试验11高聚物的差热热重分析
- 格式:doc
- 大小:32.00 KB
- 文档页数:3
聚合物的差示热分析姓名:他雪峰学号:13024119一.实验目的1.了解聚合物差示热分析的基本原理及应用。
、2.初步掌握解释聚合物差示热谱图的方法。
3.了解差示热分析仪的构造原理及其基本操作。
二.基本原理差热分析是测定样品在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及化学反应的一种分析方法,简称DTA(Differential Thermal Analysis)其基本原理是在恒速升温(或降温)的条件下,连续测定试样S同参比物R间的温度差△T 见图8—4。
△T对T作图所得曲线称为热谱图,见图8—5。
图8—4 DTA原理图图8—5聚合物DTA曲线模式图参比物应是在实验温度范围内不发生物理变化及化学变化的物质,如α—Al2O3。
当把试样和参比物同置于加热炉中等速升温时,若试样不发生热效应,在理想情况下,试样温度与参比物温度相等,此时△T=0。
在热谱图上应是一根水平线,称为基线。
当试样发生了物理或化学变化,吸入或放出热量时,△T≠0,在热谱图上会出现吸热或放热峰。
△T随温度变化的曲线称为差热曲线(热谱图)习惯上温度差△T作纵坐标,吸热峰向下,放热峰向上,温度T做横坐标,自左向右增加。
在热谱图上,由峰的位置可确定发生热效应的温度,由峰的面积可确定热效应的大小,由峰的形状可了解有关过程的动力学特征。
DTA可用以研究聚合物的相变,测定结晶温度T0熔点Tm结晶相转变等物理变化,研究聚合物固化交联氧化分解等反应,测定聚合物玻璃化转变温度Tg,也可测定反应温度或反应温度区等反应动力学参数。
聚合物的玻璃化转变为一体积松弛过程,在Tm处,聚合物的比热发生突然变化,故在热谱图上Tg处表现为基线的突然变动。
聚合物的熔融和热分解吸热,故在热谱图上出现向下的负峰,而聚合物的结晶和氧化为放热,表现为向上的正峰,据此可判断聚合物的结晶相转变,耐热氧化性能及耐热稳定性等。
三.仪器本实验采用CFS—Ⅱ型差热分析仪,其装置原理示意图8—6如下,由温度程序控制变换放大显示记录等部分所组成。
实验7 聚合物的热重分析(TGA)热重分析(TGA)是以恒定速度加热试样,同时连续地测定试样失重的一种动态方法。
此外,也可在恒定温度下,将失重作为时间的函数进行测定。
应用TGA可以研究各种气氛下高聚物的热稳定性和热分解作用,测定水分、挥发物和残渣,增塑剂的挥发性,水解和吸湿性,吸附和解吸,气化速度和气化热;升华速度和升华热,氧化降解,缩聚高聚物的固化程度,有填料的高聚物或掺和物的组成,它还可以研究固相反应。
因为高聚物的热谱图具有一定的特征性,它也可作为鉴定之用。
1. 实验目的(1)了解热重分析法在高分子领域的应用。
(2)掌握热重分析仪的工作原理及其操作方法,学会用热重分析法测定聚合物的热分解温度Td。
2. 实验原理热重分析法(thermogravimetric analysis,TGA)是在程序控温下,测量物质的质量与温度关系的一种技术。
现代热重分析仪一般由4部分组成,分别是电子天平、加热炉、程序控温系统和数据处理系统(微计算机)。
通常,TGA谱图是由试样的质量残余率Y(%)对温度T的曲线(称为热重曲线,TG)和/或试样的质量残余率Y(%)随时间的变化率dY/dt(%/min)对温度T的曲线(称为微商热重法,DTG)组成,见图2-40。
温度/℃图2-40 TGA谱图开始时,由于试样残余小分子物质的热解吸,试样有少量的质量损失,损失率为(100-Y1)%;经过一段时间的加热后,温度升至T1,试样开始出现大量的质量损失,直至T2,损失率达(Y1-Y2)%;在T2到T3阶段,试样存在着其他的稳定相;然后,随着温度的继续升高,试样再进一步分解。
图2-40中T1称为分解温度,有时取C点的切线与AB延长线相交处的温度T1′作为分解温度,后者数值偏高。
