当前位置:文档之家› 弧垂检测法、弧垂检测法(计算公式)

弧垂检测法、弧垂检测法(计算公式)

弧垂检测法、弧垂检测法(计算公式)
弧垂检测法、弧垂检测法(计算公式)

导线应力弧垂计算

导线应力弧垂计算一、确定相关参数 表一Ⅲ气象区条件 表二LGJ-300/50型导线参数 二、相关比载计算

1. 自重比载 )/(1006.341036 .34880665 .912100 ,0331m Mpa A qg --?=??==)(γ 2. 冰重比载 )/(1060.111036 .348) 26.245(5728.2710)(728.270 ,53332m Mpa A b d b ---?=?+??=?+=)(γ3.垂直总比载 )/(1066.45050,00,53213m Mpa -?=+=), ()()(γγγ 4.无冰风压比载 5.62 6.1106.12 2=== V W V (Pa) 63.3906 .1256.12 2===V W V (Pa) 1)外过电压、安装有风: 33241036 .3485 .6226.241.185.00.110sin 10 ,0--?????=?=θμαβγA W d v sc f c )( =4.103 -10?(Mpa/m ) 2)最大设计风速: 计算强度: 33241036 .34863.39026.241.185.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =25.433-10?(Mpa/m ) 低于500kv 的线路c β取1.0,计算强度时f α按表取0.85,当d ≥17mm 时sc μ取

1.1. 计算风偏: 33241036 .34863 .39026.241.175.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =22.443 -10?(Mpa/m ) 计算风偏时f α取0.75 3)内过电压: 625.1406 .1156.12 2=== V W V (Pa) 33241036 .348625 .14026.241.185.00.110sin 15 ,0--?????=?=θμαβγA W d v sc f c )( =9.163 -10?(Mpa/m ) 5. 覆冰风压比载 5.626 .1106.12 2=== V W V 32510sin )2(10 ,5-?+=θμαβγA W b d B v sc f c )( 3-1036 .3485 .621026.241.12.10.10.1??+????=)( )(m Mpa /1011.83 -?= 6. 无冰综合比载 外过电压、安装有风: )/(1031.341010.406.3410 ,00,025,033-222 4216m Mpa -?=?+=+=)()()(γγγ 最大设计风速(计算强度): )/(1051.421043.2506.3425 ,00,025,033-2224216m Mpa -?=?+=+=)()()(γγγ 最大设计风速(计算风偏):

新版弧垂观测方法课件.doc

弛度观测档的选择原则: 1.1 紧线段在 5 档及以下时靠近中间选择一档; 1.2 紧线段在6~12 档时靠近两端各选择一档; 1.3 紧线段在12 档以上时靠近两端及中间各选择一档 1.4 弛度观测档的选择尽可能做到:档距大,相邻两杆塔的高差小,导线排列方式尽量一致,紧临耐张杆塔的两侧不宜选为观测档。 1.5 选择弛度观测档时,若地形特 殊应适当增加观测档数目。 一、输电线路弧垂测量 1、测量方法: (1)异长法――运行线路的弧垂测量常用此法。见图1-4 。 图1-4 异长法观测弧垂示意图 方法: 自观测档的架空线悬挂点 A 处选一合适点使视线与导线相切,分别量取此点及视线在另一杆塔上的交 点与导线两悬挂点的垂直距离,得AA 0=a 和BB0=b。然后由公式 a b 2 f 得观测档弧垂f。 其适用于观测档内两杆塔不等高,且弧垂最低点不低于两杆塔根部连线的情况。 (2)角度法:――用经纬仪测。 原理:异长法。 适用:用异长法无法测量的山区、沟壑地段。 方法: 按仪器设置的不同分为:档端角度法、档外角度法、平视法和档侧角度法。 ①档端角度法――经纬仪仪镜中心置于一侧杆塔下方。见图1-5

图1-5 档端角度法 高差时: h0 2 1 f a a lt g h 4 或按下式计算: b =arctan(tan) l 2 b(2f a) 高差时: h0 2 1 f a a ltg 4 式中a-仪器中心至点A的垂直距离; f-为观测气温下计算出的档距中点弧垂,m; -仪器视线与导线相切的垂直角,即观测角; l-为被测档档距,m; h-两杆塔的高差,m。 ②档外角度法――经纬仪仪镜中心置于一侧杆塔外侧。如图1-6。 图1-6 档外角度法

