四年级奥数之数数图形一
- 格式:doc
- 大小:75.00 KB
- 文档页数:6
四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。
练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。
组合图形的面积教学目标:①知识与技能目标:采用辅助线等方法正确求出组合图形面积②过程与方法目标:采用割、补、分解、代换等方法,将复杂问题简单化③情感态度与价值观目标:让学生经历实际生活中就会遇到的问题,激发他们的兴趣教学重点:采用辅助线等方法正确求出组合图形面积教学难点:采用割、补、分解、代换等方法,将复杂问题简单化[知识引领与方法]1.切实掌握有关简单图形的概念、公式,牢固建立空间概念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4.采用割、补、分解、代换等方法,将复杂问题简单化。
组合图形面积(一)[例题精选及训练]【例1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习:1.求四边形ABCD的面积。
(单位:厘米)2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3.有一个梯形,它的上底是5厘米,下底是7厘米,如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
【例2】右下图所示的正方形中套着一个长方形,正方形的边长是12厘米,长方形四个角的顶点把四个角的顶点把正方形的四边各分成两段,其中长的一段是短的一段的2倍。
求中间长方形的面积。
练习:1.如下图所示,已知大正方形的边长是12厘米,求中间最小正方形的面积。
2.下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点。
求三角形AEF的面积。
3.求下图长方形ABCD的面积。
(单位:厘米)【例3】图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)练习:1.计算下面图形的面积。
(单位:厘米)2.求图中阴影部分的面积。
(单位:厘米)【例4】右下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习:1.如图所示,正方形ABCD中,AB=4厘米,EC=10厘米。
求阴影部分的面积。
2.如下图所示,在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形面积是多少?(提示:连接DB)(单位:厘米)3.如图所示,BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
图形的计数(四年级奥数秋季思维训练教程)教学内容:第二讲图形的计数(四年级秋季思维训练教程)课时:第一、二课时课型:新授课教学目的:知识与技能理解并掌握数线段的两种方法:基本线段法、定端点法。
学会灵活地将数图形(三角形、正方形、长方形等)问题转化为数线段问题。
过程与方法通过引导学生复习旧知,鼓励学生总结归纳数线段的基本方法,培养学生的观察能力、抽象概括能力,增强学生探究问题的本领。
在观察、分析图形的过程中,要逐步培养学生掌握从特殊到一般的研究问题的方法。
情感态度与价值观在观察、总结归纳数线段的基本方法的过程中,体会探索新知的乐趣,养成善于思考,勇于探索,乐于交流的习惯。
在数图形个数时,要求按一定的顺序去做,做到不遗漏,不重复,提高学生的逻辑思维能力,养成严密的数学思维习惯。
教学重、难点:重点:通过观察、分析复杂图形并数出其中基本图形的个数的过程中,促进学生掌握类比转化的方法,培养学生分析和解决问题的能力。
难点:如何将复杂图形的计数问题转化为线段的计数问题教具、学具准备:教学过程:复习旧知,凝疑导入同学们,看看我左手上是什么?(粉笔)数数有几只?(三只)。
再看看老师右手上拿了什么?(纸)瞅瞅它们共有几张呢?我们两三岁时家人就开始教我们数数了,所以刚刚那两个问题对同学们来说都是小菜一碟,有没有?但是,不知,同学们还是否记得我们之前学过一种稍微复杂一点的数数问题---数线段。
下面我们来简单地复习一下:问题一:数一数下面图形中共有多少条线段?(10条)线段:有两个端点的直线组成的图形要求:不遗漏不重复展示与总结:定端点法:4+3+2+1=10(条)基本线段法:有4条基本线段由两条基本线段组成的线段:3条由三条基本线段组成的线段:2条由四条基本线段组成的线段:1条共有4+3+2+1=10(条)这道题有没有唤起同学们对以前学过知识的记忆呢?同学们应该都知道,学习是一个连续且不断发展的过程,随着我们年龄和年级的不断增加,我们会对同一个大问题进行更深入的研究,所以,理所当然,数数问题也需要我们对它进行更深一步的探究。
几何计数知识结构一、公式计算法几何计数内容很广,包括数线段的条数,角的个数,长方形、正方形、三角形、平行四边形、梯形等图形的个数,也包括数立体图形的个数。
