有理数的乘除法过关训练试题和答案
- 格式:doc
- 大小:15.82 KB
- 文档页数:6
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。
七年级有理数乘除混合运算练习题一、计算题1.计算(1)()1124⎛⎫-÷- ⎪⎝⎭. (2)()0.750.25-÷.(3)()00.12÷-.(4)()11.254-÷. 2.计算.(1)()()50.750.34-÷÷-. (2)()349731221⎛⎫⎛⎫⨯⨯- ⎪ ⎪⎝⎭⎝-÷⎭- . (3)()11150.6 1.75232⎛⎫-⨯-⨯÷- ⎪⎝⎭. (4)3777148128⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+--+-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 3.计算 (1)4512117621⎛⎫⎛⎫⎛⎫÷÷ ⎪ ⎪ ⎪⎝⎭⎝-⎭⎝-⎭-. (2)()14812649⎛⎫-÷⨯-÷ ⎪⎝⎭. (3)11111345660⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭. 4.计算(1)()()755-÷-. (2)80.1253-÷. (3)512557-÷. (4)()()1.250.52÷-÷-5.用简便方法计算(1)()()()11.2548220⎛⎫+⨯-⨯- ⎪⎭⨯-⎝. (2)()532.465⎛⎫⎛⎫-⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭.(3)()312461014313⎛⎫⎛⎫⎛⎫⨯+⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-. (4)()()()()181201250.0012-⎛⎫⨯⨯⨯⨯ ⎪--⎭-⎝ . (5)513160522++-+⎡⎤⎛⎫⎛⎫⎛⎫-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. (6)341000.70.03105⎛⎫-⨯--+ ⎪⎝⎭. (7)1314414⎛⎫-⨯ ⎪⎝⎭. 6.计算 (1)8394⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝-⎭-. (2)211135⎛⎫+⨯⎛⎫ ⎪⎝⎭- ⎪⎝⎭. (3)()54123116547⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 7.若规定两数,a b 通过“※”运算得到4ab ,即4a b ab =※,如2642648=⨯⨯=※,请你求出35※的值.8.计算(1)()1481341()1139⎛⎫⎛⎫⨯÷- -÷+⎝-⎪ ⎪⎭⎝⎭. (2)()453251⎡⎤⎛⎫⎛⎫÷÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣-⎦-. (3)157136918⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭. 9.计算4312773⎛⎫+⨯- ⎪⎝⎭. 10.计算:()497-÷-= ,1121635⎛⎫-÷= ⎪⎝⎭ ,()()()110441÷-+÷---⨯= ,()()270.5-÷-= .11.计算下列各题(1)()()4812-÷-. (2)112136⎛⎫÷- ⎪⎝⎭.(3)()21354⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭. (4)733.584⎛⎫-÷⨯- ⎪⎝⎭. 12.用简便方法计算201520142014201420152015⨯-⨯.13.计算 (1)5129165⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭. (2)()11112362⎛⎫-+-⨯- ⎪⎝⎭(3)()127813⨯-. (4) ()2215130.34130.343737-⨯-⨯+-⨯-⨯. 14.计算18361129⎛⎫-⨯-- ⎪⎝⎭. 15.计算1111111...12015201420131000⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 16.计算 (1)1123⎛⎫-⨯- ⎪⎝⎭(2)113135⎛⎫⨯- ⎪⎝⎭(3)()()345-⨯-(4)()()()355302005-⨯-⨯-17.计算:(1)20(14)(18)13-+----;(2)41(0.125)()()778-⨯-÷-⨯;(3)7211()(4)9353-÷--⨯-; (4)5752()3(2)81283--÷--. 18.计算: (1)6133()(1)()15245-÷---⨯;(2)11 5322()22-÷⨯--÷-;(3)11 2(3)12()64⨯-+⨯+.19.