架空线常用计算公式和应用举例

架空线常用计算公式和应用举例 前言 在基层电力部门从事输电线路专业工作的技术人员,需要掌握导线的基本的计算方法。这些方法可以从教材或手册中找到。但是,教材一般从原理开始叙述,用于实际计算的公式夹在大量的文字和推导公式中,手册的计算实例较少,给应用带来一些不便。本书根据个人在实际工作中的经验,摘取了一些常用公式,并主要应用Excel工作表编制了一些例子,以供相关人员参考。 本书的基本内容主要取材于参考文献,部分取材于网络。所用参考文献如下: 1. GB50545 -2010《110~750kV架空输电线路设计规程》。 2. GB50061-97 《66kV及以下架空电力线路设计规范》。 3. DL/T5220-2005 《10kV及以下架空配电线路设计技术规程》。 4. 邵天晓著,架空送电线路的电线力学计算,中国电力出版社,2003。 5. 刘增良、杨泽江主编,输配电线路设计, 中国水利水电出版社,2004。 6.李瑞祥编,高压输电线路设计基础,水利电力出版社,1994。 7.电机工程手册编辑委员会,电机工程手册,机械工业出版社,1982。 8.张殿生主编,电力工程高压送电线路设计手册,中国电力出版社,2003。 9.浙西电力技工学校主编,输电线路设计基础,水利电力出版社,1988。 10.建筑电气设计手册编写组,建筑电气设计手册,中国建筑工业出版社,1998。 11.许建安主编,35-110kV输电线路设计,中国水利水电出版社,2003。 由于个人水平所限,书中难免出现错误,请识者不吝指正。 四川安岳供电公司 李荣久2015-9-16 目录 第一章电力线路的导线和设计气象条件 第一节导线和地线的型式和截面的选择 一、导线型式 二、导线截面选择与校验的方法 三、地线的选择 第二节架空电力线路的设计气象条件 一、设计气象条件的选用 二、气象条件的换算 第二章导线(地线)张力(应力)弧垂计算 第一节导线和地线的机械物理特性与单位荷载 一、导线的机械物理特性 二、导线的单位荷载

导线应力弧垂计算

导线应力弧垂计算 一、确定相关参数 表二 LGJ-300/50型导线参数 二、相关比载计算 1. 自重比载 )/(1006.341036 .34880665 .912100 ,0331m Mpa A qg --?=??==)(γ 2. 冰重比载 )/(1060.111036 .348) 26.245(5728.2710)(728.270 ,53332m Mpa A b d b ---?=?+??=?+=)(γ3.垂直总比载 )/(1066.45050,00,53213m Mpa -?=+=), ()()(γγγ 4.无冰风压比载 5.626 .1106.12 2=== V W V (Pa)

63.3906 .1256.12 2===V W V (Pa) 1)外过电压、安装有风: 33241036 .3485 .6226.241.185.00.110sin 10 ,0--?????=?=θμαβγA W d v sc f c )( =4.103 -10?(Mpa/m ) 2)最大设计风速: 计算强度: 33241036 .34863 .39026.241.185.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =25.433-10?(Mpa/m ) 低于500kv 的线路c β取1.0,计算强度时f α按表取0.85,当d ≥17mm 时sc μ取1.1. 计算风偏: 33241036 .34863.39026.241.175.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =22.443 -10?(Mpa/m ) 计算风偏时f α取0.75 3)内过电压: 625.1406 .1156.12 2=== V W V (Pa) 33241036 .348625 .14026.241.185.00.110sin 15 ,0--?????=?=θμαβγA W d v sc f c )( =9.163 -10?(Mpa/m ) 5. 覆冰风压比载 5.626 .1106.12 2=== V W V 32510sin )2(10 ,5-?+=θμαβγA W b d B v sc f c )( 3-1036 .3485 .621026.241.12.10.10.1??+? ???=)( )(m Mpa /1011.83 -?=

弧垂观测方法

弛度观测档得选择原则: 1、1紧线段在5档及以下时靠近中间选择一档; 1、2紧线段在6~12档时靠近两端各选择一档;1、3紧线段在12档以上时靠近两端及中间各选择一档1、4弛度观测档得选择尽可能做到:档距大,相邻两杆塔得高差小,导线排列方式尽量一致,紧临耐张杆塔得两侧不宜选为观测档。1、5 选择弛度观测档时,若地形特殊应适当增加观测档数目。 一、输电线路弧垂测量 1、测量方法: (1)异长法――运行线路得弧垂测量常用此法。见图1-4。 图1-4 异长法观测弧垂示意图 方法: 自观测档得架空线悬挂点A处选一合适点使视线与导线相切,分别量取此点及视线在另一杆塔上得交点与导线两悬挂点得垂直距离,得AA0=a与BB0=b。然后由公式 得观测档弧垂f。 其适用于观测档内两杆塔不等高,且弧垂最低点不低于两杆塔根部连线得情况。 (2)角度法:――用经纬仪测。 原理:异长法. 适用:用异长法无法测量得山区、沟壑地段。 方法: 按仪器设置得不同分为:档端角度法、档外角度法、平视法与档侧角度法. ①档端角度法――经纬仪仪镜中心置于一侧杆塔下方.见图1—5 图1-5档端角度法

( ) () 2 2 2 014 b =arctan(tan ) b (2)014 h f a a ltg h l f a h f a a lt g θθαθ ≠=+-±-=-==+-高差时: 或按下式计算: 高差时: 式中 a-仪器中心至点A 得垂直距离; f -为观测气温下计算出得档距中点弧垂,m; θ-仪器视线与导线相切得垂直角,即观测角; l —为被测档档距,m; h—两杆塔得高差,m 。 ②档外角度法――经纬仪仪镜中心置于一侧杆塔外侧。如图1—6。 图1-6 档外角度法 式中 l 1—仪器距一侧杆塔得水平距离,m。其余符号同前. ③档内角度法――经纬仪仪镜中心置于导线或地线得正下方。如图1-7。

