋转过程中,当∠AOC 的度数是多少时,∠COE =2∠DOB .【分析】(1)由已知可求出∠BOC =180°﹣∠AOC =150°,再由∠COD 是直角,OE 平分∠BOC ,即可求出∠DOE 的度数;(2)由(1)中的方法可得出结论∠DOE =12∠AOC ,从而用含α的代数式表示出∠DOE 的度数;(3)设∠AOC =α,则∠BOC =180°﹣α,依据OE 平分∠BOC ,可得∠COE =12×(180°﹣α)=90°−12α,再依据∠COE =2∠DOB ,即可得到∠AOC 的度数.【解析】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∵∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD−12∠BOC=90°−12×150°=15°;(2)由(1)知∠DOE=∠COD−12∠BOC,∴∠DOE=90°−12(180°﹣∠AOC)=12∠AOC=12α;(3)设∠AOC=α,则∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=12×(180°﹣α)=90°−12α,∠BOD=90°﹣(180°﹣α)=α﹣90°,∵∠COE=2∠DOB,∴90°−12α=2(α﹣90°),解得α=108°.综上所述,当∠AOC的度数是108°时,∠COE=2∠DOB.26.(2019秋•金牛区期末)已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=6;(2)若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM﹣2MN的值是否与m有关?并说明理由.(3)若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度(用含m的代数式表示).【分析】(1)设AN=x,BM=y,则CN=3x,CM=3y.由AB=8列出方程,求得x+y,再进而求得MN;(2)把MN=AM+AN代入CN+2AM﹣2MN中计算便可知道结果;(3)设AN=x,BM=y,则CN=3x,CM=3y,①当C点在B点右边时,不符合题意,会去;②当点C在点A的左边,由AB=CB﹣CA得出y﹣x=14m,进而得MN=3(y﹣x)=34m;③当点C在线段(AB上时,由AB=CB+CA得y+x=14m,进而得MN=3(y+x)=34m,最后总结结论.【解析】解:(1)设AN=x,BM=y,则CN=3x,CM=3y.∵AB=AN+CN+CM+MB=m,∴x+3x+3y+y=m=8,∴x+y=2,MN=NC+CM=3x+3y=3(x+y)=6.(2)CN+2AM﹣2MN的值与m无关.理由如下:如图1,∵CN=3AN,∴CN+2AM﹣2MN=3AN+2AM﹣2(AN+AM)=AN∵AN与m的取值无关,∴CN+2AM﹣2MN的值与m无关;(3)设AN =x ,BM =y ,则CN =3x ,CM =3y ①当C 点在B 点右边时,∵满足CM =3BM ,M 在线段AB 上,如图2此时,M 不是线段BC 上的点,不符合题意,会去; ②当点C 在点A 的左边,如图3,∵AB =CB ﹣CA =(CM +MB )﹣(CN +AN )=m , ∴(3y +y )﹣(x +3x )=m ,∴y ﹣x =14m ,∴MN =CM ﹣CN =3y ﹣3x =3(y ﹣x )=34m ; ③当点C 在线段(AB 上时,如图4,∵AB =CB +CA =(CM +MB )+(CN +AN )=m , ∴(3y +y )+(x +3x )=m ,∴x +y =14m ,∴MN =CM +CN =3y +3x =3(y +x )=34m ;∴MN 长度为34m . 综上,MN 长度为34m .。
专题五 平面向量一、选择题1.(2018年浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b +3=0,则|a −b |的最小值是( )A .B .C .2D .2.(2017年浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记 ,,,则A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3< I 1<I 2D .I 2<I 1<I 3二、填空题3.(2020·浙江高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.4.(2019年浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.5.(2017年浙江卷)已知向量a,b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______。
6.(2016年浙江文)已知平面向量a ,b ,|a|=1,|b|=2,a·b=1.若e 为平面单位向量,则|a·e|+|b·e|的最大值是______.7.(2016年浙江理)已知向量a ,b ,|a | =1,|b |=2,若对任意单位向量e ,均有 |a·e |+|b·e |≤6,则a·b 的最大值是 . 8.(2015年浙江文)已知1e , 2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .9.(2015年浙江理)已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .优质高三试题一、选择题 1.(2020·浙江镇海中学高三3月模拟)已知a ,b ,c 是平面内三个单位向量,若a b ⊥,则232a c a b c +++-的最小值( )A B C D .52.(2020届浙江省温丽联盟高三第一次联考)已知单位向量e ,向量(1,2)i b i =,满足i i e b e b -=⋅,且12xb yb e +=,其中1x y +=,当12||b b -取到最小时,12b b ⋅=( )A .0B .1CD .1-3.(2020届浙江省之江教育评价联盟高三第二次联考)已知C ,D 是以AB 为直径的圆O 上的动点,且4AB =,则AC BD ⋅的最大值是( )A.2 B . C .D .44.(2020届浙江省嘉兴市高三5月模拟)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF ⋅的取值范围为( )A .[1,0]-B .1[1,]4-C .1[,0]2-D .11[,]24- 二.填空题 5.