计算:(1)11711()()8283-÷-⨯-;(2)121 (13)51513335 -÷-÷+⨯;(3)1121 ()() 36530+-÷-;(4)1111[(2)]223-÷+⨯-.20.计算下列各题:(1)11 (3)(10)(2)32-÷-⨯-;(2)115 0.25()6817÷⨯-;(3)14(27)2(24)49-÷⨯÷-.21.计算:(1)3()54-÷;(2)4 18(1)5 -÷-;(3)22(8)7÷-;(4)21 (3)(5)32 -÷.22.化简:(1)3612--;(2)255---;(3)60.3--;(4)123-.23.用简便方法计算:(1)523()(12) 1234+-⨯-;(2)113(19)19(19)424-⨯--⨯-⨯-. 24.若定义一种新的运算*“”,规定有理数4a b ab *=,如2342324*=⨯⨯=. (1)求()34*-的值;(2)求()()263-**的值.25.用简便方法计算:(1)1117()(60)34515--+-⨯-; (2)1882173()()772222⨯-⨯⨯-; (3)2215130.34(13)0.343737-⨯-⨯+⨯--⨯. 26.计算下列各题: (1)7(0.25)()4(18)9-⨯-⨯⨯-;(2)29155⨯;(3)7537()3696418-+-⨯; (4)666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-.27.计算:(1)1(2)()(3)2-⨯-⨯-;(2)(0.1)1000(0.01)-⨯⨯-;(3)1239()()()2348-⨯-⨯⨯-;(4)8211(2)(1)(2)(4)317152+⨯-⨯+⨯-. 28.计算:(1)( 1.2)(3)-⨯-;(2)7(1)08-⨯;(3)11(1)(4)32-⨯-;(4)1 ( 2.5)23 -⨯.29.计算:(1)71131262142⎛⎫⎛⎫⎛⎫-⨯-⨯÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)11131 21 532114⎛⎫⨯-⨯÷-⎪⎝⎭参考答案1.答案:(1)48.(2)3-.(3)0.(4)5-.解析:2.答案:(1)2.(2)3-.(3)1135,(4)123-. 解析:3.答案:(1)162121-;(2)83;(3)7-. 解析:4.答案:(1)15;(2)364-;(3)1257-; (4)54. 解析:5.答案:(1)81-.(2)1.2.(3)6-.(4)0.004-.(5)19-.(6)37.(7)5597-. 解析:6.答案:(1)23;(2) 2-;(3)8156-. 解析:7.答案:60.解析:8.答案:(1)()14131418931⎛⎫⎛⎫⎛⎫÷+⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 44138113914=-⨯⨯⨯ 7221077=-=-. (2)()124535⎡⎤⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 124525=-÷⨯ 2453545=-⨯⨯=-. (3)157136918⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭ ()15718369⎛⎫=-+⨯- ⎪⎝⎭ ()()()157181818368=⨯--⨯-+⨯-615145=-+-=-.解析:9.答案:原式43743177377⎛⎫=+⨯-=-=- ⎪⎝⎭. 解析:10.答案:7-,2-,5-,54.解析:11.答案:(1)()()(4812)48124-÷-=+÷=. (2)117776212363637⎛⎫⎛⎫⎛⎫÷-=-÷=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)()()()21533430542⎛⎫⎛⎫⎛⎫-÷-÷-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (4)733.584⎛⎫-÷⨯- ⎪⎝⎭833.574⎛⎫=-⨯⨯- ⎪⎝⎭7833274=⨯⨯=. 解析:12.答案:原式()()201520140000201420142015000020150=⨯+-⨯+=.解析:13.答案:(1)515529129296566⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2)()11112362⎛⎫+-⨯- ⎪⎝⎭()()()111121212362⎛⎫=-⨯-+⨯--⨯- ⎪⎝⎭4268=-+=. (3)()121278781313⨯-=-⨯⨯18813⎡⎤⎛⎫=--⨯ ⎪⎢⎥⎝⎭⎣⎦188813⎛⎫=-⨯-⨯ ⎪⎝⎭8564631313⎛⎫=--=- ⎪⎝⎭. (4)()15.342722130.341337-⨯-⨯+⨯-⨯-2125130.343377⎛⎫⎛⎫=-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭. 解析:14.答案:原式183636361129=-⨯+-⨯-⨯3323671=---=. 