图形的计数一般有两种思考方法:公式计算法和分类计数法。
三年级学习的线段、长方形和正方形的计数就属于公式计算法。
(1)一条线段有两个端点,若这条线段上有n个点,那么线段总数是(n-1)+(n+2)+…+3+2+1(2)如果一个长方形的长边上有n个小格,宽边上有m个小格,那么长方形的总数是(1+2+3+…+n)×(1+2+…+m)(3)如果把正方形各边都n等分,那么正方形的总数是n2+(n-1)2+(n-2)2+…+32+22+12上面计算线数的方法也可用于计算角的个数,而且,根据这些计数方法在以后还可以类推出立体图形的计算方法。
二、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.重难点(1)分类数图形。
(2)对应法数图形。
例题精讲一、分类数图形【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小棍?【巩固】如图所示,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【例 2】图中有______个正方形.【巩固】数一数:图中共有________ 个正方形。
【例 3】 右图中三角形共有 个.【巩固】 数一数图中有_______个三角形.【例 4】 图中共有多少个三角形?CB A【巩固】 下图是由边长为1的小三角形拼成,其中边长为4的三角形有_____个。
【例 5】 如图,每个小正方形的面积都是l 平方厘米。
则在此图中最多可以画出__________个面积是4平方厘米的格点正方形(顶点都在图中交叉点上的正方形)。
四年级奥数:数列与数表经过观察与归纳找出数与图的规律。
观察是寻找规律不可少的手段,是发现本质、归纳规律的先导,有些问题解答不出来,究其原因,与其说是“想不出”,不如说是“看不出”。
在寻找规律的过程中,必须要高度重视对数、形、式等现象的观察,善于抓住问题的本质特征进行归纳,从而得出规律。
只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案。
同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多。
名师点题例1知识概述1、数列:主要包括⑴递增数列(等差数列,等比数列),等差数列为重点考察对象。
⑵周期数列;例如:1,2,4,7,1,2,4,7,1,2,4,7,…⑶复合数列;例如:1,3,2,6,3,9,4,12,5,15…⑷特殊数列;例如:斐波那契数列1,1,2,3,5,8,13,21…2、等差数列通用公式:通项公式:第n项=首项 +(项数– 1)×公差项数公式:项数=(末项–首项)÷公差 + 1求和公式:总和=(首项+末项)×项数÷23、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
4、数表规律给出几个具体的、特殊的图形,要求找出其中的变化规律,从而猜想出一般性的结论。
具体方法和步骤是:⑴通过对几个特例的分析,寻找规律并且归纳;⑵猜想符合规律的一般性结论;⑶验证或证明结论是否正确。
在杯赛考试中主要将图形规律与等差数列结合到一起来考察。
(1)在数列3、6、9……,201中共有多少数? (2)在数列3、6、9……,201和是多少? (3)如果继续写下去,第201个数是多少? 【解析】(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式: 项数=(末项-首项)÷公差+1,便可求出。
第一讲巧数图形小朋友们,我们数学课上学习了四边形,你还记得他们的特点吗?你们是不是做过下面的这种题:图中共有()个平行四边形这属于我们奥数里边的一个专题:巧数图形,你能快速的数出来吗?有没有什么巧妙的方法呢?现在让我们一起看一下吧。
一、数线段例1 数出右图中共有多少条线段。
方法一:找规律数线段。
共有3+2+1=6(条) 。
方法二:分类数线段。
共有3+2+1=6(条) 。
例2.数出右侧图中共有多少条线段?解析:线段有一个重要特点:线段都是笔直的.因此我们在数的时候,必定将这幅图分成四个部分,每一部分分别采用以线段左端点分类数的方法,尔后把四部分算得结果加起来.第一部分从A到E共有4+3+2+1=10 条线段.第二部分从G到J 共有4+3+2+1=10 条线段.第三部分是FG一条线段.第四部分是JK 一条线段.10 +10+1+1=22(条)例3.一条线段上共有10 个点,以这10 个点为端点的不相同线段共有多少条?解析:一条线段上有10 个点,那么我们先把线段画出来因此,共有线段:9+8+⋯+3+2+1=(9 +1)×9÷2=45(条)总结:1、找规律数线段:一般地,若是线段上有几个点(其中n是大于或等于2的自然数),那么以这n个点为端点的线段共有:(n-1)+(n-2)+⋯+3+2+1=n×(n-1)÷2;2、分类数线段练习:以下列图形中各有多少条线段?(3)二、数角例4.右侧图形中有几个角?解析方法和数线段相同练习()个角()个角三、数三角形例5.数出下面图中共有多少个三角形?方法一数三角形个数的方法与数线段的方法差不多.方法二我们能够发现,能够抓住底边BC来考虑,底边BC中所包含的每一条线段都恰好对应一个三角形.底边左端点是B的三角形共有△BDA、△BEA、△BCA三个.底边左端点是D的三角形共有△DEA、△DCA两个.底边左端点是E的三角形只有△ECA一个.因此一共有三角形:3+2+1=6(个) .方法三我们把图中△ABC、△ACD、△ADE看作基本三角形:由1 个基本三角形组成的三角形有△ABC、△ACD、△ADE;由2 个基本三角形组成的三角形有△ABD、△ACE;由3 个基本三角形组成的三角形有△ABE。
