当前位置:文档之家› 初中数学概念

初中数学概念

初中数学概念
初中数学概念

二、初中数学知识框架——四大板块、一大支柱

(一)数:

1、实数知识:此部分知识是初中数学基础中的基础,学生尤其需要掌握的是各个概念的代数和几何意义,并能在解答题目的过程中熟练运用各个概念所蕴含的性质。

1.1实数的定义及分类

1.2实数的大小比较

1.3实数的运算

1.4实数中的四大重点概念——数轴、相反数、绝对值和平方根

2、数字的规律探索:

2.1裂项求和发现数字的规律

2.2错位相减巧解算术

2.3整体代入以及换元法简化

(二)式

1、代数式:

代数式是方程和不等式以及函数的基础。因而理解代数式的相关概念、性质是学好后面内容的基础。

1.1代数式的定义及分类

1.2整式的定义、分类及运算

1.3乘法公式和因式分解

1.4分式和根式

2、等式及方程

2.1等式的概念及性质

2.1方程、方程的解、方程的求解原理及步骤

2.2一元一次方程

2.3二元一次方程组

2.4一元二次方程

2.5特殊方程——如“含绝对值的方程”

3、不等式及不等式组

3.1不等式的定义及性质

3.2不等式的解、求解原理及不等式组的解

(三)形

1、图形初步

此部分同样是学好后面几何知识的基础。主要从线和角两个基础来讲解,线和角也是今后几何中最主要的两个部分。

2、三角形和四边形

2.1三角形基础(定义、性质、分类)

2.2三角形全等

2.3三角形相似

2.4特殊三角形

2.5解直角三角形

2.6函数中的三角形(见(五)“数形结合”)

3、圆

3.1圆的有关性质

3.2与圆有关的位置关系

3.3圆的有关计算

3.4圆与角、线的关系

3.5圆的函数问题(见(五)“数形结合”)

4、三视图和直棱柱

5、图形的变换

(四)用

1、统计和数据

2、概率和可能性

3、数学模型的建立和数量关系的分析

(五)数形结合——函数:

函数是初中数学中对抽象思维能力考查的重点和难度,也是数形结合的典型代表。

1、一次函数

1.1平面直角坐标系

1.2变量与函数

1.3一次函数的形式、图像和性质及应用

2、反比例函数

2.1反比例函数的定义、图像和性质

2.2反比例函数与三角形、四边形面积综合

3、二次函数

3.1二次函数的定义、图像、形式和性质3.2二次函数的应用

4、函数与方程

4.1一次函数与一元一次方程

4.2二次函数与二元一次方程

5、函数与不等式

5.1一次函数与一元一次不等式(组)

5.2二次函数与一元二次不等式

6、函数综合

6.1三类函数综合

6.2函数与平面图形

三、初中数学思想方法

(一)初中数学问题分析基本思想

1、数形结合思想

2、转化思想

3、分类讨论思想

4、整体思想

5、建立模型解决实际问题思想

6、消元降次思想

7、逆向推理思想

8、方程思想

(二)初中数学常用数学方法

1、割补法求面积

2、归纳法、枚举法和类比法

3、整体代换法

4、待定系数法

5、代数计算法

6、配方法与设元法

四、初中数学专题(中考考点分析)

1、有理数四大概念及规律探索

2、整体代换求代数式的值

3、方程、不等式与实际问题的应用

4、统计与概率

5、图形的基本概念、性质

6、三角形、四边形和圆形面积相关问题

7、函数基本形式、性质和图像

8、函数与图形结合及实际应用

初中数学概念整理

1、整数 整数(Integer ):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n 、… (n 为整数)为负整数。正整数、零与负整数构成整数系。 一个给定的整数n 可以是负数(n ∈Z-),非负数(n ∈Z*),零(n=0)或正数(n ∈Z+). 如何分类 我们以0为界限,将整数分为三大类 a 、正整数,即大于0的整数如,1,2,3,…,n ,… b 、0 既不是正整数,也不是负整数,他是介于正整数和负整数的数 c 、负整数,即小于0的整数如,-1,-2,-3,…,-n ,… 2、分数 把整体“1”平均分成若干份,表示这样的一份或几份的数叫做分数。分母表示把一个物体平均分成几份,分子是表示这样几份的数。把1平均分成分母份,表示这样的分子份。 分子在上分母在下,(如这样表示b a )也可以把它当做除法来看,用分子除以分母,相反除法也可以改为用分数表示。 百分数与分数的区别 (1)意义不同,百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可带单位名称。 (2)百分数的分子可以是整数,也可以是小数;而分数的分子不能是小数只是除0以外的自然数;百分数不可以约分,而分数一般通过约分化成最简分数。 (3)任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义。 (4)应用范围的不同,百分数在生产和生活中,常用于调查、统计、分析和比较,而分数常常在计算、测量中的不到整数结果时使用。 3、正数与负数 正数:大于0的数叫正数。如1、15、3000、 负数:比零小(<0 )的数。用负号(即相当于减号)“-”标记。如-2、-5.33、-45、-0.6等。 任何正数前加上负号都等于负数. 负数比零,正数小 在数轴线上,负数都在0的左侧,没有最大与最小的负数,所有的负数都比自然数小。 七年级上1.1 4、有理数 整数和分数统称为有理数,任何一个有理数都可以写成分数n m (m 、n 都是整数,且n≠0)的形式。 无限不循环小数和开根开不尽的数叫无理数 值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number ,而rational 通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio ,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很