解析:15.答案:原式201420132012999999...20152014201310002015⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 解析:16.答案:(1)1111123226⎛⎫-⨯-=⨯= ⎪⎝⎭. (2)111063143535⎛⎫⎛⎫⨯-=-⨯=- ⎪ ⎪⎝⎭⎝⎭.(3)()()34534560⨯⨯--=⨯⨯=.(4)()()()3553020050-⨯-⨯⨯-=.解析:17.答案:(1)解:原式2014181329=--+-=-.(2)解:原式14()(8)7487=-⨯-⨯-⨯=-. (3)解:原式774543915333=÷+=+=. (4)解:原式292981872483333=-÷+=-+=. 解析:18.答案:(1)解:原式623846()2534555=-⨯-+⨯=+= (2)解:原式313152(2)5482244=-⨯-⨯-=-+=. (3)解:原式1161212623164=-+⨯+⨯=-++=-. 解析:19.答案:(1)解:原式1311811()()1()()883833=-÷-⨯-=-⨯-⨯- 11181()()13399=--⨯-=-= (2)解:原式4051(13)335=--+⨯1(1513)5=-+⨯12(2)55=-⨯=- (3)解:原式112()(30)365=+-⨯- 112(30)(30)(30)365=⨯-+⨯--⨯- (10)(5)(12)105123=-+---=--+=-(4)解:原式312313()()69223262=-÷-=-÷-=⨯= 解析:20.答案:(1)解:原式10155()31026=-⨯⨯=-(2)解:原式1515150.2568()0.25417()(0.254)[17()]1(15)15171717=⨯⨯-=⨯⨯⨯-=⨯⨯⨯-=⨯-=-(3)解:原式4412 (27)()99249 =-⨯⨯⨯-=.解析:21.答案:(1)解:原式313 ()4520 =-⨯=-(2)解:原式5 18109=⨯=(3)解:原式1612()787 =⨯-=-(4)解:原式11223113 =-⨯=-解析:22.答案:(1)解:36(36)(12)36123 12-=-÷-=÷= -(2)解:25(25)(5)(255)55--=--÷-=-÷=--(3)解:66(0.3)(60.3)200.3-=-÷-=+÷=-(4)解:11111 2332236 -=-÷=-⨯=-解析:23.答案:(1)解:原式523(12)(12)()(12)5894 1234=⨯-+⨯-+-⨯-=--+=-(2)解:原式113119 (19)()19()42422 =-⨯-+-=-⨯-=.解析:24.答案:(1)解:3*(4)43(4)48-=⨯⨯-=-(2)(2)*(6*3)(2)*(463)(2)*724(2)72576 -=-⨯⨯=-=⨯-⨯=-解析:25.答案:(1)解:原式1117()(60)(60)(60)(60) 34515=-⨯--⨯-+⨯--⨯-2015122851 =+-+=(2)解:原式2278821[()][()]722722=⨯-⨯-⨯1(12)12=-⨯-=(3)解:原式2152 13130.340.343377 =-⨯-⨯-⨯-⨯215213()()0.343377=-⨯++--⨯13110.34130.3413.34 =-⨯-⨯=--=-解析:26.答案:(1)解:原式1717418(4)(18)11414 4949=-⨯⨯⨯=-⨯⨯⨯=-⨯=-(2)解:方法1:原式4715141 5=⨯=方法2:原式22(9)159151514155=+⨯=⨯+⨯=(3)解:原式7537363636362830271411 96418=⨯-⨯+⨯-⨯=-+-=(4)解:原式66 (5712)(3)0(3)077=--+⨯-=⨯-=.解析:27.答案:(1)解:原式1(23)32=-⨯⨯=-(2)解:原式0.110000.011=⨯⨯=(3)解:原式12399()234832 =-⨯⨯⨯=-(4)解:原式70931927 317152=⨯⨯⨯=.解析:28.答案:(1)解:原式(1.23) 3.6=+⨯=(2)解:原式0=(3)解:原式4949 ()()6 3232=-⨯-=⨯=(4)解:原式5735236 =-⨯=-.解析:29.答案:(1)12-(2)225-解析:(1)原式()7131223142⎛⎫⎛⎫=-⨯-⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭ (2)原式1113425611525⎛⎫=⨯-⨯⨯-=- ⎪⎝⎭。
人教版初中数学七年级上册1.4有理数的乘除法同步训练题一、选择题1.两个非零有理数的和为零,则它们的商是( )A .0B .1-C .+1D .不能确定2.下列说法错误的是( )A. 一个数同0相乘仍得0B. 一个数同1相乘仍得原数C. 一个数同-1相乘仍得原数的相反数D.互为相反数的两数积是13.若0ab >,则( )A.0,0a b >>B.0,0a b <<C. ,a b 同号D.不确定4.如果00ab a b >+>且,那么a b 、( )A.同为正B.同为负C.异号D.不能确定5.如果四个有理数相乘,积为负数,那么负因数个数为( )A.1个B.3个C.1个和3个D.1个或3个6.为比较两个有理数的大小,提出四种方法(1)倒数大的反而小。
