热重-差热讲义联用热分析
- 格式:ppt
- 大小:889.50 KB
- 文档页数:33
差热-热重综合热分析实验一.实验目的:1.了解热重-差热分析仪的原理、仪器装置及使用方法。
2.掌握热重-差热分析基本原理、测试技术及影响测量准确性的因素。
3.掌握热重-差热曲线定性和定量处理方法,对实验结果做出解释。
二.实验原理1.热重分析法热重分析法(TG)是在程序温度控制下,测量物质的质量随温度变化的一种实验技术。
一般有静态法和动态法两种类型:静态法是在恒温下测定物质质量变化与温度的关系,将试样在各给定温度加热至恒重,该法用来研究固相物质热分解的反应速率和测定反应速度常数。
动态法是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。
本实验采用的是动态热重分析法,其主要由精密天平、加热炉、和控制单元组成。
加热炉由温控加热单元给定速度升温,温度由测温热电偶输出热电势,放大后送入计算机进行处理。
炉中试样质量变化由天平测量记录,天平变化由光电传感器转化为电信号,放大后送入计算机进行处理。
计算机根据测得数据自动进行绘图处理。
由热重分析记录的质量变化对温度的关系曲线称为热重曲线(TG 曲线)。
曲线横坐标为温度,纵坐标为质量,如热分解反应A(s)→B(s)+C(g)的热重曲线如图1所示。
图中T 1为起始温度,即累积质量变化达到热天平可检测的温度;T 2为终止温度,即累积质量变化达到最大值时的温度;热重曲线上质量基本不变的部分称为基线或平台。
若试样初始质量为W0,失重后试样质量为W1,测失重百分数为。
%100010×−W W W 物质在加热过程中会在某温度下发生分解、脱水、氧化、还原和升华等一系列的物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随物质的结构和组成而异,因此可以利用物质的热重曲线来研究物质的热变化过程,推测反应机理及产物。
2.差热分析法在物质匀速加热或冷却的过程中,当达到某温度时,物质就会发生物理化学变化。
在变化的过程中,伴随有吸热放热现象,这样就改变了物质原有的升温或降温速率。
差热分析与热重分析计划学时:2学时本实验通过DTA研究物质BaCl2.2H2O在加热过程中所发生的物理化学变化,绘制相应曲线,确定其变化的实质。
【实验目的】(1) 掌握DTA热分析仪的原理和实验技术。
(2) 测量化学分解反应过程中的分解温度。
(3) 测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。
【实验原理】热分析是物理化学分析的基本方法之一。
综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。
DSC和DTA研究物质在加热过程中内部能量变化所引起的吸热或放热效应。
1. 差热分析DTA原理差热分析(Differential Thermal Analysis 简称DTA )是指在程序控制温度下,测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。
用数学式表达为△T= Ts—Tr ( T 或t )式中Ts ,Tr ——分别代表试样及参比物温度;T ——程序温度;t ——时间。
试样和参比物的温度差主要取决于试样的温度变化。
DTA 仪由以下几部分组成:(1) 样品支持器。
(2) 程序控温的炉子。
(3) 记录器。
(4) 检测差热电偶产生的热电势的检测器和测量系统。
(5) 气氛控制系统。
若将呈热稳定的已知物质(即参比物)和试样一起放入一个加热系统中,并以线性程序温度对它们加热。
在试样没有发生吸热或放热变化,且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。
即Ts—Tr(△T)为零时,两温度线重合,在△T 曲线上则为一条水平基线。
若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。
而参比物的温度始终与程序温度一致,△T >0,在△T 曲线上是一个向上的放热峰。
反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸收足够的热量,从而使试样温度低于程序温度。