TGA在高分子科学中有着广泛的应用。
例如,高分子材料热稳定性的评定,共聚物和共混物的分析,材料中添加剂和挥发物的分析,水分(含湿量)的测定,材料氧化诱导期的测定,固化过程分析以及使用寿命的预测等。
实验六聚合物的差热分析及应用差热分析是在温度程序控制下测量试样与参比物之间的温度差随温度变化的一种技术,简称DTA(Differential ThermaI Analysis),是热分析法的一种。
在DTA基础上发展起来的另一种技术是差示扫描量热法。
差示扫描量热法是在温度程序控制下测量试祥相对于参比物的热流速度随温度变化的一种技术,简称DSC(Differential Scanning Calorimetry)。
试样在受热或冷却过程中,由于发生物理变化或化学变化而产生热效应,这些热效应均可用DTA、DSC进行检测。
DTA、DSC在高分子科学领域方应用十分广泛。
比如在研究聚合物的相转变;测定结晶温度T c、熔点T m、结晶度X D、等温结晶动力学参数;测定玻璃化转变温度T g;研究聚合、固化、交联、氧化、分解等反应;测定反应温度或反应温区、反应热、反应动力学参数等方面均发挥重要作用。
一、实验目的与要求1、掌握DTA、DSC的基本原理。
2、学会用DTA、DSC的测定聚合物的T g、T c、T m、X D。
二、实验原理1、差热分析(DTA)差热分析是对少量试样的热效应所进行的仪器分析技术(图6-1 DTA示意图)。
图6-1 DTA示意图S—试样;R—参比物;E—电炉;1—温度程序控制器;2—气氛控制;3—差热放大器;4—记录仪图6-2 DTA曲线当试样与参比物(在所研究的温度范围内不发生热效应的物质,常用的有石英粉、硅油、α-氧化铝等)分别放在两个坩埚内,再将两个坩埚放在同一金属板的两个托盘上,然后将它们置于加热炉中,加热炉按程序控制等速升温(或降温),在此变温过程中,试样如果没有热效应,则与参比物之间的温差ΔT= 0;若在某一温度范围内,试样发生变化时,则放出或吸收能量,这种热效应将使试样温度改变,而此时参比物并无温度变化,即导致温差ΔT 发生。
如用热电偶测量并放大热电势信号、记录,可得图6-2所示DTA峰形曲线。
岛津DTG-60H热分析实验一.实验原理热分析(thermal analysis)是在程序控制温度下,测量物质的物理性质与温度关系的一类技术,在加热和冷却的过程中,随着物质的结构、相态和化学性质的变化,通常伴有相应的物理性质的变化,包括质量、温度、热量以及机械、声学、电学、光学、磁学等性质,依此构成了相应的各种热分析测试技术。
表1列出了几种主要的热分析法及其测定的物理化学参数和有关仪器。
其中最具代表性的三种方法:热重法(TG),差热分析(DTA),差示扫描量热法(DSC)。
本实验使用的岛津DTG-60H是一类差热(DTA)—热重(TG)同步测定装置。
热重法(Thermalgravimetry, TG)是在程序控制温度下,测量物质的质量和温度关系的一种技术。
热重法记录的是热重曲线(TG曲线),它是以质量作纵坐标,从上向下表示质量减少;以温度(T)或时间(t)作横坐标,自左向右表示增加。
用于热重法的仪器是热天平,它连续记录质量和温度的函数关系。
热天平一般是根据天平梁的倾斜与质量变化的关系进行测定的,通常测定质量变化的方法有变位法和零位法两种。
变位法利用质量变化与天平梁的倾斜成正比关系,用直接差动变压器检测。
零位法根据质量变化引起天平梁的倾斜,靠电磁作用力使天平梁恢复到原来的平衡位置,所施加的力与质量变化成正比。
DTG-60H采用的为变位法。
只要物质受热时发生质量的变化,就可用热重法来研究其变化过程。
其应用可大致归纳成如下几个方面:(1)了解试样的热(分解)反应过程,例如测定结晶水、脱水量及热分解反应的具体过程等;(2)研究在生成挥发性物质的同时所进行热分解反应,固相反应等;(3)用于研究固体和气体之间的反应;(4)测定熔点、沸点;(5)利用热分解或蒸发、升华等,分析固体混合物。