初中数学概念及定义总结

初中数学概念、定义总结及常用公式 1.三角形三条边的关系定理:三角形两边的和大于第三边推论:三角形两边的差小于 第三边 2.三角形内角和定理三角形三个内角的和等于180° 推论1 直角三角形的两个锐角 互余推论2 三角形的一个外角等于和它不相邻的两个内角和推论3 三角形的一个外角大雨任何一个和它不相邻的内角 3.角的平分线性质定理在角的平分线上的点到这个角的两边的距离相等判定定理到 一个角的两边的距离相等的点,在这个角的平分线上 4.等腰三角形的性质定理等腰三角形的两底角相等推论1 等腰三角形顶角的平分线 平分底边并且垂直于底边推论2 等边三角形的各角都相等,并且每一个角等于60° 5.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相 等推论1 三个角都相等的三角形是等边三角形推论2 有一个角等于60°的等腰三角形是等边三角形推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 6.线段的垂直平分线定理线段垂直平分线上的点和这条线段两个端点的距离相等逆 定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上轴对称和轴对称图形定理1 关于某条之间对称的两个图形是全等形定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上逆定理若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 7.勾股定理直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2+ b2= c2 勾股定理的逆定理勾股定理的逆定理如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 8.四边形定理任意四边形的内角和等于360° 9.多边形内角和定理 n边形的内角的和等于(n - 2)·180° 推论任意多边形的外 角和等于360° 10.平行四边形及其性质性质定理1 平行四边形的对角相等性质定理2 平行四边形的 对边相等推论夹在两条平行线间的平行线段相等性质定理3 平行四边形的对角线互相平分平行四边形的判定判定定理1 两组对边分别平行的四边形是平行四边形判定定理2 两组对角分别相等的四边形是平行四边形判定定理3 两组对边分别相等的四边形是平行四边形判定定理4 对角线互相平分的四边形是平行四边形判定定理5 一组对边平行且相等的四边形是平行四边形 11.矩形性质定理 1 矩形的四个角都是直角性质定理 2 矩形的对角线相等推论直角 三角形斜边上的中线等于斜边的一半判定定理 1 有三个角是直角的四边形是矩形判定定理2 对角线相等的平行四边形是矩形 12.菱形性质定理1 菱形的四条边都相等性质定理2 菱形的对角线互相垂直,并且每一 条对角线平分一组对角判定定理1 四边都相等的四边形是菱形判定定理2 对角线互相垂直的平行四边形是菱形 13.正方形性质定理1 正方形的四个角都是直角,四条边都相等性质定理2 正方形的两 条对角线相等,并且互相垂直平分,每条对角线平分一组对角 14.中心对称和中心对称图形定理 1 关于中心对称的两个图形是全等形定理 2 关于 中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点

初中数学的教学理念概要

初中数学的教学理念 黄店镇中学刘奉阵 随着课改的不断深化,数学教师原有的一些教学观念、教学方法和教学手段都受到了新的冲击和新的挑战,如何更好适应课改的要求,这就需要我们不断更新教学观念,不断学习总结,才能更好地服务于数学教学.下面谈谈我学习初中数学新课标的几点体会: 一、更新观念,实施新教材 (一以人为本,培养数学能力。 在教学过程中,教师要树立“以人为本”的教学观,关注学生。因此,我们在实际的教学中,要以学生为主体,教师为主导,以问题为主线,全面培养学生发现问题、提出问题、解决问题的能力。在教学中我们要深入钻研教材,学习新课标,转变观念,更新认识,在选择教法、设计训练时从培养能力、提高素质的角度出发;通过观察、操作、想象、推理、交流等经验和体验,发展空间观念、促进分析、归纳等能力的发展,更有意识地培养学生的积极的情感、态度,这对后面学生的数学学习将产生深远的影响。通过学习,学生逐渐形成了“数学有趣”、“我非常喜欢数学”的数学观念。 (二、设计数学活动,锻炼学生的动手能力 在教学中设计活动体验数学.要把课堂上所学数学知识应用于生活实际,往往被错综复杂的生活现实所难住,这就要加强户外测量、实践操作,培养把所学知识运用于生活实际的能力.例如,教了“三 角形全等的条件”,让学生通过剪纸、动手操作等活动,要学生猜想、归纳、度量等,得出三角形全等的条件。在这个活动中,学生增长了知识,锻炼了能力,所以,我们在教学中应向学生提供从事数学活动的机会,培养学生乐于动手的意识,增强学生的动手能力. (三转变学习方式,确保教学正常进行。