(2)绝对值大的反而小。
(3)平方后大的数较大。
(4)求两数的商,若商大于1,则被除数较大;若商等于1,则两数相等;若商小于1,则除数较大。
则这四种方法( )A.都正确B.都不正确C.只有一个正确D.只有一个不正确7.若0,0,x y xy x y +<<>则有( )A .x >0,y <0,x 绝对值较大B .x >0,y <0,y 绝对值较大C .x <0,y >0,x 绝对值较大D .x <0,y >0,y 绝对值较大8.若19980a b +=则ab 是( )A.正数B.非正数C.负数D.非负数9.已知式子2x y +的值是3, 则代数式241x y ++的值是( )A.1B.4C.7D.不能确定10.若1-=a a,则a 为( )A. 0a >B. 0a <C. 01a <<D. 10a -<<二、填空题11.如果00ab a b >+<且,那么,a b 应满足_____________。
12.如果00ab a b =+=且那么,a b _____________。
七年级上册数学《第2章有理数及其运算》专题 有理数的乘除法计算题题型一 两个数有理数相乘1.计算:(1)﹣0.5×(﹣6);(2)23×(−56); (3)2021×(﹣1);(4)(﹣2020)×0.(1)(﹣5)×4;(2)1×(﹣7);(3)(−25)×(−14);(4)312×(−213).3.计算:(1)(﹣3.75)×(﹣135); (2)(﹣10.8)×527.4.计算:(1)12×(−14); (2)(﹣2)×(﹣6); (3)(−12023)×0;(4)(﹣2.5)×213; (5)123×(﹣115).(1)0×(﹣112); (2)(﹣0.25)×(−45);(3)85×(−154); (4)(﹣416)×0.2.6.计算:(1)14×(﹣8); (2)−12×(−13);(3)﹣4×112; (4)(﹣0.6)×(﹣113).题型二 多个有理数相乘7.计算:(1)(﹣2)×(−12)×(﹣3);(2)(﹣0.1)×1000×(﹣0.01).8.计算:(1)8×(﹣134)×(﹣4)×(﹣2); (2)(﹣3)×56×(−45)×(−14);(3)(﹣2)×5×(﹣5)×(﹣2)×(﹣7).9.计算:(1)3×(﹣1)×(−13).(2)﹣1.2×5×(﹣3)×(﹣4). (3)(−512)×415×(−32)×(﹣6). (4)54×(﹣1.2)×(−19).10.计算下列各式:(1)(﹣8)×9×(﹣1.25)×(−19);(2)(﹣5)×6×(−45)×14;(3)(﹣0.25)×(−79)×4×(﹣18); (4)﹣3×56×(−95)×(−14);(5)37×(−45)×712×58; (6)(﹣8)×(−43)×(﹣1.25)×(54).11.计算:(1)(﹣18)×(﹣49)×0×(﹣13)×(﹣49);(2)﹣5×(﹣8)×(﹣7)×(﹣0.125); (3)(−14)×(﹣123)×(﹣4)×35; (4)−35×(−56)×(﹣6).12.计算:(1)(﹣8)×(﹣12)×(﹣0.125)×(−13)×(﹣0.001); (2)(﹣127)×57÷(−34)×213÷(−57)+(﹣2.5)÷(﹣0.25)×25.题型三 利用乘法运算律简便计算13.(2023秋•泰州月考)用简便方法计算:(1)191516×(−8);(2)(﹣99)×999.14.用简便方法计算:(1)(﹣2)×(﹣7)×(+5)×(−1 7);(2)﹣0.125×7×(﹣5)×8.15.用简便方法计算:(1)(﹣7.5)×(+25)×(﹣0.04);(2)(﹣4120)×1.25×(﹣8).16.(2024春•南岗区校级期中)用简便方法计算:(1)24×(34−156+78);(2)4.27×(−611)−8.73×611−2×(−611).17.(2024春•南岗区校级月考)用简便方法计算:(1)(−65)×(−23)+(−65)×173; (2)−361229×112.18.用乘法运算律,将下列各式进行简便计算: (1)(﹣112)×(﹣7)×23; (2))25.1()541(8)5(-⨯-⨯⨯- (3)(﹣48)×(−34+56−712); (4)0.7×311−6.6×37−1.1×37+0.7×811. (5)﹣392324×(﹣12) (6)4.61×37−5.39×(−37)+3×(−37).题型四 两个有理数的除法19.计算:(1)(﹣6.5)÷(﹣0.5);(2)4÷(﹣2);(3)0÷(﹣1 000);(4)(﹣2.5)÷58.20.计算:(1)0÷(﹣2022);(2)(﹣27)÷9; (3)(−43)÷43;(4)−32÷1.521.计算:(1)(﹣68)÷(﹣17);(2)(﹣0.75)÷0.25; (3)(−78)÷(﹣1.75);(4)312÷(﹣7)22.用简便方法计算:99989÷(﹣119).题型五 多个有理数的除法23.