高考数学二轮复习 9 三角变换、平面向量与解三角形课件 文
- 格式:ppt
- 大小:2.10 MB
- 文档页数:40
专题限时集训(十) 三角恒等变换与解三角形(建议用时:45分钟)1.已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎪⎫α+π4=________. -17 [由α∈⎝ ⎛⎭⎪⎫-π2,0知,sin α<0,所以sin α=-1-cos 2α=-45,tan α=sin αcos α=-43, 所以tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=-17.]2.已知sin ⎝ ⎛⎭⎪⎫x +π4=35,sin ⎝ ⎛⎭⎪⎫x -π4=45,则tan x =________.-7 [由sin ⎝ ⎛⎭⎪⎫x +π4=35,sin ⎝⎛⎭⎪⎫x -π4=45得sin x +cos x =325,sin x -cos x =425,从而sin x =7210,cos x =-210,所以tan x =sin xcos x =-7.]3.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=________.34 [∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2θ∈⎣⎢⎡⎦⎥⎤π2,π,故cos 2θ≤0,∴cos 2θ=-1-sin 22θ=-1-⎝⎛⎭⎪⎫3782=-18. 又cos 2θ=1-2sin 2θ,∴sin 2θ=1-cos 2θ2=1-⎝ ⎛⎭⎪⎫-182=916,∴sin θ=34.]4.在△ABC 中,BC =3,AC =2,A =π3,则B =________.π4 [由正弦定理可得,BC sin A =AC sin B ,即3sinπ3=2sin B ,解得sin B =22,因为B +C =π-A =2π3,所以0<B <2π3,则B =π4.] 5.若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=________. -78 [cos ⎝ ⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3-α=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫π3-α=-⎝⎛⎭⎪⎫1-2×116=-78.]6.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.-142 [sin α=12+cos α,即sin α-cos α=12,两边平方得,sin 2α=34>22,而α∈⎝⎛⎭⎪⎫0,π2,所以cos 2α=-1-sin 22α=-1-⎝ ⎛⎭⎪⎫342=-74,所以cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=cos 2α22sin α-cos α=-7422×12=-142.]7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积等于________.332[∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332.]8.(2016·无锡期末)已知sin(α-45°)=-210且0°<α<90°,则cos 2α的值为________.725[∵0°<α<90°, ∴-45°<α-45°<45°.∴cos(α-45°)=1-sin2α-45°=7210, ∴cos 2α=sin(90°-2α)=2sin(45°-α)cos(45°-α)=725.]9.(2016·苏州期中)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若tan A =2tanB ,a 2-b 2=13c ,则c =________.1 [∵tan A =2tan B ,∴sin A cos A =2sin Bcos B ,∴sin A cos B =2cos A sin B ,∴a ·a 2+c 2-b 22ac =2b ·b 2+c 2-a 22bc,整理得3a 2-3b 2=c 2. 又a 2-b 2=13c ,故c =c 2,解得c =1或0(舍去).]10.在△ABC 中,若sin(A -B )=1+2cos(B +C )sin(A +C ),则△ABC 的形状一定是________三角形.直角 [因为sin(A -B )=1+2cos(B +C )sin(A +C )=1-2cos A sin B ,又sin(A -B )=sin A cos B -cos A sin B =1-2cos A sin B ,所以sin A cos B +cos A sin B =1,即sin(A +B )=1,所以A +B =π2,故三角形为直角三角形.]11.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,则β=________.π3 [因为0<β<α<π2,所以0<α-β<π2,又因为cos α=17,cos(α-β)=1314,所以sin α=437,sin(α-β)=3314,所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32,所以β=π3.]12.在△ABC 中,角A ,B ,C 的对应边分别为a ,b ,c ,满足ba +c +ca +b≥1,则角A的范围是________.⎝ ⎛⎦⎥⎤0,π3 [由b a +c +c a +b ≥1,得b (a +b )+c (a +c )≥(a +c )(a +b ),化简得b 2+c 2-a 2≥bc ,即b 2+c 2-a 22bc ≥12,即cos A ≥12(0<A <π),所以0<A ≤π3.]13.(2016·济南模拟)在锐角三角形ABC 中,若C =2B ,则AB AC的范围是________.【导学号:19592031】(2,3) [设△ABC 三内角A ,B ,C 所对的边长分别为a ,b ,c ,则有AB AC =c b =sin Csin B=sin 2B sin B=2cos B . 又∵C =2B <π2,∴B <π4.又A =π-(B +C )=π-3B <π2,∴B >π6,即π6<B <π4,∴22<cos B <32,2<2cos B < 3.] 14.(2016·保定模拟)已知△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且tan B =2-3a 2-b 2+c 2,BC →·BA →=12,则tan B =________. 2-3 [由题意得,BC →·BA →=|BC →|·|BA →|cos B =ac cos B =12,即cos B =12ac,由余弦定理,得cos B =a 2+c 2-b 22ac =12ac⇒a 2+c 2-b 2=1,所以tan B =2-3a 2-b 2+c 2=2- 3.]15.(2016·盐城三模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 为锐角三角形,且满足b 2-a 2=ac ,则1tan A -1tan B的取值范围是________.⎝⎛⎭⎪⎫1,233 [∵b 2-a 2=ac ,∴b 2=a 2+ac .又b 2=a 2+c 2-2ac cos B , ∴a 2+ac =a 2+c 2-2ac cos B , ∴c =2a cos B +a ,∴sin C =2sin A cos B +sin A , ∴sin(A +B )=2sin A cos B +sin A , ∴sin(B -A )=sin A , ∵△ABC 为锐角三角形, ∴B -A =A ,即B =2A .由⎩⎪⎨⎪⎧0<A <π2,0<B <π2,0<C <π2,可得π6<A <π4,π3<B <π2.∴1tan A -1tan B =cos A sin A -cos Bsin B=sin B -A sin A sin B=sin A sin A sin B =1sin B ∈⎝ ⎛⎭⎪⎫1,233.]16.(2016·江苏高考)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tanC 的最小值是________.8 [在锐角三角形ABC 中,∵sin A =2sin B sin C , ∴sin(B +C )=2sin B sin C ,∴sin B cos C +cos B sin C =2sin B sin C ,等号两边同除以cos B cos C ,得tanB +tanC =2tan B tan C .∴tan A =tan[π-(B +C )]=-tan(B +C )=tan B +tan C tan B tan C -1=2tan B tan C tan B tan C -1.①∵A ,B ,C 均为锐角,∴tan B tan C -1>0,∴tan B tan C >1, 由①得tan B tan C =tan Atan A -2.又由tan B tan C >1得tan Atan A -2>1,∴tan A >2.∴tan A tan B tan C =tan 2Atan A -2=tan A -22+4tan A -2+4tan A -2=(tan A -2)+4tan A -2+4≥24+4=8,当且仅当tan A -2=4tan A -2,即tan A=4时取得等号.故tan A tan B tan C 的最小值为8.]。