第四节 条件概率
- 格式:ppt
- 大小:1.48 MB
- 文档页数:44
《概率论与数理统计》课程教学大纲第一部分:课程教育目标一、教学对象工程管理、电子信息工程2009级本科。
二、课程的性质与任务1. 课程性质:必修2. 课程类别:公共基础课3. 考核方式:考查4. 教学任务:通过概率论与数理统计的学习,要使学生掌握概率论与数理统计的基本知识,基本理论,会利用概率论与数理统计解决简单的实际问题。
三、学生能力培养要求1. 基本要求通过本课程的学习,要使学生获得随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、数理统计的基础知识、参数估计、假设检验、方差分析与回归分析等方面的基本概念、基本理论和基本运算能力。
2. 提高性要求在课程的教学过程中,要通过各个教学环节逐步提高学生的抽象思维能力、逻辑推理能力、数学建模与实践能力,注意培养学生的自学能力,注意理论联系实际,不断提高学生的综合素质以及运用所学知识解决实际问题的能力。
3. 技能性要求本课程修完后,学生将获得后续课程及工作实践所必须的数学思想、计算方法、基础知识、基本技能。
四、与其他课程的关系本课程是应用型本科院校理工类专业开设的一门基础课程,它在以加强学生的数学实践能力和创新能力为重点,努力构建特色鲜明的应用型、创新型的本科人才培养模式和培养目标,培养主动适应经济社会发展需要的高级专业技术和熟练操作技能的实用型、开拓型复合型人才的过程中起着奠基作用。
第二部分:教学内容基本要求第一章随机事件及其概率本章教学要求:1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系与运算;2、了解概率、条件概率的定义,掌握概率的基本性质,会计算古典概型的概率;3、掌握概率的加法公式,乘法公式,会应用全概率公式和贝叶斯公式;4、理解事件独立性的概念,掌握应用事件独立性进行概率计算的方法;5、理解独立重复试验的概率,掌握计算有关事件概率的方法。
本章重点:随机事件的概率、古典概型的计算本章难点:全概率的计算、贝叶斯公式的应用第一节随机事件随机现象,随机事件,样本空间,事件的关系与运算第二节随机事件的概率随机事件的概率:频率及其性质、概率的定义与性质第三节古典概型古典概型,几何概型;第四节条件概率条件概率的概念,乘法公式,全概率公式,贝叶斯公式第五节事件的独立性事件的独立性与性质,伯努利概型第二章随机变量及其分布本章教学要求:1、理解随机变量及其概率分布的概念。
概率论重要知识点总结概率论重要知识点总结概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的。
在一定条件下必然发生某一结果的现象称为决定性现象。
下面为帮助同学们更好地理解概率论,小编汇总了关于概率论的重要知识点总结,希望对同学们学习上有所帮助。
第一章随机事件及其概率第一节基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω 表示. 一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A-B。
用交并补可以表示为互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时可记为A+B。
对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:事件运算律:设A,B,C为事件,则有:(1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC(3)分配律:A(BC)=(AB)(AC) ABAC(4)对偶律(摩根律):第二节事件的概率概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型, 其样本空间Ω 个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ 理解为长度或体积即可. 第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的`相互独立:若两事件A、B 满足P(AB)= 相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)= 相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)= 两两独立独立的性质:若A 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。
3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。
5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。
(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。
(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。
(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。
用交并补可以表示为。
(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。
8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。