计算:(1)﹣5÷(﹣123);(2)(−34)÷(−37)÷(﹣116).24.计算:(1)﹣36÷(﹣113)÷(−32); (2)15÷(﹣123)÷(−910).25.计算: (1)(−47)÷(−314)÷(−23);(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).26.计算:(1)﹣3÷(−34)÷(−34);(2)(﹣12)÷(﹣4)÷(﹣115); (3)(−23)÷(−87)÷0.25; (4)(﹣212)÷(﹣5)÷(﹣310).27.计算: (1)(−23)÷(−85)÷(﹣0.25);(2)(﹣81)÷94÷94÷(﹣16);(3)(﹣6.5)÷(−12)÷(−25)÷(﹣5).题型六 有理数乘除混合运算28.(2023秋•大兴区期中)计算:(﹣6)×(﹣4)÷(﹣3)×2.29.(−64)÷223×(−38)÷9.30.(2024春•松江区期末)计算:25÷(−212)×334.31.(2024春•杨浦区校级期中)计算:178÷(﹣412+34)×(−34)32.计算:619÷(﹣112)×1924.33.(2023秋•九江期末)计算:15×(−34)+(−15)×32+15÷4.34.(2023秋•榆树市期中)计算:(﹣54)÷34×43÷(﹣32).35.(2024春•黄浦区期中)计算:(−412)÷725×(−43)×(−125).36.计算:(1)(﹣32)÷4×(−1 16);(2)(−23)×(−85)÷(﹣178).37.(2024•香坊区校级开学)计算.(1)813÷6+16×413. (2)78÷(1−15÷415).38.计算: (1)1.25÷(﹣0.5)÷(﹣212)×1 (2)(﹣81)÷(+314)×(−49)÷(﹣1113)39.(2023秋•秀峰区校级月考)计算: (1)(−81)÷94×49÷(−16).(2)−5÷(−127)×45×(−214)÷7.题型七 有理数加减乘除混合运算40.(2023秋•昌邑区校级期末)(−112+13−12)÷(−118).41.计算:24÷(12−13+14−16)42.(2023春•浦东新区校级期中)−142÷(16−27+23−314)43.(2024春•呼兰区校级月考)用简便方法计算:(1)(−178)−(−214)+(−414)−(+318);(2)−24×(−12+34−13)−|−312|.44.计算:(1)75×(13−12)×37÷54; (2)(56−37+13−914)÷(−142).45.计算.(1)(﹣1155)÷[(﹣11)×(+3)×(﹣5)];(2)375÷(−23)÷(−32)(3)(−1313)÷(−5)+(−623)÷(−5).46.计算:(1)(+1.25)÷(﹣0.5)×(−85);(2)﹣2.5÷(−516)×(−18)÷(−14). (3)(﹣45)÷(﹣9)+4×(﹣34) (4)2111()()32305⎡⎤-÷⨯-⎢⎥⎣⎦47.(2023春•松北区校级月考)计算:(1)8+(−14)﹣5﹣(﹣0.25);(2)﹣36×(−23+56−712−89);(3)﹣2+2÷(−12)×2;(4)﹣3.5×(16−0.5)×37÷12. 题型八 利用“倒数法”解决问题48.阅读下列材料:计算:112÷(13−14+112) 解:原式的倒数为 (13−14+112)÷112 =(13−14+112)×12 =13×12−14×12+112×12 =2故原式=12请仿照上述方法计算:(−142)÷(16−314+23−27)49.阅读材料,回答问题.计算:(−115)÷(15−13). 解:方法一:原式=(−115)÷(315−515)=(−115)÷(−215)=12. 方法二:原式的倒数为:(15−13)÷(−115)=(15−13)×(﹣15)=15×(﹣15)−13×(﹣15)=﹣3+5=2故原式=12.用适当的方法计算:(−130)÷(23−110+16−25).50.(2023秋•望花区期末)我们知道乘法有分配律,遇到比较复杂的混合运算时.有的时候可以运用乘法分配律很容易去解决.(1)计算:(13−16+14)×12; (2)由于除法没有分配律,在遇到除法的类似混合运算时,我们计算会很困难,在学完倒数时,小明对这种除法的混合运算有了自己的想法:先算这个式子的倒数,再利用倒数的意义得出原结果下面是小明的计算过程120÷(14−15+12) 解:原式的倒数为:(14−15+12)÷120 =(14−15+12)×20=14×20−15×20+12×20=5﹣4+10=11.故原式=111 请你根据对小明的方法的理解,计算(−124)÷(14−512+38).。
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
有理数乘除练习题有理数是我们数学中的一个重要概念,它包括整数、分数和小数。
在日常生活中,我们经常会遇到有理数的乘除运算。
下面,我将为大家提供一些有理数乘除的练习题,帮助大家巩固和提高自己的数学能力。
1. 乘法练习题(1) 计算:(-3) × 4 = ?解答:根据乘法的性质,负数与正数相乘的结果是负数。
所以,(-3) × 4 = -12。