导线的应力及弧垂计算

第二章导线的应力及弧垂计算 一、比载计算 本线路采用的导线为LGJ-120,本地区最大风速v=30m/s,覆冰风速v=10m/s,覆冰厚度b=10mm 表2-1 LGJ-120规格 计算外径mm 计算截面mm2单位质量kg/km 495 ==2) 2、冰重比载 =q/S=×10-3= 2) 3、自重和冰重总比载(垂直比载) =+=(+) =2) 4、无冰风压比载 =×10-3= =2) 5、覆冰风压比载

=×10-3=-3 =2) 6、无冰综合比载 ==10-3 =2) 7、覆冰综合比载 ==10-3 =2) 一、临界档距的计算及判别 查表4-2-2可知: 表2-2 LGJ-120的机械特性参数 综合瞬时破坏应力(N/mm2)弹性模数(N/mm2)线膨胀系数(1/℃) 784001910-6 []===(N/mm2) 全线采用防振锤防振,所以平均运行应力的上限为 σp=(N/mm2) L lab

= =139.7m L lac= = =152.07m L lad= = =117.01m L lbc= = =163.7m L lbd=

= =105.9m L lcd= = =0 二、导线应力弧垂计算 ㈠最低气温时(T=-20℃) 当L=50m时,应力由最低气温控制σ=(N/mm2)g=(N/m·mm2) f===0.096m 当L=100m时,应力由最低气温控制 f===0.3856m 当L=117.01m时,为临界档距 f===0.531m 当L=150m时,应力由最大比载控制 σn-=σm--(t n-t m)

σ-=-(-20+5) (N/mm2); f===0.973m 当L=200m时,应力由最大比载控制 σ-=-(-20+5) (N/mm2); f===2.133m 当L=250m时,应力由最大比载控制 σ-=-(-20+5) (N/mm2); f===4.004m 当L=300时,应力由最大比载控制 σ-=-(-20+5) (N/mm2); f===6.528m 当L=350m时,应力由最大比载控制 σ-=-

架空光缆弧垂计算及受力分析

架空光缆弧垂计算及受力分析 在电力系统中,架设于高压输电线路的光缆主要有ADSS 、OPGW ,ADSS 主要应用于已有的输电线路,OPGW 主要用于新建电力线路,以及对旧线路的改造中。由于OPGW 具有传输信号的通道.又可作为地线的两重功效,因此得到了越来越多的应用。光缆架设后,在最恶劣的自然条件下受力,这对光缆的寿命影响很大。如何确定光缆的受力,对设计者来说也是一个重要的环节。 1 架空光缆的弧垂计算 光缆悬挂于杆塔A 、B 之间,并且在自重作用下处于平衡状态。假设在光缆上均匀分布着载荷g ,则光缆在杆塔A 、B 之间具有一定的弧垂,取光缆上最低点为坐标原点,光缆上任意一段长度为L 。(如图1所示)。 假设光缆水平方向的应力为0δ,光缆的横截面积为S ,则光缆水平方向的拉力为 00T S δ=?。光缆受到的轴向拉力x T ,且与水平方向的夹角为α,则在长度为x L 的一段内,光缆由受力平衡条件得到: 00cos sin x x x T T S T g L S αδα==???=??? (1-1) 由以上两式相比得: x dy g tg L dx αδ= =

而: () 220x d y g d tg dL dx αδ== = dx = 两边积分得: d tg g dx αδ=? ()()110 g sh tg x c αδ-= + ()10dy g tg sh x c dx αδ??= =+???? 又有图1知:当0x =时,0tg α=,所以10c =,因此 ()00 1/g y ch x m g δδ? ? ??=-N ?? ????? 所以有: 0g dy sh x dx δ??= ??? ?? 0 20g y ch x c g δδ?? =+ ??? 又因为,当0x =时,0y =,所以20/c g δ=-。从而,我们推导出了光缆在两杆塔之间的状态方程为一悬链线曲线方程。即 00 1g y ch x g δδ? ? ??=-?? ????? (1-2) 例如,设光缆两杆塔高度差为10m ,较低的杆塔高为22m ,档距为250m ,取三种情况: ①g =(N /m *mm ),0δ=(Mpa) ;②g =(N /m *mm ),0δ=(Mpa) ;⑧g =(N /m *mm ), 0δ=(Mpa);利用数学软件athematia M 得到的曲线如图2所示。由曲线方程知,曲线的位置及形状与0/g δ值的大小有关,但由于g 得变化比0δ小的

导线弧垂观测法

输电线路档侧弧垂检测法 在线路施工中, 当线路走廊内有障碍物影响视 线时候, 可以运用“档侧弧垂检测法”, 弥补常用观测 方法的不足。 1 计算原理示意图(见图1) 图1 档侧弧垂计算原理示意图 2 计算原理分析 该方法计算原理简单, 如图1 所示, 通过三角几 何函数推导, 得出计算公式如下:

式中L———观测档档距;