{;找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化; ⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一 数量规律【例 1】 。
【例 2】 观察图形的变化,想一想,按图形的变化规律,在带“”的空格处应画什么样的图形【解析】 横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、、1的顺序变化的,显然“”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“”的空格处应画什么样的图形?*【解析】 (方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、、1的顺序变化的,显然“”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、、2、1的顺序变化,也可以看出 “”处应是三角形△.【例 3】 观察下面的图形,按规律在“”处填上适当的图形.(5)(4)(3)(2)(1)?'图形找规律【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 4】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
,【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 5】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】*【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:板块二旋转、轮换型规律【例 6】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗○□☆△○□☆△△○□☆△○□☆"☆△○□☆△○□()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是:□☆△○□☆△○~【例 7】观察下图的变化规律,画出丙图.DB A丙乙甲CBA【解析】@ACD【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 8】 下面各种各样的娃娃头好看吗认真观察你能找到它们排列的规律吗根据规律把最后一个画出来.【解析】 }【解析】【例 9】 观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【解析】 —【解析】【例 10】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗图19 876 543 21图2B CA【解析】从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C;8号位置放图案B;9号位置放图案A.【例 11】观察下列各组图的变化规律,并在“”处画出相关的图形.…(1)丁丙乙甲?【解析】(1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:丁【例 12】~【例 13】请你认真仔细观察,按照下面图形的变化规律,在“”处画出合适的图形。
四年级数学奥数培优练习第11讲:四边形中的基本图形(一)通用版(含答案)x一.夯实基础:1.在平行四边形ABCD 中, E 为BC 上的任意点,且S AED =10 ,求平行四边形的面积是多少?2.在平行四边形ABCD 中, E 为BC 上的任意点,且S AEB +S CED =15 ,求平行四边形的面积是多少?BD C3.在平行四边形中,阴影部分的面积和是12,求平行四边形的面积是多少?1 / 10平方厘米,小正方形的面积为9 平方厘米,求图中一个长方形的面积是多少?4.如图,ABFE 和CDEF 都是长方形,AB 的长是4 厘米,BC 的长是3 厘米.那么图中阴影部分的面积是多少?5.如图,小、中、大三个正方形从左到右依次紧挨着摆放,边长分别是3、7、9。