(2020届浙江省高中发展共同体高三上期末)已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________.6.(2020届浙江省宁波市余姚中学高考模拟)设平面向量a ,b 满足12a ≤≤,23b ≤≤,则a b a b ++-的取值范围是________.7.(2020届浙江省宁波市鄞州中学高三下期初)已知平面向量a ,b 满足1a =,42a b a b -⋅=-,则a b +的取值范围是______.8.(2020届浙江省“山水联盟”高三下学期开学)平面中存在三个向量a ,b ,c ,若||4a =,||4b =,且0a b ⋅=,且c 满足22150c a c -⋅+=,则||4||c a b c ++-的最小值______. 9.(2020届浙江省十校联盟高三下学期开学)已知向量a ,b 满足21a b +=,且()1a a b ⋅-=,则a b -的取值范围为______.10.(2020·浙江温州中学3月高考模拟)如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.11.(2020届浙江省台州市温岭中学3月模拟)已知A ,B ,C ,D ,E 为半径为1的圆上相异的5点(没有任何两点重合),这5个点两两相连可得到10条线段,则这10条线段长度平方和的最大值为____________. 12.(2020·浙江学军中学高三3月月考)已知e 为单位向量,平面向量a ,b 满足||||1a e b e +=-=,a b ⋅的取值范围是____.13.(2020·浙江温州中学高三3月月考)已知平面向量a ,b 满足4a =,33b =+,0a b ⋅=.记()(),1f x b xa b x a =++-,则()()11f x f x ++-的最大值为______.14.(2020·浙江省温州市新力量联盟高三上期末)在ABC ∆中,1AC BC ==,3AB =且CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.15.(2020届浙江省绍兴市高三4月一模)已知平面向量,,,a b c d →→→→,满足||||||1a b c →→→===,0a b →→⋅=,||||c d b c →→→→-=⋅,则a d →→⋅的取值范围为______.。
专题1.7 解三角形与平面向量姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间45分钟,试题共20题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题4分,共48分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·内蒙古自治区集宁一中)在ABC ∆中,已知4,1AB AC ==,ABC ∆则•AB AC =( ) A .2± B .4±C .2D .4【答案】A【解析】11sin 42sin 2sin 22ABC S AB AC A A A ∆=⋅=⨯⨯⨯==,所以1sin ,cos 22A A ==±,所以cos 2AB AC AB AC A ⋅=⋅=±,故选A.2.(2020·山东省滕州市第一中学)ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c .设向量(),p a c b =+,(),q b a c a =--.若//p q ,则C 等于().A .6πB .3π C .2π D .23π 【答案】B【解析】因为向量(),p a c b =+,(),q b a c a =--,//p q ,所以()()()0a c c a b b a +---=,整理得:222b ac ab +-=,所以2221cos 222+-===b a c ab C ab ab ,解得3C π=.3.(2020·嘉祥县第一中学)在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ( ) A .12 B .11C .10D .9【答案】A【解析】在ABC 中,()3bcosC a c cosB =-,由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为3sin cos sin cos sin cos A B C B B C =+,即()sin sin B C A +=,在ABC 中,sin 0A ≠,故1cos 3B =,4BC BA ⋅=,可得cos 4ac B =,即12ac =。
4.(2020·山西省平遥中学校)在ABC ∆中,a ,b ,c 分别为三个内角A ,B ,C 所对的边,设向量(),(,)m b c c a n b c a =--=+,,若m n ⊥,则角A 的大小为( )A .6πB .3π C .2π D .23π 【答案】B【解析】因为m n ⊥,所以(0)()()b c c a c a m n b -+-=+=⋅,即2220b bc c a -+-=,所以22221cos ,22b c a bc bc A bc ==+-=因为()0,A π∈,故3A π=。
5.(2020·四川省北大附中成都为明学校高二)ABC 中,角A ,B ,C 的对边分别为,,a b c .若向量(),cos m a A =-,()cos n C c =-,且0m n ⋅=,则角A 的大小为()A .6πB .4π C .3π D .2π 【答案】B【解析】由0m n =得,0(,cos )(cos ,2)cos )cos a A C c a C c A =--=--,由正弦定理得,sin cos cos sin cos 0A C B A C A +=,化为sin()cos 0A C B A +=,即sin cos 0B B A =,由于sin 0B ≠,∴cos A =()0,A π∈,∴4A π=, 6.(2020·浙江省高二期中)已知平面向量AC 在AB 上的投影是1-,1,7AB BC ==,则AC 的值为( )A B .C .1D .2【答案】D【解析】如图所示,设向量AC 和AB 的夹角为θ,因为平面向量AC 在AB 上的投影是1-,可得1AB AC AB⋅=-,即cos AB AC AB AC AB θ⋅=⋅=-,可得cos 1AC θ=-,在ABC ∆中,1,7AB BC ==,由余弦定理可得2222cos BC AB AC AB AC θ=+-,可得271211AC =++⨯⨯,整理得24AC =,解得2AC =.7.(2020·湖南省高二月考)已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,sin 1sin sin b Ca c A B+=++,4AB AC ⋅=,则ABC 的面积为( )A B .2C .D .