2 实际操作方法简介 2.1 把经纬仪置于垂直于铁塔侧面2 倍塔高以外 的地方, 最远距离不限, 以镜头能看清导地线为宜。 2.2 调整仪器位置, 使仪器竖丝对穿铁塔左右侧中心螺栓或左右侧挂点螺栓为准, 证明仪器垂直于铁塔中心桩侧面。 2.3 分别测出a1、a2 和β1 , 然后根据公式便可计算 出弧垂值f 或观测角θ, 用以观测或检查弧垂。 3 实际应用分析 3.1 误差分析: 本方法和其他方法一样, 也会受到仪器位置和观测角度偏差等的影响, 但是由于本方法弧垂观测点在档距中央, 即导地线弧垂点上, 所以

观测更为精确。通过多次测量对比证明, 本方法受误差因素影响相对较小, 完全能够满足施工需要。 3.2 在本方法公式基础上稍加变动, 也可用于检测相邻下一档的弧垂, 此方法适用于观测档外地形不便时, 把仪器置于前一档或下一档铁塔侧面即可。3.3 根据本方法的计算原理, 可以测量档内导线任意距离点的位置, 非常适合导线间隔棒检查、安装, 从而避免了间隔棒安装在高空测量的不便和危险。用这种方法检查安装间隔棒已经在施工中应用, 并取得了良好效果。 3.4 本方法缺点: 不能进行导线子线间超平观测, 只能逐个检测每一根导线, 或按扇形面估测, 在这方面增加了工作量。

导线的力学计算

第二章导线应力弧垂分析 ·导线的比载 ·导线应力的概念 ·悬点等高时导线弧垂、线长和应力关系 ·悬挂点不等高时导线的应力与弧垂 ·水平档距和垂直档距 ·导线的状态方程 ·临界档距 ·最大弧垂的计算及判断 ·导线应力、弧垂计算步骤 ·导线的机械特性曲线 [内容提要及要求] 本章是全书的重点,主要是系统地介绍导线力学计算原理。通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。 第一节导线的比载 字体大小小中大 作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按 沿导线均匀分布考虑。在导线计算中,常把导线受到的机械荷载用比载表示。 由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。此外比载同样是矢量,其方向与外力作用方向相同。所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下: 1.自重比载 导线本身重量所造成的比载称为自重比载,按下式计算 (2-1) 式中:g1—导线的自重比载,N/m.mm2; m0一每公里导线的质量,kg/km;

S—导线截面积,mm2。 2.冰重比载 导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算: (2-2) 式中:g2—导线的冰重比载,N/m.mm2; b—覆冰厚度,mm; d—导线直径,mm; S—导线截面积,mm2。 图2-1覆冰的圆柱体 设覆冰圆筒体积为: 取覆冰密度,则冰重比载为: 3.导线自重和冰重总比载 导线自重和冰重总比载等于二者之和,即 g3=g1+g2(2-3) 式中:g3—导线自重和冰重比载总比载,N/m.mm2。 4.无冰时风压比载 无冰时作用在导线上每平方毫米的风压荷载称为无冰时风压比载,可按下式计算: (2-3) 式中:g4—无冰时风压比载,N/m.mm2; C—风载体系数,当导线直径d< 17mm时,C=1.2;当导线直径d≥17mm时,C=1.1;

新版弧垂观测方法-新版.pdf

弛度观测档的选择原则: 1.1紧线段在5档及以下时靠近中间选择一档; 1.2紧线段在6~12档时靠近两端各选择一档; 1.3紧线段在12档以上时靠近两端及中间各选择一档 1.4弛度观测档的选择尽可能做到:档距大,相邻两杆塔的高差小,导线排列方式尽量一致,紧临耐张杆塔的两侧不宜选为观测档。 1.5 选择弛度观测档时,若地形特 殊应适当增加观测档数目。 一、输电线路弧垂测量 1、测量方法: (1)异长法――运行线路的弧垂测量常用此法。见图1-4。 图1-4 异长法观测弧垂示意图 方法: 自观测档的架空线悬挂点A处选一合适点使视线与导线相切,分别量取此点及视线在另一杆塔上的交 点与导线两悬挂点的垂直距离,得AA0=a和BB0=b。然后由公式 a b f得观测档弧垂f。 2 其适用于观测档内两杆塔不等高,且弧垂最低点不低于两杆塔根部连线的情况。 (2)角度法:――用经纬仪测。 原理:异长法。 适用:用异长法无法测量的山区、沟壑地段。 方法: 按仪器设置的不同分为:档端角度法、档外角度法、平视法和档侧角度法。 ①档端角度法――经纬仪仪镜中心置于一侧杆塔下方。见图1-5

图1-5 档端角度法 2 2 2 01 4 b =arctan(tan ) b (2) 014 h f a a ltg h l f a h f a a ltg 高差时: 或按下式计算:高差时: 式中a -仪器中心至点A 的垂直距离; f -为观测气温下计算出的档距中点弧垂 ,m ; -仪器视线与导线相切的垂直角,即观测角;l -为被测档档距,m ;h -两杆塔的高差,m 。 ②档外角度法――经纬仪仪镜中心置于一侧杆塔外侧。如图 1-6。 图1-6 档外角度法