图中两个阴影平行四边形的面积分别是多少?2 / 106.如图是一块长方形草坪,中间有两条道路,路宽是2 米,求有草部分的面积.二.拓展提高:7.如图,矩形DEFG 的宽DE = 4 厘米,长DG = 4DE , 则正方形ABCD 的边长是多少厘米?3 / 108.如图是一块正方形草坪,中间有三条道路,路宽是2 米,求有草部分的面积.9.如图,在平行四边形ABCD 中,三角形BCE 的面积是42 平方厘米,BC 的长度为14 厘米,AE 的长度为9 厘米,那么平行四边形ABCD 的面积是多少平方厘米?三角形ECD 的面积又是多少平方厘米?4 / 1010.四年级数学奥数培优练习第11讲:四边形中的基本图形(一)通用版(含答案)xA BD E C11.如图,正方形被分成9个小长方形,其中5 个小长方形的面积如图所示,求其它4 个小长方形的面积.12.如图,校园中间有个正方形花坛,花坛的四周铺了1 米宽的水泥路。
如果水泥路的总面积是24 平方米,那么花坛的面积是多少平方米?5 / 1013.如图,正方形ABCD 的边长是4 厘米,矩形DEFG 的长DG = 5 厘米,求它的宽DE = ?EA DFB G C14.如图, ABCD 是一个长方形, E 点在CD 延长线上.已知AB = 5 ,BC =12 ,且三角形AFE 的面积等于20,那么三角形CFE 的面积等于多少?EA DB C15.如图,边长为10 的正方形中有一等宽的十字,其面积(阴影部分)为36 ,则十字中央的小正方形面积为.6 / 1019.(迎春杯)右图中平行四边形的面积是1080m2,则平行四边形的周长为m。
四年级奥数:一笔画问题小朋友们,你们能把下面的图形一笔画出来吗?如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画.那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律.典型例题例【1】下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2)(3)(4)分析图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束.经过尝试后,可以发现图(2)不能一笔画出.图(3)不是连通的,显然也不能一笔画出.图(4)也可以一笔画出,且从任何一点出发都可以.通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同.由一点发出有偶数条线,那么这个点叫做偶点.相应的,由一点出发有奇数条数,则这个点叫做奇点.再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起.而图(2)有4个奇点,2个偶点,不能一笔画成.这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题.例【2】下面各图能否一笔画成?(1)(2)(3)分析图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点.关于图(2),经过反复试验,也可找到画法:由A B C AD C.图中B、D为偶点,A、C为奇点,即图中有两个奇点,两个偶点.要想一笔画,需从奇点出发,回到奇点.经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点.解图(1)、(2这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系.如果图形只有偶点,可以以任意一点为起点,一笔画出.如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束.如果图形的奇点个数超过两个,则图形不能一笔画出.例【3】 下面的图形,哪些能一笔画出?哪些不能一笔画出?分析 图(1)有两个奇点,两个偶点,可以一笔画,须由A 开始或由B 开始到B 结束或到A 结束.图(2)有10个奇点,大于2,不能一笔画成.图(3)有4个奇点,1个偶点,因此也不能一笔画成.解 图(1)的画法见下图.例【4】 下图中,图(1)至少要画几笔才能画成?分析 图(1)有4个奇点,所以不能一笔画出.如果把它分成几个部分,而每个部分是一笔画图形,则我们就可以用最少的几笔画出这个图形.按照这样的要D (1)求,每个部分最多含有两个奇点,可以采用再两个奇点之间增加一条或者去掉一条线的方法,该奇点就变成偶点.经观察,图(1)可以切分成图(A )、(B )两个图形.这两部分都可以一笔画出,所以图(1)至少用两笔画出.解 将图(1)分成图(A )、(B ),则图(A )可由A-B-O-D-A-C-D 一笔画成,图(B )由B-C 一笔画成,所以图(1)至少要两笔画完.小结 能否一笔画成,关键在于判别奇点、偶点的个数.一、 只有偶点,可以一笔画,并且可以以任意一点作为起点.二、 只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点.三、 奇点超过两个,则不能一笔画.对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答.D (1) A O B C D(A ) B C (B )。