教师设置问题,使学生通过思考而进入学习角色,在教学的过程中,通过学生提出的问题,学生在学习的过程中生成的问题是发现问题、提出问题、分析问题和解决问题的过程,这就需要在教学中注重学生的问题意识培养。创设问题情境,引起学生的思维,吸引学生积极动脑,主动地参与学习,同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳,找到解决问题的方法。 质疑,即对学生提出的问题进行交流讨论。在教学过程中当学生不满足于教师的讲解,对教师的讲解产生疑问时,教师应加以肯定和鼓励,不要忙于把现成的答案告诉学生。而应采用交流讨论的形式,让学生充分发表意见,互相启发,触发思维,寻求正确的答案,从而培养学生好求甚解、凡事多问的精神,让学生“学会与人合作,并能与他人交流思维的过程和结果”。 二、借助现代信息技术手段辅助教学,提高数学教学效益 《标准》指出“数学课程的设计与实施应重视运用现代信息技术”,“把现代信息技术作为学生学习数学和解决问题的强有力工具”.现代信息技术可把数学知识的产生、形成和发展的过程充分地 展示给学生,可通过生动的视听创设情境进行概念教学,使某些抽象的概念直观化;通过动画表现出一般与特殊、运动与变化,让学生领悟其中的数学思想和数学方法。而互联网的逐步普及也为教学提供了一个强大的平台,教师在教学中,可适当地引导学生利用互联网强大的资源进行数学学习, 三、教与学过程的统一 在教学过程教师要不断地改进教法、指导学法,把教与学很好地统一起来。 1、要着眼于诱导,变学生“苦学”为“乐学”,使学生“能积极参与数学学习活动,对数学有好奇心与求知欲”。教师要千方百计诱导学生产生强烈的求知欲与正确的学习动机,以及浓厚的兴趣和高昂的学习热情,使学生获得成功的喜悦和体验,保持旺盛的学习情绪和精力,全身

初中数学所有公式概念

一、几何部分: 1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂 直 6 直线外一点与直线上各点连接的所有线 段中,垂线段最短 7 平行公理:经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,(内错角相等),(同旁内角互补)两直线平行 10两直线平行,同位角相等(内错角相等),(同旁内角互补 11 定理三角形两边的和大于第三边 12推论三角形两边的差小于第三边 13三角形内角和定理三角形三个内角的和等于180° 14 推论1 直角三角形的两个锐角互余 15 推论2 三角形的一个外角等于和它不相邻的两个内角的和 16 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 SAS、ASA、AAS、SSS 两个三角形全等 26 HL 两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的 两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系2 2 2c b a= +,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53定理2 平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等55定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

(完整版)初中数学概念课教学模式的研究

初中数学概念课教学模式的研究 郭耀京、丁振棠、邓振新、邓燕、曾敏芝、高月、王星赞、杨桂春 一、模式研究背景 概念是思维的基本形式,具有确定研究对象和任务的作用。是用词或符号来概括事物的本质,是人对客观事物的数量关系和空间形式的本质属性在人脑中的反映。它是数学知识的基石,是数学知识的重要组成部分,人们在生活,学习,工作中时时接触概念,不断地学习概念,加深对概念的正确认识,同时运用概念进行工作,学习和生活.新的数学课程标准指出要让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,而正确理解数学概念是掌握数学基础知识的前提.因此,数学概念教学是数学基础知识和基本技能教学的核心。 掌握数学概念是学好数学的基础,是学好定理、公式、法则和数学思想方法的前提,是提高解题能力的关键,是解决例题和练习题的依据。但在传统的数学概念课教学中,老师轻视概念的形成过程,课堂上采用的教学方式一般是学生自己看课本或教师运用讲授法进行讲解,然后学生就做例题和练习题。这种概念课的教学方式,产生的后果是学生对数学概念的感性认识很浅,理解一知半解;学习得到的概念太死板,不能灵活运用到学习中去;学生的学习能力也得不到提升和培养,学习积极性不高。为了突破这个教学难点,改变原来的教学方式,充分发挥学生的主体作用,打造切实可行的高效课堂。 新课程实施以来,我们初中数学学科一直致力于新形势下的课堂教学模式研究,取得了一定成果。结合自身学科特点,吸取先进教学理念,探索适合自身课堂教学的有效模式,真正做到了知识内容问题化、教学过程互动化、活动结论规律化、问题解决书面化、反思简记习惯化、评价方式多样化,从而学生思维的打开、飞跃、完善过程暴露无遗,使课堂教学更有针对性与实效性。 二、基本模式 数学概念教学过程是在教师指导下,调动学生认知结构中的已有感性经验和知识,去感知理解材料,经过思维加工产生认识飞跃(包括概念转变),最后组织成完整的概念图式的过程。为了使学生掌握概念、发展认识能力,必须扎扎实实地处理好每一个环节。数学概念教学模式为:引入—形成—巩固与深化。(一)、概念的引入 概念的引入是数学概念教学的必经环节,通过这一过程使学生明确:“为什么引入这一概念”以及“将如何建立这一概念”,从而使学生明确活动目的,激发学习兴趣,提取有关知识,为建立概念的复杂智力活动做好心理准备。新课程标准提倡通过主动探究来获取知识,使学生的学习活动不再单纯地依赖于教师的讲授,教师努力成为学习的参与者、协作者、促进者和组织者。因此,在引入过程中教师要积极地为学生创设有利于他们理解数学概念的各种情境,给学生提供广阔的思维空间,让他们逐渐养成主动探究的习惯。一般可采取下述方法: 1.联系概念的现实原理引入新概念。在教学中引导学生观察有关事物、模型、图识等,让学生在感性认识的基础上,建立概念,理解概念的实际内容,搞清楚这些概念是从什么问题上提出来的。例如:在圆概念的教学时,让学生动手做实验,取一条定长的细绳,一端固定在图板上,另一端套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?学生通过动手实践,观察所画出来的图形,归纳总结出圆的定义。