第三章特殊情况导线张力弧垂计算

第三章特殊情况导线张力弧垂的计算 第一节概述 第二章所述的导线的张力弧垂计算公式都是在导线上为均匀分布荷载的情况下导出的。在实际工程中,导线、地线上还会出现非均匀分布的荷载,一般在以下几种情况出现。 山区线路施工时,由于道路交通不便,运输极为困难,往往采用滑索运输。 在超高压、特高压线路上,由于采用了分裂导线,施工人员在安装分裂导线的间隔棒时采用飞车作业。 运行检修人员修补档距中损坏导线,检测档距中压接管等,往往用绝缘爬梯挂在导线上进行高空带电作业。 国外在超高压、特别是在特高压线路上,我国在某些山区线路中,为了降低线路投资,采用镀锌钢绞线或钢丝绳制成的软横担,如图3-1-1所示。 图3-1-1特高压线路采用的软横担 在变电站户外架空母线上,悬挂引线与开关、变压器等所用的连接线。 以上介绍的几种情况,都属于档距中有集中荷载的情况。 在孤立档中,特别是档距较小时,如线路终端杆塔至变电站门型架,变电站户外母线。由于耐张绝缘子串单位长度重力和导线的单位长度重力相差很大,特别是小导线的情况。而且由于孤立档档距较小时,耐张绝缘子串在一档中所占的比重较大,因此必须考虑耐张绝缘子串的影响。 在孤立档施工紧线时,锚塔处有耐张绝缘子串,而在紧线塔处没有,如图3-1-2所示。导线张力、弧垂应按一端有耐张绝缘子串而另一端没有的架线情况进行计算。 在架空线路施工已架好导线或线路处于运行情况时,孤立档两端均有耐张绝缘子串,如图3-1-3所示。此时,导线张力、弧垂应按两端有耐张绝缘子串情况进行计算。 图3-1-2 孤立档施工紧线图3-1-3 孤立档竣工运行显然,以上两种情况的张力、弧垂大小计算结果是不同的。 在中性点直接接地的电力网中,长度超过100km的线路均应换位。换位循环长度不宜大于200km。 目前换位方式有直线换位塔,耐张换位塔等。也可采用在一般直线杆塔上悬空换位方式,如图3-1-4所示,它是在每相导线上串接一组承受相间电压的耐张绝缘子串,通过两根短跳线A相换至B相,B相换至C相,一根长跳线C相换至A相。这种换位方法在瑞典、芬兰等国用的较多。我国辽宁、山西等省也

输电线路弧垂观察

输电线路施工弧垂观察 输配电线路| 2016-03-02 08:17 1. 等长法 由于弧垂表中弧垂是档距中央弧垂,因此在弧垂观测时应尽量采用等长法(平行四边形法)进行弧垂观测,即a=b=f(f为档距中央弧垂)。 图中: h—悬点高差, θ—悬挂点高差角; L—档距; a—目击视线A′B′对悬点A下垂线的垂直距离(m); b--目击视线A′B′对悬点B下垂线的垂直距离(m); Δa—温度变化后目击侧悬点A下垂线垂直截距a的微调量(m); Δa=2×Δf,Δf—为温度变化后档距中央弧垂的变化量。 2. 异长法

图中: h—悬点高差, θ—悬挂点高差角; L—档距; a—目击视线A′B′对悬点A下垂线的垂直距离(m); b--目击视线A′B′对悬点B下垂线的垂直距离(m); Δa—温度变化后目击侧悬点A下垂线垂直截距a的微调量(m);Δa=2×,Δf—为温度变化后档距中央弧垂的变化量。 3. 角度法 3.1 档端角度法 注:档端经纬仪视线对架空线的切点范围:a/f=0.408~1.853 图中: f-档距中央的弧垂, L-观测档档距 α-仪器横轴至悬挂点的距离(如图示) θ-弧垂观测角

β-仪器横轴和观测档另一端悬挂点的连线与水平面的夹角 h=L×tgβ-a,观测档两端的悬点高差,当观测档的另一端悬挂点高于仪器所在塔位的悬挂点时(即悬点A低于悬点B)取“+”,低于仪器所在塔位的悬挂点时(即悬点A高于悬点B)取“-” 3.2 档内角度法 注: f-档距中央的弧垂, L-观测档档距, L′-仪器与观测档两塔位中较近一基塔位的距离 α-仪器横轴至悬挂点的距离(如图示) θ-弧垂观测角 β-仪器横轴和观测档另一端悬挂点的连线与水平面的夹角 h=(L-L′)×tgβ-a,观测档两端的悬点高差,当观测档的另一端悬挂点高于仪器所在塔位的悬挂点时(即悬点A低于悬点B)取“+”,低于仪器所在塔位的悬挂点时(即悬点A 高于悬点B)取“-” 3.3 档外角度法

弧垂计算

f D-----代表档距弧垂(m)L D-----代表档距(m) L观-----观测档档距【实际(m)】『θ为仪器看对面一基挂线点的角度』 挂点高差:Φ=tg-1(h/L观)注:h为基与基的高差。 f =f D/(cosΦ)*(L观/L D)2注:一般在弧垂资料上有个计算公式。 a =呼高—塔尺读数—瓷瓶长度注:当在耐张塔看弧垂时就不减瓷瓶长。 b =(2f—a)2 c =(2f—a)注:当c为负值时弧垂看不到。 检查公式 f =1/4×{a+) tg L}2注:tgθ为挂线点,tgΦ为 观tg θ — (*Φ 弧垂切点 计算代表弧垂(f D-----代表档距弧垂(m)) 1、在综合表找查数据。 2、要把地线,导线分开.不要搞混。 计算!(如:观测档距为220m) 在表中找到220m左右的数据来进行计算。 例:在表中找到220m档距左右的数据分别为.200(0.5),250(0.7)