图1为在相同实验条件下测得的聚氯乙烯(PVC),聚甲基丙烯酸甲酯(PMMA),高压聚乙烯(HPPE),聚四氟乙烯(PTPE)和芳香聚四酰亚胺(PI)的热重曲线。
差热热重分析实验报告一、实验目的差热热重分析(Differential Thermal Analysis Thermogravimetric Analysis,简称 DTATGA)是一种常用的热分析技术,通过同时测量样品在加热或冷却过程中的质量变化(热重分析,TGA)和热效应(差热分析,DTA),可以获取有关样品的热稳定性、组成、相变等重要信息。
本次实验的目的是利用差热热重分析仪对给定的样品进行测试,深入了解其热性能,并对实验结果进行分析和讨论。
二、实验原理(一)热重分析(TGA)热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。
当样品在加热过程中发生物理或化学变化(如挥发、分解、氧化等)导致质量减少时,通过记录质量随温度的变化曲线(TGA 曲线),可以确定样品的质量损失情况,并计算出相应的质量损失率。
(二)差热分析(DTA)差热分析是在程序控制温度下,测量样品与参比物之间的温度差随温度或时间变化的一种技术。
当样品发生物理或化学变化时,会吸收或放出热量,导致样品与参比物之间产生温度差。
通过记录温度差随温度的变化曲线(DTA 曲线),可以确定样品的相变温度、反应起始和终止温度等热效应信息。
三、实验仪器与材料(一)实验仪器本次实验使用的是_____型差热热重分析仪,仪器主要由加热炉、温度控制系统、质量测量系统、差热测量系统和数据采集与处理系统组成。
(二)实验材料实验所用样品为_____,其纯度为_____。
四、实验步骤(一)样品制备将待测试的样品研磨成粉末状,以确保样品受热均匀。
称取适量的样品(一般为 5 10 mg),放入氧化铝坩埚中。
(二)仪器准备打开差热热重分析仪,设置实验参数,包括升温速率(_____℃/min)、终止温度(_____℃)、气氛(如氮气、空气等)及其流速等。
(三)实验操作将装有样品的坩埚放入加热炉中,启动实验程序。
仪器会按照设定的参数自动进行加热,并实时记录样品的质量变化和温度差。
差热热重分析实验报告差热热重分析(DSC-TGA)是一种热分析技术,可以同时测量材料的热性质和重量变化。
本实验中,我们使用了一台METTLER TOLEDO的DSC-TGA设备,探究了不同样品的热性质和重量变化。
以下是实验报告:实验目的:1. 了解DSC-TGA技术的基本原理和实验操作;2. 测量几种材料的热性质和重量变化,并分析其相关性质,以确定材料的性能和应用;3. 建立样品的热性质和重量变化曲线。
实验步骤:1. 将DSC-TGA设备预热至所需温度(本实验中为室温至1000°C);2. 取一定质量的样品(本实验中为聚丙烯、聚苯乙烯、硅橡胶、KBr和艾拉橙染料),放置样品台上;3. 通过PC机设定实验过程,包括温度升降速率、样品温度范围、气氛气体种类和流量等参数;4. 进行实验,记录DSC-TGA设备输出的数据,包括样品的热性质曲线和重量变化曲线。
实验结果:通过DSC-TGA实验,我们得到了下列结果:1. 聚丙烯图1为聚丙烯的热性质曲线和重量变化曲线。
热性质曲线显示了聚丙烯在240°C处有一个峰值,这可能是由于聚丙烯发生部分熔融,而重量变化曲线显示了聚丙烯在400°C左右开始分解,这可能是由于长时间孔隙不停产生于样品内部,然后引起聚合物发生热分解。
这个过程会产生碳的固体。
3. 硅橡胶4. KBr5. 艾拉橙染料结论:通过DSC-TGA实验,我们可以了解到材料在高温下的热性质和重量变化情况。
我们可以通过分析样品的热性质曲线和重量变化曲线,确定样品的特性,以确定材料的应用场景。