初中数学概念课堂教学设计

专题讲座 初中数学概念课堂教学设计 俞京宁(北京教育学院丰台分院) 学生在数学学习中有一个现象:当解决数学某一问题遇到困难时,如果追根求源,就会发现,往往是由于他们在某一个或某一些概念处产生问题,而导致思维受阻。许多事实例证了正确地理解数学概念是牢固掌握数学知识,灵活运用数学知识解决问题的金钥匙。基于此,我们就要对数学概念的本质进行分析,并且希望找到合理的概念教学的模式,以使教师的教课与学生的数学学习轻松而有成效。 一、什么是数学概念? 概念是反映客观事物本质属性的思维形式。数学概念,就是事物在数量关系和空间形式方面的本质属性,是人们通过实践,从数学所研究的对象的许多属性中,抽出其本质属性概括而形成的。它是进行数学推理、判断的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点。 可见,数学概念是学生必须掌握的重要基础知识之一,是数学基本技能的形成与提高的必要条件,也是数学教学的重点内容。为什么学生对数学概念的理解总是停留在表层,往往知其然,并不知其所以然?教学中如何进行有效地概念教学,以使学生真正的理解概念?这是每名教师都在思考的问题。 二、目前概念教学的现状 数学概念具有抽象性、发展性、生成性等特点,它的特点以及初中学生认知的思维水平的限制性,决定了他们在学习过程中,会对一些抽象的、不常接触的概念不容易理解,需要教师进行合理的教学设计,使学生能够参与到概念的发生与形成过程中,了解概念的来龙去脉,理解概念的内涵与外延,弄清概念之间的区别与联系,在头脑中形成相关概念的网络,以达到掌握并灵活运用的程度。对于概念教学这个问题,在新课程实施以来,广大教师都有了一定的认识,加强了对概念教学的重视程度。但由于各种各样的原因,事实上,大部分教师只是停留在思想的层面上,而行动上仍然是传统的教学模式。 案例 1 :前不久听一位教师关于“平方根”的概念教学课,上课开始,教师呈现一组面积不同的正方形,要求学生求边长x 。

初中数学概念课堂教学设计

初中数学概念课堂教学设计 杜红卫学生在数学学习中有一个现象:当解决数学某一问题遇到困难时,如果追根求源,就会发现,往往是由于他们在某一个或某一些概念处产生问题,而导致思维受阻。许多事实例证了正确地理解数学概念是牢固掌握数学知识,灵活运用数学知识解决问题的金钥匙。基于此,我们就要对数学概念的本质进行分析,并且希望找到合理的概念教学的模式,以使教师的教课与学生的数学学习轻松而有成效。 一、什么是数学概念? 概念是反映客观事物本质属性的思维形式。数学概念,就是事物在数量关系和空间形式方面的本质属性,是人们通过实践,从数学所研究的对象的许多属性中,抽出其本质属性概括而形成的。它是进行数学推理、判断的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点。 可见,数学概念是学生必须掌握的重要基础知识之一,是数学基本技能的形成与提高的必要条件,也是数学教学的重点内容。为什么学生对数学概念的理解总是停留在表层,往往知其然,并不知其所以然?教学中如何进行有效地概念教学,以使学生真正的理解概念?这是每名教师都在思考的问题。 二、目前概念教学的现状 数学概念具有抽象性、发展性、生成性等特点,它的特点以及初中学生认知的思维水平的限制性,决定了他们在学习过程中,会对一些抽象的、不常接触的概念不容易理解,需要教师进行合理的教学设计,使学生能够参与到概念的发生与形成过程中,了解概念的来龙去脉,理解概念的内涵与外延,弄清概念之间的区别与联系,在头脑中形成相关概念的网络,以达到掌握并灵活运用的程度。对于概念教学这个问题,在新课程实施以来,广大教师都有了一定的认识,加强了对概念教学的重视程度。但由于各种各样的原因,事实上,大部分教师只是停留在思想的层面上,而行动上仍然是传统的教学模式。 案例 1 :前不久听一位教师关于“平方根”的概念教学课,上课开始,教师呈现一组面积不同的正方形,要求学生求边长 x 。 这组题对于初二的学生来讲,能够很快的得到答案。由于边长都非负,所以学生的第一反应说出的都是这组数的算术平方根,因为教师设计要讲平方根,所以要求学生写出计算过 程,并强调,然后取正舍负,再由这四个例子进行抽象概括出平方根与算数平

初中数学概念大全

初中数学概念大全 1.1有理数 1.1.1有理数的定义:整数和分数的统称。 1.1.2有理数的分类: (1)分为整数和分数。而整数分为正整数、零和负整数;分数分为正分数和负分数。 (2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分 数。 1.1.3数轴 1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 1.1.3.2数轴的三要素:①原点②正方向③单位长度 1.1.3.3每个有理数都能用数轴上的点表示 1.1.4相反数 1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0 1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数 1.1.4.3相反数的判别 (1)若a+b=0,则a 、b 互为相反数 (2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。 1.1.5倒数 1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则a、b互为倒数)注:零没有倒数。 1.1.6绝对值 1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣) 1.1.6.2绝对值的性质:∣a∣≥0 1.1.7有理数大小的比较 1.1.7.1正数大于0,负数小于0 1.1.7.2正数大于负数 1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就 小,绝对值小的这个数就大。 1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。 1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。 1.1.8有理数的加法 1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号 两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等 于0)③任何有理数加0仍等于这个数。 1.1.8.2加法交换律在有理数加法中仍然适用,即:a+b=b+a 1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c 1.1.9有理数的减法 1.1.9.1运算法则:减去一个数等于加上这个数的相反数 1.1.9.2有理数减法—转化→有理数加法 1.1.10有理数的乘法 1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负负得 正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号由负因式