设:220(X ) 如下: (200)(0.5)、(220)(X)、(250)(0.7) 5.0200 220--X =X --7.0220250 求出X 值,X 就是F d (1)在孤立档 ΔL=L 316f ×Δf f —观测档设计弧垂。 Δf —弧垂变量(弧垂大为正,小为负)(需要调整的数) (2)在连续档 ΔL=16L db 2×f c /(3L c 4)×Δf c ×ΣL (备用) L c —观测档的档距。 f c —观测档要求的弧垂。 Δf c --观测档的弧垂变量(大为正,小为负)(同上Δf ) ΣL —紧线段长度 L db —代表档距 ΔL=8 L db 2/3L C 4×(2f c ×Δf c +Δf c 2)×ΣL (专用)

弧垂观测方法

架空送电线路的弧垂观测 一、观测档观测弧垂的计算 如B回N6~N9耐张段,观测弧垂的计算步骤介绍如下: 1.选定耐张段中档距较大、高差较小的档为观测档。如N7~N8; 2. 观测档N7~N8的高差和档距 h=(1758+27-1)-(1733.7+27-1)=24.3m (看断面图) L=430m 3. 观测档所在耐张段的代表档距及其对应的降温后的弧垂: 代表档距L0=360m (见断面图) 降温:导线降20°C 地线降10°C 设当天的气温为30°C,则查《导地线安装表》时,导线查10°C 的,地线查20°C的。 查得导线10°C的弧垂为f0=16.13m (查35kV导线、地线安装表,P6,代表档距360对应的数值) 4.则观测档的观测弧垂: f=f0×(L/L0)2 =16.13×(430/360) 2 =23.01m 式中:

f-观测弧垂(m) f0-代表档距对应的弧垂(m) L-观测档的档距(m) L0-代表档距(m) 二、观测角的计算 1. 仪器设在N8,假设仪高为1.6m,则仪器到导线悬点的a值为: a=N8导线的悬点高-仪高=(27-1)-1.6=24.4m 2. 观测档N7~N8的高差和档距 h=(1758+27-1)-(1733.7+27-1)=24.3m (看断面图) L=430m 3. 观测角的计算(角度法档端观测) 工作前应校准经纬仪,复核观测档档距、高差。 θ=tg-1{(4√af-4f±h)/L} 式中: θ-观测角 a -仪器仪镜对悬挂点高差(a=悬挂点高度-仪高) f -观测档弧垂, h -悬挂点高差(低处看高处取+,高处看低处取-) l -观测档档距;

ADSS弧垂计算方式及24芯光缆参数

ADSS-AT-24B1-300结构示意图及性能参数表 光缆结构示意图 序号 项目 单位 跨距(米) 300 1 光缆芯数 24B1 2 光缆直径 mm 12.3 3 光缆重量 kg/km 131.1 4 承载面积 mm 2 8.3 5 AT 外护套厚度 mm 标称1.8 平均1.7 6 标称抗拉强度(RTS ) kN 22.8 7 杨氏模量 kN/mm 2 12.13 8 热膨胀系数 10-6 /℃ 4.81 9 平均运行张力(EDS ) kN 5.7 10 最大允许工作张力(MAT ) kN 9.12 11 极限运行张力(UOS ) kN 13.68 12 最小动态弯曲半径 mm 308 13 最小静态弯曲半径 mm 185 14 最大抗压强度 (长期) N/10cm 1000 最大抗压强度(短期) N/10cm 2200 15 运行、储存、运输期间温度范围 ℃ -40~+70 16 安装期间温度范围 ℃ -20~+60 17 光缆运行温度范围内衰减变化量 dB/km 0.05 18 护套类型 抗电痕护套 光纤 纤膏 PBT FRP 缆膏 阻水层 PE 内护套 芳纶 AT 外护套