巧数图形 分析与解:我们可以按照线段的左端点的位置分为A,B,C三类。如下图所示,以A为左端点的线段有3条,以B为左端点的线段有2条,以C为左端点的线段有1条。所以共有3+2+1=6(条)。 我们也可以按照一条线段是由几条小线段构成的来分类。如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有3条,由两条小线段构成的线段有2条,由三条小线段构成的线段有1条。 由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。 例2 下列各图形中,三角形的个数各是多少? 分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段的两个端点为顶点的三角形),所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。由前面数线段的方法知, 图(1)中有三角形1+2=3(个)。 图(2)中有三角形1+2+3=6(个)。 图(3)中有三角形1+2+3+4=10(个)。 图(4)中有三角形1+2+3+4+5=15(个)。 图(5)中有三角形 1+2+3+4+5+6=21(个)。 例3下列图形中各有多少个三角形? 分析与解:(1)只需分别求出以AB,ED为底边的三角形中各有多少个三角形。 以AB为底边的三角形ABC中,有三角形 1+2+3=6(个)。 以ED为底边的三角形CDE中,有三角形 1+2+3=6(个)。 所以共有三角形6+6=12(个)。 这是以底边为标准来分类计算的方法。它的好处是可以借助“求底边线段数”而得出三角形的个数。我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。 由1个小块组成的三角形有3个; 由2个小块组成的三角形有5个; 由3个小块组成的三角形有1个; 由4个小块组成的三角形有2个; 由6个小块组成的三角形有1个。 所以,共有三角形 3+5+1+2+1=12(个)。 (2)如果以底边来分类计算,各种情况较复杂,因此我们采用以“小块个数”为分类标准来计算: 由1个小块组成的三角形有4个; 由2个小块组成的三角形有6个; 由3个小块组成的三角形有2个; 由4个小块组成的三角形有2个; 由6个小块组成的三角形有1个。 所以,共有三角形 4+6+2+2+1=15(个)。 例4右图中有多少个三角形? 解:假设每一个最小三角 形的边长为1。按边的长度来分 类计算三角形的个数。 边长为1的三角形,从上到下一层一层地数,有 1+3+5+7=16(个); 边长为2的三角形(注意,有一个尖朝下的三角形)有1+2+3+1=7(个); 边长为3的三角形有1+2=3(个); 边长为4的三角形有1个。 所以,共有三角形 16+7+3+1=27(个)。 例5数出下页左上图中锐角的个数。 分析与解:在图中加一条虚线,如下页右上图。容 易发现,所要数的每个角都对应一个三角形(这个角与它所截的虚线段构成的三角形),这就回到例2,从而回到例1的问题,即所求锐角的个数,就等于从O点引出的6条射线将虚线截得的线段的条数。虚线上线段的条数有 1+2+3+4+5=15(条)。 所以图中共有15个锐角。 例6在下图中,包含“*”号的长方形和正方形共有多少个? 解:按包含的小块分类计数。 包含1小块的有1个;包含2小块的有4个; 包含3小块的有4个;包含4小块的有7个; 包含5小块的有2个;包含6小块的有6个; 包含8小块的有4个;包含9小块的有3个; 包含10小块的有2个;包含12小块的有4个; 包含15小块的有2个。 所以共有 1+4+4+7+2+6+4+3+2+4+2=39(个)。 ?练习
数数图形
1 .数一数下图中有多少个长方形?
2 .数一数,下面各图中分别有几个长方形?
3 .数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)
4 .数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)
5 .数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)
6.数一数下列各图中分别有多少个正方形。
7 .下图中有多少个长方形,其中有多少个是正方形?
8 .从广州到北京的某次快车中途要停靠8个大站,铁路局
要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?
9 .从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?
10 .从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?
11 .从成都到南京的快车,中途要停靠9个站,有几种不
同的票价?
12 .求下列图中线段长度的总和。
(单位:厘米)
13 .一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?
14 .求下图中所有线段的总和。
(单位:米)
15 .求下图中所有线段的总和。
(单位:厘米)。