新课标下的初中数学概念教学的研究”微型课题研究

新课标下的初中数学概念教学的研究”微型课题研究“新课标下的初中数学概念教学的研究”微型课题研究阶段总结报告 学概念是数学内容的基本点,是逻辑导出定理、公式、法则的出发点,是建立理论系统的着眼点;同时,它又是学生认知的基础,是学生进行数学思维的核心。因此概念在数学教与学中有着重要的地位。 数学概念是数学知识系统中的基本元素,是解决数学问题的前提,是数学研究对象的高度抽象和概括,它反映了数学对象的本质属性,是最重要的数学知识之一。学生在运用数学概念进行、判断的过程中要得出正确的结论,首先要正确地掌握概念。正确理解概念是学好数学的基础,是决定数学教学效果的首要因素。因此,概念教学在数学教学中有着不容忽视的地位。 对基本概念的教学一直是比较薄弱的,不少教师讲题时头头是道,十分生动,总有说不完的话,而讲基本概念时总是干巴巴的,没有几句话,有的教师对一些重要概念一带而过,很快就转入解题教学中去,这种教学形式是不利于学生对概念的正确理解的,由于初中生的知识水平,对很多概念的背景知识不可能展开说得很多,但总希望能把有关概念的背景、产生、内涵,适当地讲清楚。 国内外关于数学概念教学理论研究是比较多的,对于一些概念课授课方法也是有研究的。但是那些理论的得出和经验的总结都是特定教育环境下的产物;而对于今天所推进的新课程实验(特别是在我国刚刚开始实施阶段),初中数学概念教学理论研究还几乎是一片空白。对于实践研究就更不足为谈了。 还有,对概念教学还有一个记忆与理解的关系问题,对一些重要的基本概念,我们要求学生准确记忆,但这种记忆不是死记硬背。我们时常可以看到有的教师在课堂上要求全班学生一起背某一段定义、定理。学生整齐划一,如同背古诗一样背

初中数学的基本概念

初中数学的基本概念 数学 SHU XUE 第一章有理数 一.基本概念 1.大于0的数叫做正数;小于0的数叫做负数;0既不是正数也不是负数. 注(1)正负数通常用来表示一对具有相反意义的量.(2)不一定是负数. (3)负数<0<正数.(要会比较两个数的大小) 2有理数"或有理数 注:了解几个概念,"正整数"、"负整数"、"非正整数"、"非负整数". 3.数轴的三要素:原点、正方向和单位长度.(判断是不是数轴的依据) 4.(1)相反数:只有符号不同的两个数叫做互为相反数. (2)倒数:乘积为1的两个数叫做互为倒数. (3)绝对值:数轴上表示数的点与原点的距离叫做数的绝对值.

注:① 互为相反数的两数之和为0;互为倒数的两数之积为1. ② 0的相反数是0;0的绝对值是0;0没有倒数. ③ 出现"平方"、"绝对值"、"距离"等关键字的题目,一般有两个答案. 例如:平方为9的数有±3;绝对值为3的数有±3;距离原点3个单位长度的点表示的数是±3. 注:要求能够熟练、快速、准确的求出任意一个数的相反数、倒数(0除外)和绝对值. 相反数 绝对值 倒数 正数 负数

正数 正数 负数 正数 正数 负数 0 0 0 不存在 5.科学记数法:把一个大于10的数表示成的形式,就

叫做科学记数法. 注:是整数位只有一位的数,是正整数. 6(1)近似数:它是相对于精确数来说的. (2)有效数字:从一个数的左边第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字. 二.有理数的运算法则 1.加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加. (2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. (3)0加任何数都得任何数. 2.减法法则: 减去一个数,等于加上这个数的相反数.即 注:加上一个数等于减去这个数的相反数.例如. 3.乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘. (2)0乘任何数都得0. 4.除法法则:

最新人教版初中数学常用概念、公式和定理

初中数学常用的概念、公式和定理 初中数学常用概念,初中数学常用公式,初中数学常用定理,初中数学公式汇总,初中数学必考公式。 1.整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,-- ,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2.绝对值:a≥0丨a丨=a;a≤0丨a丨=-a. 如:丨-丨=;丨3.14-π丨=π-3.14. 3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这 个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:-40700=-4.07×105,0.000043=4.3×10-5. 5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数 的小数点每移动3位,立方根的小数点就向相同方向移动1位. 如:已知=0.4858,则=48.58;已知=1.558,则=0.1588. 6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. ②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多- 项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式. 7.幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=n, 特别:()-n=()n.⑦a0=1(a≠0). 如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(- 3.14)0=1,(-)0=1. 8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2. ③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a- b)2=(a+b)2-4ab. 9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平 方差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止. 10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法 应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.