ADSS光缆和导线的弧垂配合设计 标签: 摘要:根据ADSS光缆和导线具有不同的物理特性和在各种气象条件下的弧垂不同步变化的特点,提出ADSS光缆在新、旧线路上架设时和导线的弧垂配合设计思路。 关键词:ADSS光缆;导线;弧垂;挂点 随着电力系统自动化程度的普遍提高,无人值守变电站的大量投运,变电站自动化程度不断增加,信息传输的通道需求大幅增加。全介质自承式光缆,简称ADSS光缆,由于具有重量轻、外径小、跨距大、抗雷击、不受电磁干扰、易于施工等优点,适宜架设于运行和新建的输电线路上,被电力企业广泛采用。 1 ADSS光缆的特性 ADSS光缆具有与架空导线不同的结构,其拉伸强度由芳纶绳来承受,芳纶绳的弹性模量比钢小一半多,热膨胀系数是钢的几分之一,这决定了ADSS光缆弧垂对外界负载变化比较敏感。在覆冰状态下ADSS光缆伸长量可达到0.6%,而导线仅为0.1%;弧垂对温度变化比较迟钝,在温度变化时弧垂基本保持不变;在大风条件下其风偏角很大,在风速为30m/s 时,风偏角可达80°,而导线的风偏角仅为光缆的一半左右。 耐受极端恶劣气候(大风、覆冰等)的能力较强。 ADSS光缆外护层为AT或PE材料,运行于强电场中,存在电蚀问题。 ADSS光缆会发生风振动。平滑稳定的横向风吹向光缆,会发生风振动,会在挂点处发生疲劳损坏。 ADSS光缆具有一定的抗压力,能承受耐张线夹较大的握力。 2 ADSS光缆使用的基本条件 2.1 ADSS光缆架设应满足对地面及交叉跨越物的距离要求 ADSS光缆与其他设施、树木、建筑物等的最小净距应满足电力行业的规定。 在光缆架线设计时,它与其他设施、树木、建筑物等的距离应根据最大弧垂和最大风偏角进行计算,并考虑架线后塑性伸长的影响和制造、设计、施工的误差。重冰区的线路还应

弧垂观测方法 (2)

弛度观测档的选择原则: 1、1紧线段在5档及以下时靠近中间选择一档; 1、2紧线段在6~12档时靠近两端各选择一档; 1、3紧线段在12档以上时靠近两端及中间各选择一档1、4弛度观测档的选择尽可能做到:档距大,相邻两杆塔的高差小,导线排列方式尽量一致,紧临耐张杆塔的两侧不宜选为观测档。1、5 选择弛度观测档时,若地形特殊应适当增加观测档数目。 一、输电线路弧垂测量 1、测量方法: (1)异长法――运行线路的弧垂测量常用此法。见图1-4。 图1-4 异长法观测弧垂示意图 方法: 自观测档的架空线悬挂点A处选一合适点使视线与导线相切,分别量取此点及视线在另一杆塔上的交点与导线两悬挂点的垂直距离,得AA0=a与BB0=b。然后由公式 =得观测档弧垂f。 a b f 2 其适用于观测档内两杆塔不等高,且弧垂最低点不低于两杆塔根部连线的情况。 (2)角度法:――用经纬仪测。 原理:异长法。 适用:用异长法无法测量的山区、沟壑地段。 方法: 按仪器设置的不同分为:档端角度法、档外角度法、平视法与档侧角度法。 ①档端角度法――经纬仪仪镜中心置于一侧杆塔下方。见图1-5

图1-5 档端角度法 () () 2 2 2 1 4 b =arctan(tan) b(2) 1 4 h f a a lt g h l f a h f a a ltg θ θα θ ≠ =+-± - =- = =+- 高差时: 或按下式计算: 高差时: 式中a-仪器中心至点A的垂直距离; f-为观测气温下计算出的档距中点弧垂,m; θ-仪器视线与导线相切的垂直角,即观测角; l-为被测档档距,m; h-两杆塔的高差,m。 ②档外角度法――经纬仪仪镜中心置于一侧杆塔外侧。如图1-6。 图1-6 档外角度法

弧垂观测

第五章:弧垂观测及调整 第一节:观测弧垂的方法 一、平行四边形法 适用条件:h<20%L(f≤h a-2,f≤h b-2) 式中:——观测档导线悬挂点间的高差,m; ——观测档档距的中点弧垂,m; ——测站端导线悬挂点至基础面的距离,m; ——视点端导线悬挂点至基础面的距离,m。 等长法观测弧垂的布置图如图所示: 在观测档相邻杆塔上,由架空线悬挂点A、B处各向下量距离f 绑扎弧垂板。然后,在测站端的弧垂板处直接用目视观测。在量取f 时,可根据紧线当天的气温预估一个气温值,以此气温条件选择f。如果气温变化时,应重新绑扎弧垂板。观测时,使两弧垂板上平面的连线与架空线最低点相切。此时导线弧垂值即为设计要求数值。 1、观测档内不联耐张串的弧垂计算 ①、观测档架空线悬挂点高差h<10%L时 f=(L÷L db)2×f db= f0 ②、观测档架空线悬挂点高差h≥10%L时 f=(L÷L db)2×f db÷cosφ= fφ 2、观测档内一侧联耐张串的弧垂计算 ①、观测档架空线悬挂点高差h<10%L时

f= f0×(1+λ2×(g0-g1)÷L2÷g1)2 ②、观测档架空线悬挂点高差h≥10%L时 f= fφ×(1+λ2×cos2φ×(g0-g1)÷L2÷g1)2 3、观测档内两侧联耐张串的弧垂计算 ①、观测档架空线悬挂点高差h<10%L时 f= f0×(1+4×λ2×(g0-g1)÷L2÷g1) ②、观测档架空线悬挂点高差h≥10%L时 f= fφ×(1+4×λ2×cos2φ×(g0-g1)÷L2÷g1) 4、气温变化时的弧垂调整 在导地线弧垂测量过程中,若气温变化导致架空线温度发生变化,此时应调整观测的弧垂值。其方法是保持视点端弧垂板不动,在测站端调整弧垂板:当气温升高时,应将弧垂板向下移一小段距离△a;当气温降低时,应将弧垂板向上移一小段距离△a,△a值为: △a=2△f 式中:△a——测站端因气温变化而上下移动的距离,m; △f——因气温变化观测档的弧垂变化值,m。 当气温变化不超过±10℃时,可以按上式进行弧垂调整。当气温超过±10℃时,应将视点端弧垂板按气温变化后的弧垂重新绑扎。 二、角度法观测弧垂(本工程采用的方法)