(2) 计算:(-2) × (-5) = ?解答:根据乘法的性质,两个负数相乘的结果是正数。
所以,(-2) × (-5) = 10。
(3) 计算:2/3 × (-9/4) = ?解答:将分数转化为小数,得到2/3 × (-9/4) = 2/3 × (-2.25)。
然后,进行小数的乘法运算,得到-1.5。
2. 除法练习题(1) 计算:(-12) ÷ 3 = ?解答:根据除法的性质,负数除以正数的结果是负数。
所以,(-12) ÷ 3 = -4。
(2) 计算:(-15) ÷ (-5) = ?解答:根据除法的性质,两个负数相除的结果是正数。
所以,(-15) ÷ (-5) = 3。
(3) 计算:6 ÷ (-2/3) = ?解答:将除数转化为倒数,得到6 ÷ (-2/3) = 6 × (-3/2)。
然后,进行分数的乘法运算,得到-9。
通过以上练习题,我们可以看到有理数的乘除运算规律。
对于乘法而言,符号的正负与乘数和被乘数的正负有关,同号得正,异号得负。
对于除法而言,符号的正负与被除数和除数的正负有关,同号得正,异号得负。
当然,对于分数的乘除运算,我们需要将其转化为小数进行计算,然后再将结果转化为分数形式。
除了以上的练习题,我们还可以通过一些实际问题来练习有理数的乘除运算。
比如:小明每天早上骑自行车上学,上学的路程是6.5公里,他共骑行了5天。
有理数的加减乘除混合运算练习题一、能力提升1.下列等式成立的是()A.(-5)÷(1-2)=(-5)÷(-1)B.1÷(-2 021)=(-2 021)÷1C.(-5)×6÷=(-5)×÷6D.(-7)÷=(-7)÷-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出的值最小,应填入的运算符号是()A.+B.-C.×D.÷3.一个容器装有1 L水,按照如下要求把水倒出:第1次倒出 L水,第2次倒出的水量是 L的,第3次倒出的水量是 L的,第4次倒出的水量是 L的,……按照这种倒水的方法,倒了10次后容器内剩余的水量是()A. LB. LC. LD. L4.用计算器计算:(-2.3)÷0.8×(-3)=.5.已知a=-1,b=,c=-20,则(a-b)÷c的值是.6.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果为24,请写出这样的一个算式: .7.已知=3,=10,=15,……观察上面的计算过程,寻找规律并计算=.8.计算:(1);(2)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱的销售情况制成表格如下:种类售价/元盈利/%甲种冰箱1500 25乙种冰箱1500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本.若盈利,盈利了多少?若亏本,亏本了多少?10.下面是小明计算-20÷的解题过程,他的计算正确吗?如果不正确,请改正.-20÷=-20÷=-20÷1=-2011.前进的道路:从起点——数字1出发,顺次经过每一个分岔口,选择+、-、×、÷四种运算之一进行运算,到达目的地时结果要恰好是10.你能找到前进的道路吗?道路不止一条,请你至少找出3条,并列出你的算式.12.已知有理数a,b,c满足=1,求的值.二、创新应用13.阅读下题解答:计算:分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(-24)=-16+18-21=-19.所以原式=-.根据阅读材料提供的方法,完成下面的计算:.答案:一、能力提升1.A2.C根据算式的特点,要使计算出的值最小,需使|-3□5|的值最大,故应填入“×”号.3.D4.8.6255.当a=-1,b=,c=-20时,(a-b)÷c=÷(-20)=÷(-20)=.6.答案不唯一,如:(4+4)×(-3)÷(-1)=247.210由题意可知,=210.8.解:(1)===-2+3-=1-.(2)×18-1.45×6+3.95×6=14-15+7-=6+=21.9.解:1500÷(1+25%)=1200(元),1500÷(1-25%)=2000(元).1200+2 000=3 200(元),1500×2=3000(元).3000-3200=-200(元).因此亏本了,亏本了200元.10.解:小明的计算不正确.原式=-20×5×5=-500.11.解:答案不唯一,如(1)[1-(-2)]×3+(-4)+5=10;(2)[1-(-2)]÷3-(-4)+5=10;(3)[1-(-2)+3+(-4)]×5=10;(4)1×(-2)+3-(-4)+5=10.12.解:由=1,得a,b,c必为一负二正,所以=-1.二、创新应用13.解:=×(-42)=-21+14-30+112=75.故原式=.。
有理数的乘除法练习题一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积一定为正。
(A)2.若干个不等于的有理数相乘,积的符号由负因数和正因数个数的差为决定。
(D)3.下列运算结果为负值的是(-7)×(-6)。