在本实验中,我们得到了聚丙烯、聚苯乙烯、硅橡胶、KBr和艾拉橙染料的热性质和重量变化曲线。
我们可以看到,不同材料具有不同的热特性,这实际上与材料的化学组成和结构有关。
例如,聚合物在一定温度下会发生熔化和分解反应,而KBr会产生氧化反应。
一般来说,通过差热热重分析,我们可以更好地了解材料,以确定材料的性能和应用。
化学化工学院材料化学专业实验报告实验实验名称:聚合物的热分析------差示扫描量热法(DSC)年级:2011级材料化学日期:2013-10-17姓名:学号:同组人:一、预习部分1、差热分析差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。
该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。
广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。
差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。
峰的最高温度、形状、面积和峰值大小都会发生一定变化。
其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。
虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。
20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。
差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
曲线的纵轴为单位时间所加热量,横轴为温度或时间。
曲线的面积正比于热焓的变化。
DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。
实验11 高聚物的差热热重分析
一、目的要求
1.了解差热分析的原理
2.通过实验掌握差热分析的实验技术
3.使用差热分析仪测定高聚物的T g、T m
二、原理
差热分析,简称DTA,是将被测试样加热或冷却时,由于温度导致试样内部产生物理或化学变化,追踪热量变化的一种分析方法。
热重分析,简称TG,是将被测试样加热,由于温度导致试样重量变化的分析方法。
ZRY系列综合热分析仪是具有微机数据处理系统的热重—差热联用热分析仪器,是一种在程序温度(等速升降温、恒温和循环)控制下,测量物质的质量和热量随温度变化的分析仪器。
常用以测定物质在熔融、相变、分解、化合、凝固、脱水、蒸发、升华等特定温度下发生的热量和质量变化,广泛应用于无机、有机、石化、建材、化纤、冶金、陶瓷、制药等领域,是国防、科研、大专院校、工矿企业等单位研究不同温度下物质物理、化学变化的重要分析仪器。
差热分析作为一种重要的热分析手段已广为应用,它可以研究高聚物对热敏感的各种化学及物理过程,物理变化如:玻璃化转变、晶型转变、结晶过程、熔融、纯度变化等;化学变化如:加聚反应、缩聚反应、硫化、环化、交联、固化、氧化、热分解、辐射变化等。
需指出,由于高聚物的物理或化学变化对热敏感的特性是很复杂的,所以常需要结合其它实验方法如动态力学试验、气质联用等对差热分析热谱图进行深入研究,从而进一步探讨高聚物的结构和性能间的关系。
仪器由热天平主机、加热炉、冷却风扇、微机温控单元、天平放大单元、微分单元、差热放大单元、接口单元、气氛控制单元、 PC微机、打印机等组成。
实验时,将试样和惰性参比物(在测定的温度范围内不产生热效应的热惰性物质,常用ą-氧化铝、石英粉、硅油等)置于温度均匀分布的坩埚(样品池)的适当位置,将坩埚(样品池)组合于加热炉中,控制其等速升温或降温。
在此变温过程中,若试样发生物理或化学变化,则在对应的温度下吸收或放出热量改变其温度,使试样和参比物之间产生一定的温度(ΔT)。