【答案】C【解析】由已知及正弦定理得1b c a c a b+=++,化简得222b c a bc +-=,∴2221cos 22b c a A bc +-==,[]060A A π∈∴=︒,,∴cos604AB AC bc ⋅=︒=,∴8bc =,∴11sin 822ABC S bc A ==⨯=△8.(2020·四川省三台中学)在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅的值为( ) A .22 B .19C .-19D .-22【答案】D【解析】由余弦定理得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭.9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量(,)m a b =与(cos ,sin )=n A B 平行.若a =b =c =A .1B .2C .D .3【答案】D【解析】由题意知,向量//m n ,所以sin cos 0a B b A -=,由正弦定理可得sin sin sin cos 0A B B A -=,又sin 0B ≠,则sin cos 0A A -=,即tan 1A =,因为0A π<<,所以4A π=,又因为a =b =由余弦定理2222cos a b c bc A =+-,即2222cos 4c π=+-,即2230c c --=,解得3c =(负根舍去),10.(2020·广西壮族自治区南宁三中高二)在ABC 中,设内角A 、B 、C 的对边分别是a 、b 、c ,(cos m A =,(2,sin )n A =-,且5m n +=.则角A 的大小为( )A .3π B .4π C .32π D .43π 【答案】B【解析】()cos sin m n A A +=,所以222(cos sin )m n A A +=+5cos )54sin()4A A A π=+-=+-,54sin()54A π∴+-=,sin()04A π∴-=,又因为(0,)A π∈,故04A π-=,∴4A π=。
11.(2020·嘉祥县第一中学)已知ABC ∆的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =,(2,2)p b a =--,若m p ⊥,边长2c =,角π3C =,则ABC ∆的面积为( ).A .3B .2CD【答案】D【解析】因为m p ⊥,所以()()220a b b a -+-=.由余弦定理可知,()22243a b ab a b ab =+-=+-,即()2340ab ab --=,解方程得:4ab =(1ab =-舍去),所以11sin 4sin 223S ab C π==⨯⨯= 12.(2020·凌海市第三高级中学)在ABC ∆中,角,,A B C 的对边分别为,,a b c .已知向量m =2cos,sin 22A A ⎛⎫ ⎪⎝⎭,n =cos ,2sin 22A A ⎛⎫- ⎪⎝⎭,.1m n ⋅=-,若a =2b =, 则c 的值为( )A .1B .2C .3D .4【答案】C【解析】∵m =2cos,sin 22A A ⎛⎫ ⎪⎝⎭,n =cos ,2sin 22A A ⎛⎫- ⎪⎝⎭,·1m n =-,∴222cos 2sin 122A A -=-.∴1cos 2A =-. 又0A π<<, ∴23A π=. ∵a =2b =,由正弦定理得sin sin a b A B =,2sin sin3B =,∴1sin 2B =. ∵0,B B A π<<<,∴6B π=. ∴6C A B ππ=--=. ∴2c b ==.二、填空题(本大题共4小题,每小题4分,共16分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·广西壮族自治区南宁三中高二)在ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,已知(sin sin ,sin sin )=--m B C C A ,(sin sin ,sin )=+n B C A ,且m n ⊥,角B =________.【答案】3π 【解析】∵(sin sin ,sin sin )=--m B C C A ,(sin sin ,sin )=+n B C A ,且m n ⊥, ∴(sin sin )(sin sin )(sin sin )sin 0-⋅++-⋅=B C B C C A A ,∴222b a c ac =+-,∴2221cos 222a cb ac B ac ac +-===,∴由(0,)B π∈,可得3B π=.14.(2020·江西省奉新县第一中学)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos2A =,3AB AC ⋅=,则ABC ∆的面积为_______;【答案】2【解析】因为cos2A =,所以23cos 2cos 125A A =-=,又0A π<<,所以4sin 5A =, 由3AB AC ⋅=,得cos 3bc A =,所以5bc =,故ABC ∆的面积1sin 22ABC S bc A ∆==。
15.(2020·安徽省潜山第二中学高二)在△ABC 中,3AB =,2AC =,BC =则AB AC ⋅=________ 【答案】32【解析】在△ABC 中,3AB =,2AC =,BC =222cos 2AC AB BCCAB AC AB+-∠=⨯2222312234+-==⨯⨯,由向量数量积为cos AB AC AB AC CAB ⋅=⋅∠133242=⨯⨯=.16.(2020·衡水中学实验学校)已知O 为ABC ∆的外心,且3A π=,cos cos 2sin sin B CAB AC mAO CB +=,则实数m =_____【解析】两边同点乘向量AB →,可得,2cos cos 2sin sin B C AB AC AB m AO AB C B+⋅=⋅⋅, 所以2cos cos cos 2sin sin B C c b c A m AO AB C B +⋅=⋅⋅,由向量投影得22=22AB c AO AB ⋅=, 所以22cos cos cos sin sin B C c b c A m c C B +⋅=⋅,cos cos cos sin sin B Cc b A m c C B+=⋅,由正弦定理知cos cos cos sin B C A m C +=,cos cos cos cos()cos cos sin sin sin sin sin sin B C A A C C A A C m A C C C π+--+⇒=====。