(A)4.下列运算错误的是1(6) 3.(B)5.若两个有理数的和与它们的积都是正数,则这两个数是符号相同的非零数。
(B)6.下列说法正确的是任何有理数都有倒数。
(C)7.关于0,下列说法不正确的是0有倒数。
(C)8.下列运算结果不一定为负数的是异号两数相加。
(C)9.下列运算有错误的是1÷(-3)=3×(-3)。
(A)10.下列运算正确的是3=3 1.(A)二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定相同。
2.如果两个有理数的积是负的,那么这两个因数的符号一定相反。
3.奇数个负数相乘,结果的符号是负数。
4.偶数个负数相乘,结果的符号是正数。
5.如果(1/4)×(1/3)×(4/2)>0,那么a/b>0.6.如果5a>0,0.3b0.7.-0.125的相反数的倒数是8.三、解答1.计算:1) -a答案:-a2) a+(-a)答案:02.计算:1) 8×(-a)答案:-XXX3.计算:1) (-1)×(-1)×(-1)×(-1)-(-1)×(-1) 答案:02) 1-(-a)答案:1+a4.计算:1) (+48)÷(+6)答案:82) (-3)÷5答案:-3/53) 4÷(-2)答案:-24) 0÷(-1000)答案:0若a>0,则:aa = a×a若a<0,则:aa = (-a)×(-a)1.对于表达式(1) -a,其结果为-a。
2.对于表达式(1) 8×(-a),其结果为-8a。
有理数乘除混合运算过关测试(三)(通用版)试卷简介:主要考查有理数的乘法法则和除法法则,灵活地利用有理数乘法交换律和结合律简化运算一、单选题(共25道,每道4分)1.计算的结果是( )A.-150B.-170C.150D.170答案:D试题难度:三颗星知识点:有理数乘除混合运算2.计算的结果是( )A.-700B.-580C.-680D.700答案:A试题难度:三颗星知识点:有理数乘除混合运算3.计算的结果是( )A.0.9B.-9C.9D.90答案:B试题难度:三颗星知识点:有理数乘除混合运算4.计算的结果是( )A.7B.0.7C.-7D.-0.7答案:A试题难度:三颗星知识点:有理数乘除混合运算5.计算的结果是( )A.144B.-144C.9D.-9答案:C试题难度:三颗星知识点:有理数乘除混合运算6.计算的结果是( )A.-290B.290C.145D.-145答案:A试题难度:三颗星知识点:有理数乘除混合运算7.计算的结果是( )A.23B.-18.4C.-23D.27.6答案:C试题难度:三颗星知识点:有理数乘除混合运算8.计算的结果是( )A.-10B.10C. D.答案:B试题难度:三颗星知识点:有理数乘除混合运算9.计算的结果是( )A.-50B.-5C.5D.50答案:B试题难度:三颗星知识点:有理数乘除混合运算10.计算的结果是( )A.6B.2C.-3D.-6答案:D试题难度:三颗星知识点:有理数乘除混合运算11.计算的结果是( )A.15B.-15C.-150D.1.5答案:A试题难度:三颗星知识点:有理数乘除混合运算12.计算的结果是( )A.-4B.4C. D.答案:B试题难度:三颗星知识点:有理数乘除混合运算13.计算的结果是( )A. B.C.3D.-3答案:D试题难度:三颗星知识点:有理数乘除混合运算14.计算的结果是( )A. B.C. D.答案:C试题难度:三颗星知识点:有理数乘除混合运算15.计算的结果是( )A.5B.-5C. D.答案:A试题难度:三颗星知识点:有理数乘除混合运算16.计算的结果是( )A.-170B.170C. D.答案:B试题难度:三颗星知识点:有理数乘除混合运算17.计算的结果是( )A.2B.-2C.-18D.18答案:D试题难度:三颗星知识点:有理数乘除混合运算18.计算的结果是( )A.-30.5B.30.5C.61D.-61答案:C试题难度:三颗星知识点:有理数乘除混合运算19.计算的结果是( )A. B.C. D.答案:B试题难度:三颗星知识点:有理数乘除混合运算20.计算的结果是( )A.-15B.15C.30D.-30答案:C试题难度:三颗星知识点:有理数乘除混合运算21.计算的结果是( )A.60B.-60C. D.答案:A试题难度:三颗星知识点:有理数乘除混合运算22.计算的结果是( )A. B.C.40D.-40答案:C试题难度:三颗星知识点:有理数乘除混合运算23.计算的结果是( )A.-0.3B.0.3C.-3D.3答案:C试题难度:三颗星知识点:有理数乘除混合运算24.计算的结果是( )A.35B.-35C.2240D.-2240答案:B试题难度:三颗星知识点:有理数乘除混合运算25.计算的结果是( )A.-100B.10C.100D.-10答案:C试题难度:三颗星知识点:有理数乘除混合运算。
有理数的乘除法过关训练试题和答案
有理数乘除法
1. 有理数的乘法法则及符号法则;
2. 有理数的乘法运算律及其应用;
3. 有理数的除法法则,倒数的意义;
二. 知识要点:
1. 有理数的乘法法则:两数相乘同号得正,异号得负,绝对值相乘。
任何数与0相乘,积为0
2. 有理数乘法运算步骤:(1)先判断积的符号(2)再把绝对值相乘。