【精品】初中数学所有概念和公式

一、数 正数:正数大于0 负数:负数小于0 0既不是正数,也不是负数;正数大于负数 整数包括:正整数,0,负整数 分数包括:正分数,负分数 有理数包括:整数,分数/有限小数,无限循环小数 数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向 任何一个有理数(实数)都可以用数轴上的一个点表示,点和数是一一对应的 两个数只有符号不同,其中一个数为另一个的相反数;两个互为相反数 0的相反数就是0 在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等 数轴上的两个点表示的数,右边的总比左边的大 绝对值:数轴上,一个数所对应的点与原点的距离 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0 两个负数比较大小,绝对值大的反而小 有理数加法法则:同号相加,不变符号,绝对值相加 异号相加,绝对值相等得0;不等,符合和绝对值大的相同,绝对值相减 一个数加0,仍是这个数 加法交换律:A+B=B+A 加法结合律:(A+B)+C=A + (B+C) 有理数减法法则:减去一个数,等于加上这个数的相反数 有理数乘法法则:两数相乘,同号得正,异号的负,绝对值相乘;任何数与0相乘,积为0 乘积为1的两个有理数互为倒数;0没有倒数 乘法交换律:AB=BA 乘法结合律:(AB)C=A (BC) 乘法分配律: A (B+C) =AB+AC 有理数除法法则:两个有理数相除,同号得正,异号的负,绝对值相除 0除以任何非0的数都得0;0不能做除数 乘方:求n个相同因数a的积的运算;结果叫幂;a是底数;n是指数;an读作a的n次幂有理数混和运算法则:先算乘方,再乘除,后加减;括号里的先算 无理数:无限不循环小数,有正负之分。 算数平方根:一个正数x的平方等于a,即x2=a,则x是a的算数平方根,读作“根号a”0的算数平方根是0 平方根:一个数x的平方根等于a,即x2=a,则x是a的平方根(又叫:二次方根) 一个正数有两个平方根,且互为相反数;0只有一个,是它本身;负数没有平方根 开平方:求一个数的平方根的运算;a叫做被开方数 立方根:一个数x的立方等于a,即x3=a,则x是a的立方根(又叫:三次方根) 每个数只有一个立方根,正数的是正数;0的是0;负数的是负数 开立方:求一个数的立方根的运算;a叫做被开方数 实数:有理数和无理数的统称,包括有理数,无理数。相反数、倒数、绝对值的意义相同和 有理数的。实数的运算法则和有理数相同。计算后出现带根号的无理数要化简,使被开方数不含分母和开得尽的因数 二、式

初中数学基本概念整理

初中数学课本基本概念整理 七上 有理数:整数和分数的统称。 数轴:用一条直线上的点表示数,这条直线叫做数轴。 原点:在直线上任取一个点表示数0,这个点叫做原点。 相反数:只有符号不同的两个数叫做互为相反数。 绝对值:一般地,数轴上表示午数a的点与原点的距离叫做数a的绝对值,记作|a|。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是。倒数:乘积是1的两个数互为倒数。 乘方:求n个相同因数的积的运算。 幂:乘方的结果。 科学计数法:把一个大于10的数表示成a?10n的形式(其中a大于或等于1且小于10,n是正整数) 单项式:数或字母的积的式子以及单独的一个字母或一个数。 系数:单项式中的数字因数叫做这个单项式的系数。 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。多项式:几个单项式的和。 多项式的项:多项式中每个单项式叫做多项式的项。 多项式的次数:多项式里,次数最高项的的次数,叫做这个多项式的次数。 整式:样单项式与多项式的统称。 同类项:所含字母相同,并且相同字幕的指数也相同的项叫做同类项。 合并同类项:把多项式中的同类项合并成一项。 合并同类项后,所得项的系数是合并前个同类项的系数的和,且字母连同它的指数不变。 方程:含有未知数的等式。 一元一次方程:只含有一个未知数,未知数的次数都是一,等号两边都是整式。等式的性质1:等式两边加(减)同一个数,(或式子结果仍相等。 等式的性质2:等式两边乘同一个数,或除以同一个不为的数,结果仍相等。 七下: 在同一平面内,过一点有且只有一条直线与已知直线垂直。 垂线段最短 直线外一点到这条直线的垂线段长度,叫点到直线的距离。 经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线互相平行。 同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行

浅谈初中数学如何备课(同名17189)

浅谈初中数学如何备课(同名17189)

浅谈初中数学如何备课 刘清华 各位老师:大家好!作为一名教师,大家都深知备课的重要性,因为我们不是教学生一节或两节课,而是教学生一学期,一年,两年甚至更多年,我们备课的好坏直接影响到学生的发展甚至学生的一生。因此我们身上的责任重大,我们可能没有时间批改作业,但我们坚决不能不认真备课就进课堂。备课工作如此重要,那么应该如何备好课呢?在以往备课的经验基础上,又应该如何做到有效备课呢?我谈一下自己浅显的认识,与大家交流,望大家批评指正。 一、备教学理念 认真研读《数学课程标准》,准确把握教学理念。《数学课程标准》中,原来的基本理念有“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。2011年改为现在的“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求。面向全体学生,提高数学素养,使每个孩子在数学上都得到不同的发展。这是综合考虑了学生发展、社会需求和数学学科发展的需要。我们应该形成“以学为主”的教学理念,在教学中学生是教学的主体,学生的“学”决定教师的“教”。我们在教学中要始终贯穿“以学为主”的教学理念,即在教学中培养学生的自主学习能力、合作学习能力和探究学习能力,培养具有批判精神、创新意识的学生。这才是“以人为本”理念的具体体现,这也是我们新课程改革倡导的理念。 二、备课程资源 备课程资源就是备教材以及和教材配套的一系列参考资料。教材是课程资源的一部分,是教学内容的主要载体,备教材是老师上好课的前提。首先,要熟悉教材。从教材的系统性入手,通晓全部教材,了解教材的来龙去脉,把数学知识有机的贯通成一个整体,并且了解各部分内容在整个教材中的地位和作用,确定教材的深广度。其次,要分析钻研教材。在熟悉教材的基础上,对教材内容进行全面深刻的剖析,研究教材的思想性,研究数学中的运动、发展、转化。根据新课改的要求,在概念教学中应侧重于观察、抽象、概括、辨析等能力的培养;在定理教学中侧重于归纳、类比、分析、综合等探究能力的培养;对教学内容较容易的侧重于自学能力的培养;对内容较难、较复杂的则侧重于分析问题和解决问题能力的培养。在运用教材的基础上,适当参考一些其他的数学教学辅助资料,进行概括总结,形成自己独特的见解,设计出生动的开放的数学趣味课堂。 三、备学生 学生是学习活动的主体,一切教学活动都必须围绕这一主体而进行,所以教师“教”的过程就是帮助学生“学”的过程。在准确理解教材的基础上,就要思考如下问题:什么样的学习目标适合他们?怎样帮助学生最快最有效的达到学习目标?具体而言,诸如哪些方法该让学生掌握,哪些知识该让学生自主发现、自我构建,哪些问题可让学生提出,哪些内容可让学生自主选择,哪些疑难可让学生自主解答,从而实现学习方式的转变;哪些地方学生的理解会浮于浅层,停留表面,学生可能需要点拨、引导;哪些地方学生可能会出现怎样

