高等数学同济大学版课程讲解函数的极限
- 格式:doc
- 大小:338.00 KB
- 文档页数:6
课 时 授 课 计 划课次序号: 03一、课 题:§1.3 函数的极限二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–3 1(2),2(3),3,6八、授课记录:九、授课效果分析: 第三节 函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1 若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞f (x )?A . 若∀ε>0,∃X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞f (x )?A . 例1 证明limx 0.证 0-,故∀ε>00-<εε,即x >21ε.因此,∀ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 limx ?0. 例2 证明lim 100x x →-∞=. 证 ∀ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞10x ?0. 定义2 若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )?A . 为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞).注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水 平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞f (x )?A . 例3 证明2lim 1x x x →∞--?1.证 ∀ε>0,要使211x x ---?31x +<ε,只需|x ?1|>3ε,而|x ?1|≥|x |?1,故只需|x |?1>3ε,即|x |>1?3ε. 因此,∀ε>0,可取X ?1?3ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim 1x x x →∞-+?1. 二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3 设有函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U (x 0,δ)(即0<|x ?x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称A 为函数y ?f (x )当x →x 0时的极限,记为0lim x x →f (x )? A ,或f (x )→A (x →x 0). 研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x ?x 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y ?A ?ε和y ?A ?ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0?δ,x 0?δ),当y ?f (x )的图形上点的横坐标x 在邻域 (x 0?δ,x 0?δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式 |f (x )?A |<ε,或 A ?ε<f (x )<A ?ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4 证明211lim 1x x x →--?2. 证 函数f (x )?211x x --在x ?1处无定义.∀ε>0,要找δ>0,使0<|x ?1|<δ时,2121x x ---?|x ?1|<ε成立.因此,∀ε>0,据上可取δ?ε,则当0<|x ?1|<δ时,2121x x ---<ε成立,由定义3得211lim 1x x x →--?2. 例5 证明0lim x x →sin x ?sin x 0. 证 由于|sin x |≤|x |,|cos x |≤1,所以|sin x ?sin x 0|?200cos sin 22x x x x +-≤|x ?x 0|. 因此,∀ε>0,取δ?ε,则当0<|x ?x 0|<δ时,|sin x ?sin x 0|<ε成立,由定义3得0lim x x →sin x ?sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4 设函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ- (或x ∈0(,)U x δ+)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )?A (0lim x x +→f (x )?A ),或记为f (0x -)?A (f (0x +)?A ). 由定义3和定义4可得下面的结论.定理2 0lim x x →f (x )?A 的充要条件是0lim x x -→f (x )?0lim x x +→f (x )?A . 例6 设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ). 解 x ?0是此分段函数的分段点,0lim x -→f (x )?0lim x -→cos x ?cos0?1,而 0lim x +→f (x )?0lim x +→(1?x )?1. 故由定理2可得,0lim x →f (x )?1. 例7 设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ). 解 由于 0lim x -→f (x )?0lim x -→x ?0,0lim x +→f (x )?0lim x +→1?1,因为0lim x -→f (x )≠0lim x +→f (x ),故0lim x →f (x )不存在. 三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3 若lim f (x )存在,则必唯一.2.局部有界性定义5 在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U (x 0)(或|x |>X )时,|f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4 若lim f (x )存在,则f (x )是该极限过程中的有界变量.证 我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )?A ,由极限定义,对ε?1,∃δ>0,当x ∈U (x 0,δ)时,|f (x )?A |<1,则|f (x )|<1?|A |,取M ?1?|A |,由定义5可知,当x →x 0时,f (x )有界.注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在. 3.局部保号性定理5 若0lim x x →f (x )?A ,A >0(A <0),则∃U (x 0),当x ∈U (x 0)时,f (x )>0 (f (x )<0).若lim x →∞f (x )?A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0). 该定理通常称为保号性定理,在理论上有着较为重要的作用.推论 在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )?A ,则A ≥0(A ≤0).4. 函数极限与数列极限的关系定理6 0lim x x →f (x )?A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )?A ,这里A 可为有限数或为∞. 定理6 常被用于证明某些极限不存在. 例1 证明极限01limcos x x→不存在. 证 取{x n }?12n π,则lim n →∞x n ?lim n →∞12n π?0,而lim n →∞cos 1n x ?lim n →∞cos2nπ?1. 又取{x ′n }?()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n ?lim n →∞()121n π+?0,而lim n →∞cos 1'n x ?lim n →∞cos(2n ?1)π??1, 由于 lim n →∞cos 1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在. 课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。