有理数的乘法符号法则多个有理数相乘时积的符号由负因数个数决定,当负因数个数为奇数时,积为负;当负因数个数为偶数时,积为正,积的绝对值等于各个因数的绝对值的积。
3. 乘法交换律:ab=ba
乘法结合律:a(bc)=(ab)c
乘法分配律:a(b+c)=ab+ac
4. 有理数的`除法法则:除以一个数等于乘以这个数的倒数;
倒数的意义:乘积是1的两个数互为倒数;
三. 重点、难点、考点:
重点:有理数乘除法;
难点:运算律的灵活运用;
考点:有理数乘除法是中考的必考内容,一般是融合在其他题
目中考查,有时以填空,选择或简答题的形式出现。
有理数乘除混合运算,还可以开放性、`探索性题目出现。
【典型例题】
例1. 计算:(1)5(-4)
(2)(-4)(-9)
(3)(-0.6)(-5)
(4) (- )
解:(1)5(-4)=-(54)=20
(2)(-4)(-9)=49=36
(3)(-0.6)(-5)=0.65=3
(4) (- ) =-( )=-
指导:(1)(4)题是异号两数相乘,先确定积的符号为-,再把绝对值相乘;(2)(3)题是同号两数相乘,先确定积的符号为+,再把绝对值相乘。
例2. 计算:(1)(-4)9(-2.5)
(2)( )(-48)
解:(1)(-4)9(-2.5)=(-4)(-2.5)9=109 =90
(2)( )(-48)
= (-48)+ (-48)- (-48)
=(-12)+(-16)-(-8)
=-20
指导:(1)用乘法交换律和结合律,(2)用乘法分配律。
在运用乘
法对加法的分配律时,不要漏乘某个加数或弄错符号,要细心。
例3. -3的倒数是 ( )
A. B. C. -3 D. 3[来源:]
解:A
指导:倒数概念以及有理数除法运算是中考命题热点。
求一个数的倒数,用1除以这个数的商即是。
注意:负数的倒数是负数,0没有倒数。
例4. 计算(-16)5
解:(-16)5 =(-16) =-
指导:这是一道乘除混合的同级运算题,没有括号,按照自左到右的顺序运算,不应先算5 。
例5. 中百超市推出如下优惠方案:
(1)一次性购物不超过100元,不享受优惠;
(2)一次性购物超过100元,但不超过300元一律九折;
(3)一次性购物超过300元一律八折;某人两次购物分别付款80元,252元,如果他将这两次所购商品一次性购买,则应付款( )。
A. 288元
B. 332元
C. 288元或316元
D. 332元或363元
解:C
指导:本题渗透了分类讨论思想。
当252元的实际价值是在300元以内时的实际价值应为:2520.9=280元,故应付款
(280+80)0.8=288(元);当252元的实际价值是在300元以上时的实际价值应为:2520.8=315(元),故应付款(315+80)0.8=316(元)
【思想方法小结】
乘除法运算中同学们要善于转化,除法转化为乘法,复杂的转化为简单的,异号转化为同号。
【模拟试题】(答题时间:60分钟,满分100分)
一. 选择题(每题4分,共20分)
1. 一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是( )
A 180元
B 200元
C 240元
D 250元
2. 如果 0, 0,则下列说法错误的是( )
A. ac0
B. ab0
C. ac0
D. bc0
3. 下列说法错误的是 ( )
A. 小于-1的数的倒数大于其本身;
B. 大于1的数的倒数小于其本身
C. 一个数的倒数不可能等于它本身
D. (m-n)(其中mn)的倒数是
4. 下列说法不正确的是( )
A. 一个数与它的倒数之积是1
B. 两个数的积为1,这两个数互为倒数
C. 一个数与它的相反数之商是1
D. 两数之商为-1,这两个数互为相反数。
﹡5. 已知abc0,ac,ac0,则下列结论正确的是:( )
A. a0,b0,c0
B. a0,b0,c0
C. a0,b0,c0
D. a0,b0,c0
二. (每题6分,共60分)
6. 计算(能用简便方法的用简便方法)
(1)( )( )
(2)0(-2007)
(3) (- )
(4)( ) (-0.25)
(5)(-1)(-100)(-0.01)(-10)
(6)(-14)( - )
(7)3(-4)+(-30)( - )
(8)( ) (-0.5)
﹡(9)(-56)(-32)-(-44)32
﹡(10)15 -16 -20
三. (20分)
﹡7. 已知︱x︱=3,︱y︱=4,xy0。
求︱3x-5y︱的值。
【试题答案】
一. 1. B 2 A 3 C 4 C 5 B
二. 6. (1)1
(2)0
(3)-6
(4)
(5)10
(6)原式=(-14) +14 =-2+5=3
(7)原式=-12+(-30) -(-30) =13
(8)2
(9)原式=(-32)[(-56)+(-44)]=3200
(10)原式= (15-16-20)= 14
三.
7. 解:因为︱x︱=3,︱y︱=4,所以x=3,y= 4,
因为xy0 所以当x=3时,y=4;当x=-3时,y=-4
所以当x=3,y=4时,︱3x-5y︱=︱33-54︱=11
所以当x=-3,y=-4时,︱3x-5y︱=︱3(-3)-5(-4)︱=11。