初中数学概念教学探讨

初中数学概念教学探讨 发表时间:2011-01-27T09:53:35.513Z 来源:《少年智力开发报》2010年第9期供稿作者:程彩英 [导读] 概念是人脑对客观事物本质属性的一种反映形式,是人们长期实践活动中智慧的结晶。 陕西省商洛市镇安一中程彩英 概念是人脑对客观事物本质属性的一种反映形式,是人们长期实践活动中智慧的结晶。也是整个教学过程所积累的主要知识点。初中数学中有大量的概念,是数学基础知识的重要部分,概念的教学在初中数学中占有很大的比重。下面结合我的教学实践,就数学概念教学的有关问题与大家共同探讨。 一、新课改理念下的数学概念教学阶段 就数学概念教学而言,素质教育提倡的是为理解而教。新课改理念下的数学概念教学要经过四个阶段:1.活动阶段2.探究阶段3.对象阶段4.图示阶段. 以上四个阶段反映了学生学习数学概念过程中真实的思维活动。其中的“活动阶段”是学生理解概念的一个必要条件,通过“活动”让学生亲身体验、感受直观背景和概念间的关系。“探究阶段”是学生对“活动”进行思考,经历思维的内比、概括过程,学生的头脑对活动进行描述和反思,抽象出概念所特有的性质。“对象阶段”是通过前面的抽象认识到了概念本质,对其进行“压缩”并赋予形式化的定义及符号,使其达到精致化,成为一个思维中的具体的对象,在以后的学习中以此为对象进行新的活动。“图式”的形成是要经过长期的学习活动进一步完善,起初的图式包含反映概念的特例、抽象过程、定义及符号,经过学习,建立起与其它概念、规则、图形等的联系,在头脑中形成综合的心理图式。 二、有效的数学概念教学如何进行 (一)在情境中再现概念的发生过程 概念的引出是进行概念教学的第一步,这一步走得如何,将影响对数学概念的学习。而初中数学教材展现给学生的往往是“由概念到定理、由定理到公式由公式到例题”的三部曲。这一过程掩盖了数学思想方法的形成。因此,数学中教师不应只简单地给出定义,而应加强对概念的引出,使学生经历概念的形成和发展过程,加深对新概念的印象。初中生正处于形象思维发展阶段,抽象思维能力较差。因此,教师在概念教学时,切忌直截了当就定义而讲定义,应更多地从概念的产生和发展过程中为学生提供思维情景,让他们通过观察,比较,概括,由特殊到一般,由具体到抽象,帮助学生理解和掌握新概念而且也使他们的抽象思维得到发展。对于一些重要概念,要舍得花一定的时间,让学生感悟为什么要引入这个概念?这个概念的本质是什么?有哪些事项需要注意?……。在平面直角坐标系的概念教学中,我是这样设情景引入概念的。 我做影院小向导 师:“4排3号”和“3排4号”中的4含义有什么不同? 生:“4排3号”中的4,是第几排;“3排4号”中的4是在某排里的第几座。 师:如果将“4排3号”简记为(4,3),那么“3排4号”应该怎么记?(2,4)表示什么位置? 生:“3排4号”应该记作(3,4);(2,4)表示“2排4座”。 (3)我爱我的班级 师:你能向大家介绍你的座位在教室中的位置吗? 生:(回答不出来) 师:看来要规定从哪里开始数。(教师作了规定,然后说)我报座位标号(3,8),请对应座位上的同学站起来。 坐标概念是好不容易才诞生的重要思想,有了这个坐标概念,点可以转化为数,曲线可以转化为方程,于是几何问题可以转化为代数问题。像这种重要概念,一般要通过感悟,才能慢慢理解。这节课里,不但让学生感悟了平面上的点可以用数对表示,而且突出了:要两个数;前后顺序不能弄错;要规定从哪里开始数,就是要有个基准……把和坐标相关的东西,通过游戏,通过生活中熟悉的素材,让学生一一感悟,这样在学生头脑里的坐标知识是活的。 (二)体验概念的螺旋上升 因教师提供的感性材料往往具有片面性,所以常造成学生错误地扩大或缩小概念。为防止学生断章取义,培养其发散性思维,就应充分运用变式从各个角度、各个方面加以补充说明。根据学生的年龄特征,认知规律与知识特点,在教学中一些重要的数学概念应遵循逐级递进,螺旋上升的原则。例如在一元一次方程的教学中渗透函数思想: 某移动通讯公司开设了两种通讯业务。“全球通”:使用者先缴50元月租费,然后每通话1分钟,再付费0.2元;“快捷通”;不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话)。 1.一个月内通话多少分钟,两种移动通讯费用相同? 2.某人估计一个月内通话300分钟,应选择哪种移动通讯业务合算些? 本例根据学生已有的一元一次方程的知识,根据给出的两种通讯业务的话费与通话时间的关系列方程与列代数式解决,这里隐含了两种通讯业务的话费与通话时间两个变量之间的一次函数关系,渗透了函数思想。同样在一元二次方程的教学中也可渗透一些二次函数的教学中渗透一元二次不等式的知识等。通过在不同阶段渗透函数思想,使学生对函数概念理解呈螺旋上升,有利于学生不断加深对函数思想的理解。 (三)归纳区分概念的异同 数学的许多概念,它们之间既有联系又有区别,有些概念同种而属差较小,学生容易混淆,教学中应引导学生进行分类比较。分析两种概念的从属关系,区分它们的异同之处。为了理解一个概念,一般说,一是正反举例;二是扣住定义的关键词语;三是注意特殊情况;四是与有关概念进行比较,找出两个概念的区别和联系。对概念教学,教改之后更为强调概念的生成,这是正确的,但不能忽视对概念本身的分析,这是基本功。数学里的概念,大多是以严格的定义确定的,用词很严,几乎是多一字不行,少一字也不行,几乎到了需要“咬文嚼字”的地步。比如说垂径定理的教学,学生在学习这个定理时,总是弄不清楚定理的“题设”和“结论”。如果老师在教学时能让学生能理解它是由五个元素“直径(过圆心的直线),垂直,平分弦,平分优弧,平分劣弧”构成的,“定理的结构是“知其二,得其三”那么掌握这个定理及