课 时 授 课 计 划课次序号:03一、课 题:§1.3函数的极限 二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–31(2),2(3),3,6 八、授课记录:九、授课效果分析:第三节函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限.与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞f (x )?A .若∀ε>0,∃X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞f (x )?A .例1证明limx ?0.证0-∀ε>00-<εε,即x >21ε.因此,∀ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 limx 0.例2证明lim 100xx →-∞=.证∀ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞10x ?0.定义2若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )?A .为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞).注若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞f (x )?A .例3证明2lim1x x x →∞--?1.证∀ε>0,要使211x x ---?31x +<ε,只需|x ?1|>3ε,而|x ?1|≥|x |?1,故只需|x |?1>3ε,即|x |>1?3ε. 因此,∀ε>0,可取X ?1?3ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim1x x x →∞-+?1.二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3设有函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U o(x 0,δ)(即0<|x ?x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称A 为函数y ?f (x )当x →x 0时的极限,记为0lim x x →f (x )?A ,或f (x )→A (x →x 0).研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x ?x 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y ?A ?ε和y ?A ?ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0?δ,x 0?δ),当y ?f (x )的图形上点的横坐标x 在邻域(x 0?δ,x 0?δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式|f (x )?A |<ε,或A ?ε<f (x )<A ?ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4证明211lim 1x x x →--?2.证函数f (x )?211x x --在x ?1处无定义.∀ε>0,要找δ>0,使0<|x ?1|<δ时,2121x x ---?|x ?1|<ε成立.因此,∀ε>0,据上可取δ?ε,则当0<|x ?1|<δ时,2121x x ---<ε成立,由定义3得211lim 1x x x →--?2.例5证明0lim x x →sin x ?sin x 0.证由于|sin x |≤|x |,|cos x |≤1,所以|sin x ?sin x 0|?200cossin 22x x x x +-≤|x ?x 0|. 因此,∀ε>0,取δ?ε,则当0<|x ?x 0|<δ时,|sin x ?sin x 0|<ε成立,由定义3得lim x x →sin x ?sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4设函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ-o(或x ∈0(,)U x δ+o)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )?A (0lim x x +→f (x )?A ),或记为f (0x -)?A (f (0x +)?A ).由定义3和定义4可得下面的结论.定理20lim x x →f (x )?A 的充要条件是0lim x x -→f (x )?0lim x x +→f (x )?A .例6设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ).解x ?0是此分段函数的分段点,0lim x -→f (x )?0lim x -→cos x ?cos0?1,而0lim x +→f (x )?0lim x +→(1?x )?1. 故由定理2可得,0lim x →f (x )?1.例7设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ).解由于0lim x -→f (x )?0lim x -→x ?0,0lim x +→f (x )?0lim x +→1?1,因为0lim x -→f (x )≠0lim x +→f (x ), 故0lim x →f (x )不存在.三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3若lim f (x )存在,则必唯一.2.局部有界性定义5在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U o(x 0)(或|x |>X )时, |f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4若lim f (x )存在,则f (x )是该极限过程中的有界变量. 证我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )?A ,由极限定义,对ε?1,∃δ>0,当x ∈U o(x 0,δ)时,|f (x )?A |<1,则|f (x )|<1?|A |,取M ?1?|A |,由定义5可知,当x →x 0时,f (x )有界. 注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在.3.局部保号性定理5若0lim x x →f (x )?A ,A >0(A <0),则∃U o (x 0),当x ∈U o(x 0)时,f (x )>0(f (x )<0).若lim x →∞f (x )?A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0).该定理通常称为保号性定理,在理论上有着较为重要的作用. 推论在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )?A ,则A ≥0(A ≤0).4.函数极限与数列极限的关系定理60lim x x →f (x )?A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )?A ,这里A 可为有限数或为∞.定理6常被用于证明某些极限不存在. 例1证明极限01limcosx x→不存在. 证取{x n }?12n π,则lim n →∞x n ?lim n →∞12n π?0,而lim n →∞cos 1n x ?lim n →∞cos2nπ?1.又取{x ′n }?()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n ?lim n →∞()121n π+?0,而lim n →∞cos 1'n x ?lim n →∞cos(2n ?1)π??1, 由于lim n →∞cos1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在.课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。