将ΔT放大,记录试样与参比物的温度ΔT随温度T的变化,即ΔT~T曲线。
此曲线通常称为差热曲线或差热热谱。
刚开始加热时,试样和参比物以相同温度升温,不产生温度差ΔT=0,差热曲线上为平直的基线。
当温度上升到试样产产玻璃化转时,大分子的链段开始运动。
试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,因而试样的温度落后于参比物的温度,产生了温度差,于是差热曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时试样温度较参比物上升快,差热曲线上表现为放热峰。
再进一步加热,晶体开始熔融面需要吸收热量,试样温度暂时停止上升,与参比物之间产生了温度差,其差
热曲线在相反方向出现吸热峰。
当熔融完成后,加于试样的热能在使试样温度升高,直到等于参比物的温度,于是二者的温度差又为零,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m);继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。
因此,根据差热曲线可以确定高聚物的转变和特征温度。
三.仪器和试剂
聚丙烯、低压聚乙烯、a-Al2O3、ZRY-2P型(上海精密科学仪器有限公司)
四、实验步骤
1. 试样准备
先将试样制成细粉状并通过80~100目的筛孔,称取聚丙烯和低压聚乙烯的混合物(重量比3:1混合)100克与x-Al2O3(参比物)以夹心方式(即试样池的上、下层装a- Al2O3、中间装试样)装入试样坩埚、隋性参比物a-Al2O3填充于另一坩埚中,样品量一般不超过坩埚容积的2/3,把装样的坩埚在清洁的石台上轻墩数次,使样品松紧适中。
升下,旋转到右侧,将装好试样和参比物的坩埚分别安放到各自的热偶板上,并使坩埚底与热偶板平台石接触。
2. 取放样品和样品称重
放样品时,先将炉子下降至导杆的底部,卸下热电偶外罩,拧松托架固定螺钉,将样品盘托移至样品支架上方约2mm处,用医用镍子,将经清洗烘干的坩埚轻放在平板热电偶上,用电减码平衡两只坩埚及参比物的重量(质量)。
然后取出被测试样的坩埚,将被测样品放入坩埚内,均匀铺平,再轻轻放在平板热电偶上,注意观察接口单元TG档电压值不得超过5伏。
左手托住托板,右手拧松板螺钉,将托架向下移动,当盘托脱离样品盘约定10mm时,将托架向右转动,停于主机中心或偏右的位置,装上热电偶外罩,将炉子上升,拧紧玻璃管上拼帽,计算机采样得到试样重量(质量)并自动存储,升温试验结束后按上述方法取出样品。
a、量程开关和倍率开关:量程开关从0.1mg到1mg分四档转换,倍率开关分为四档从1到
1000,量程乘以倍率所得的积是此选择的满量程。
用户可根据试样质量选择合适的组合。
b、电减码:可用来减去样品器皿的重量。
另外,如果试样加热到所需要的终温时,其失重
很小,为了提高测量精度,可预先估计试样的剩余重量(或质量),采用电减码来扣除一部分,剩余重量,然后减小量程,就能使较小的失重更明显,更精确地反映出来。
3.编制升温程序
仪器操作仪表的程序编排统一采用温度——时间——温度——时间——格式。
其定义为:从当前段设置温度,经过该段设置的时间到达下一温度。
温度设置值的单位都是度,而时间设置的单位都是分钟。
按设置键所显示的参数,不得随意改变,否则影响温控单元的正常工作。
设置键通常作为回车键。
4.熔点、再结晶温度的测定
接通加热炉电源,运行升温程序,计算机自动记录试验结果。
待试验结束后,处理实验数据,打印试验结果。
五、注意事项
1.由于本仪器面板许多参数是出厂设定值,不能任意更改,以免影响仪器正常运行;2.试样装填和取出动作要轻稳,一般情况由试验老师操作;
3.不得随意更改计算机中的预设参数和端口设置等。
思考题
1.差热分析(DTA)的基本原理是什么?
2.差热分析在高分子中有哪些应用?。