35kV线路弧垂计算与观测

35kV线路弧垂计算与观测 1 概述 峨山化念至新平县城35kV高压输电线路是笔者参与测量、设计、施工、架设的一条地方线路。线路全长20.4km,架设导线为LGJ-70钢芯铝绞线,线路设计输送容量,电压降Δu按10%计,P=7834kW。线路设计投资为33.42万元(每公里线路投资为1.64万元)。 线路穿越的地区为0类气象区,设计采用的技术参数为:最低气温t n=-5℃,最高气温t m=40℃,导线最低温度时的比载g n=3.468×10-3kg/m·mm2,导线最大荷载(风速V=25m/s)的比载g m=6.696×10-3kg/m·mm2,导线膨胀系数α=19.20×10-6(1/℃),导线弹性模量E=8.25×103kg/mm2,αE=0.1584,E/24=343.8,导线设计使用应力σm=10kg/mm2,平均应行应力σc=7kg/mm2。全线路共分13个耐张段,架设杆塔55基,其中,A型转角杆12基,上型杆27基,П型杆11基,三联杆3基,圆钢酒杯型铁塔2基。 本工程在设计和施工过程中,从勘测规划到测量设计、立杆架线、弧垂观测等,各个环节都严格按设计和施工规范把关。工程竣工后,经玉溪供电所技术人员现场验收,线间距离、弧垂、对地距离等各项技术指标均已达到送变电工程技术规范要求,并对所作的工作给予了充分的肯定和高度评价。 2 线路观测弧垂计算 线路观测弧垂计算按线路中所设耐张段逐段进行,计算程序是根据各耐张段内实测的各杆位间的水平档距,悬点交差,算出代表档距(规律档距)L np,而后再按状态方程式求解出各耐张段不同温度时的导线工作应力σn,最后选定观测档,算出不同温度时的观测弧垂f及观测角θ,供紧线时查用。 2.1 代表档距L np的计算

弧垂观测公式

驰度观测表说明 1. 驰度表说明:本驰度表中所给弧垂均为在对应温度下档距中央的弧垂;让线值(线夹移动量)的“+”和“-”号分别表示为:“+”表示是线向大号侧移动(即线夹向小号侧移动,“-”表示是线向小号侧移动(即线夹向大号侧移动)。 2. 驰度观测: a ) 等长法:由于驰度表中弧垂是档距中央弧垂,因此在驰度观测时应 尽量采用等长法(平行四边形法)进行弧垂观测,即a=b=f (f 为档距中央弧垂)。 h —悬点高差,θ—悬挂点高差角;L —档距; a —目击视线A ′B ′对悬点A 下垂线的垂直距离(m ); b--目击视线A ′B ′对悬点B 下垂线的垂直距离(m ); Δa —温度变化后目击侧悬点A 下垂线垂直截距a 的微调量(m ); Δa =2×Δf ,Δf —为温度变化后档距中央弧垂的变化量。 b ) 异长法: 此处的各参数含义同上,但Δa =2×f a /Δf c ) 角度法:

1) 档端角度法: θ=tg -1 (a-b± h)/L=]}/)2[({])44[(211L a f tg tg L h f af tg -?-=±---β 2))((4/14/}{θβθtg tg L a h tg L a a f -?+?=±?-+= 注:档端经纬仪视线对架空线的切点范围:a/f=0.408~1.853 f -档距中央的弧垂,L -观测档档距 α-仪器横轴至悬挂点的距离(如图示) θ-弧垂观测角 β-仪器横轴和观测档另一端悬挂点的连线与水平面的夹角 h=L ×tg β-a ,观测档两端的悬点高差,当观测档的另一端悬挂点高于仪器所在塔位的悬挂点时(即悬点A 低于悬点B )取“+”,低于仪器所在塔位的悬挂点时(即悬点A 高于悬点B )取“-” 2) 22)])(([4/1])([4/1θβθθθtg tg l l tg l a h tg l l a tg l a f -'-+'+=±'--+'+?= }/])16168()84()84{[(222221l l h f af hf f l lf hl f l lf hl tg ?--+±+'+-±+'+-±=-θ 注:f -档距中央的弧垂,L -观测档档距,L ′-仪器与观测档两塔位中较近一基塔位的距离 α-仪器横轴至悬挂点的距离(如图示) θ-弧垂观测角 β-仪器横轴和观测档另一端悬挂点的连线与水平面的夹角 h=(L-L ′)×tg β-a ,观测档两端的悬点高差,当观测档的另一端悬挂点高于仪器所在塔位的悬挂点时(即悬点A 低于悬点B )取“+”,低于仪器所在塔位的悬挂点时(即悬点A 高于悬点B )取“-” 3) 档外角度法:

相关主题
文本预览
相关文档 最新文档