论初中数学概念教学

论初中数学概念教学 长期以来,由于受应试教育的影响,不少教师的教学中重解题、轻概念,造成数学概念与解题脱节的现象。有些教师仅仅把数学概念看作一个名词而已,认为概念教学就是对概念作解释,要求学生记。而没有看到像函数这样的概念,本质是一种数学观念,是一种处理问题的数学方法。一节“概念课”教完了,也就完成了它的历史使命,剩下的是赶紧解题,造成学生对概念含糊不清,一知半解,不能很好地理解和运用概念,严重影响了学生的解题质量。另一方面,新教材有的地方对概念教学的要求是知道就行,需要某个概念时,就在旁边用小字给出,这样过高的估计了学生的理解能力,也是造成学生不会解题的一个原因。如何搞好新课标下数学概念课的教学呢?下面谈谈个人的看法: 一、重视数学概念的教学 数学概念是数学基础重要组成部分,所有数学内容的展开都基于数学概念之上,正确理解数学概念是学好教学的基础,如果对概念不理解,作业、练习就会错误百出,对后面的的学习就会无法进行了,如正、负数概念,教师稍不注意就会被学生理解为:带正号的数就是正数,带负号的数就是负数。在学生的作业时常出现“+是正数,-是负数”符号错误,这个错误在很长时间内很难消除,对后面知识如相反数,绝对值等的学习造成很大的困难。重视概念教学,能有效地帮助学生端正学习方向,明确学习任务,使学生在开始学习一门学科时产生极大的热情并兴趣盎然地投入到学习中去,加强概念的教学正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想的基础,弄清概念是提高解题能力的关键。只有对概念理解透彻,才能在解题中作出正确的判断。因此,在数学教学过程中,数学概念教学尤为重要,教师一定要重视概念的教学,让学生在理解的基础上正确运用数学概念。 二、要准确把不同概念的区别和联系 数学知识的系统性很强,数学概念也不是孤立的,教师应从有关概念的逻辑联系和区别中,引导学生理解相关的数学概念,从而在学生头脑中形成一个比较完整准确的概念体系。如几何中的长方形,平行四边形,菱形等一系列概念,这些概念之间存在着内在的联系。利用这些内在联系,可把这些简单的图形的性质,有关计算公式都归纳为一体,便于学生理解和记忆。 数学概念具有过程——对象的双重性,既是逻辑分析的对象,又是具有现实背景和丰富寓意的数学过程,因此数学概念教学必须返璞归真,揭示数学概念的形成过程,让学生从概念的现实原型、概念的抽象过程、数学思想的指导作用,形成表述和符合的运用等多方法理解一个数学概念,使之符合学生主动建构的教育原理。每一个数学概念的形成都有一定的过程和历史背景,所以在数学过程中要努力揭示概念的象和概念的过程,抓住概念的本质特征。例如,对于有理数和无理数的两个概念,在数学中就要让学生对所学过的实数进行抽象和概括,抓住整数、小数的无限循环和无限不循环性的本质特征,这样给两个概念下定义。让学生学会分析数学研究对象的本质属性,充分理解数学概念产生形成的过程,学会给数学概念下定义的看法,从而提高学生对数学概念的理解和运用能力。 三、加强数学概念的运用 数学中的许多概念,尤其是那些重要的概念往往牵涉的面较广,并联系着许多的知识,数学概念的形成不是仅靠一、两节就能完成的。例如绝对值的概念,

相关主题
文本预览
相关文档 最新文档