-条件概率
- 格式:ppt
- 大小:715.52 KB
- 文档页数:25
名词解释条件概率的概念
条件概率是统计学家研究随机事件的必修课,也是概率统计的核心内容。
条件概率定义为考虑已经发生某种事件后,其他事件发生的概率。
它实际上就是一个简单条件下,某种情况发生的可能性。
一般来说,条件概率表达在形式上就是:条件概率 P (A | B) = P (A 交 B)/P (B),其中P (A)表示事件A发生的概率,P (B)表示事件B发生的概率,而P (A 交 B)则是表示A与B同
时发生的概率。
也就是说,它表示在知道已经发生第一个事件B已经发生的条件下,事件A发生的概率。
条件概率,最常用在概率分布中,多用来计算相关事件发生概率:也即一个给定的事件A,再加上一个直接说明事件A发生的前提条件B,按照该条件概率可以求出事件A发生的概率,也可以对另一个事件(D)比较事件A发生的概率及事件 D发生的概率。
相当于是让前提条件B作为研究被检验的指标,以此来研究和判断事件A与事件D发生的可能性。
也就是说,条件概率在研究中主要是来描述一个给定的前提条件后,其他事件可能发生的情况及概率,来考察研究中的特定结论发生的可能性。
常常使用这样的表达:知道已经发生的条件B,事件A的发生概率为P (A | B)。
它可以以较精确的方式描绘出某种事件的发
生概率,是描述随机事件的重要工具之一。
条件概率及其性质1.条件概率及其性质(1)条件概率的定义设A、B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.(2)条件概率的求法求条件概率除了可借助定义中的公式,还可以借助古典概型概率公式,即P(B|A)=.(3)条件概率的性质①条件概率具有一般概率的性质,即0≤P(B|A)≤1.②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A) ) .2.事件的相互独立性(1)设A、B为两个事件,如果P(AB)=P(A)P(B) ,则称事件A与事件B相互独立.(2)如果事件A与B相互独立,那么与,与,与也都相互独立.3.二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A 发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1, 2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p) ,并称_p_为成功概率.若X~B(n,p),则E(X)=np.1.区分条件概率P(B|A)与概率P(B)它们都以样本空间Ω为总样本,但它们取概率的前提是不相同的.概率P(B)是指在整个样本空间Ω的条件下事件B发生的可能性大小,而条件概率P(B|A)是在事件A发生的条件下,事件B发生的可能性大小.2.求法:(1)利用定义分别求P(A),P(AB),得P(B|A)=P(AB) P(A);(2)先求A含的基本事件数n(A),再求在A发生的条件下B包含的事件数即n(AB),得P(B|A)=n(AB) n(A).1.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?【解】记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=42+4=23,P(B)=1-P(B)=13,(1)P(A|B)=3+18+1=49.(2)∵P(A|B)=38+1=13,∴P(A)=P(AB)+P(A B)=P(A|B)P(B)+P(A|B)P(B)=49×23+13×13=1127.2.(2011年湖南)如图,EFGH是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分内),”则(1)P(A)=________;(2)P(B|A)=_____答案:(1)2π (2)141.相互独立事件是指两个试验中,两事件发生的概率互不影响;相互对立事件是指同一次试验中,两个事件不会同时发生.2.在解题过程中,要明确事件中的“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),则A 、B 中至少有一个发生的事件为A ∪B ;A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A B ;A 、B 恰有一个发生的事件为A B ∪A B ;A 、B 中至多有一个发生的事件为A B ∪A B ∪ A B .3.互斥事件与相互独立事件的区别:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.3.(2012年山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X的分布列及数学期望E(X).【解】(1)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D,由题意知P(B)=34,P(C)=P(D)=23,由于A=B C D+B C D+B C D,根据事件的独立性和互斥性得P(A)=P(B C D+B C D+B C D)=P(B C D)+P(B C D)+P(B C D)=P(B)P(C)P(D)+P(B)P(C)P(D)+P(B)P(C)P(D)=34×⎝⎛⎭⎪⎪⎫1-23×⎝⎛⎭⎪⎪⎫1-23+⎝⎛⎭⎪⎪⎫1-34×23×⎝⎛⎭⎪⎪⎫1-23+⎝⎛⎭⎪⎪⎫1-34×⎝⎛⎭⎪⎪⎫1-23×23=736.(2)根据题意,X 的所有可能取值为0,1,2,3,4,5,根据事件的独立性和互斥性得P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )]=⎝⎛⎭⎪⎪⎫1-34×⎝⎛⎭⎪⎪⎫1-23×⎝ ⎛⎭⎪⎪⎫1-23=136, P (X =1)=P (B C D )=P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎪⎫1-23×⎝ ⎛⎭⎪⎪⎫1-23=112,P (X =2)=P (B C D +B C D )=P (B C D )+P (B C D )=⎝⎛⎭⎪⎪⎫1-34×23×⎝ ⎛⎭⎪⎪⎫1-23+⎝ ⎛⎭⎪⎪⎫1-34×⎝ ⎛⎭⎪⎪⎫1-23×23=19, P (X =3)=P (BC D +B C D )=P (BC D )+P (B C D )=34×23×⎝ ⎛⎭⎪⎪⎫1-23+34×⎝⎛⎭⎪⎪⎫1-23×23=13, P (X =4)=P (B CD )=⎝⎛⎭⎪⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E(X)=0×136+1×112+2×19+3×13+4×19+5×13=4112.(1)注意区分互斥事件和相互独立事件,互斥事件是在同一试验中不可能同时发生的情况,相互独立事件是指几个事件的发生与否互不影响,当然可以同时发生.(2)求离散型随机变量的分布列的关键是正确理解随机变量取每一个值所表示的具体事件,然后综合应用各类求概率的公式,求出概率.(3)求随机变量的期望和方差的关键是正确求出随机变量的分布列,若随机变量服从二项分布,则可直接使用公式求解.4.(2011年山东高考)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘.已知甲胜A,乙胜B,丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F.则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P(D)=0.4,P(E)=0.5,P(F)=0.5.红队至少两人获胜的事件有:DE F,D E F,D EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DE F)+P(D E F)+P(D EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知D E F、D E F、D E F是两两互斥事件,且各盘比赛的结果相互独立,因此P(ξ=0)=P(D E F)=0.4×0.5×0.5=0.1,P(ξ=1)=P(D E F)+P(D E F)+P(D E F)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P(ξ=3)=P(DEF)=0.6×0.5×0.5=0.15.由对立事件的概率公式得P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=0.4.所以ξ的分布列为:ξ012 3P 0.10.350.40.15因此E(ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.1.判断某事件发生是否是独立重复试验,关键有两点:(1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生.2.在利用n次独立重复试验中,恰好发生k次的概率P(x=k)=C k n p k(1-p)n-k,k=0,1,2,….要注意n,k,p的取值.3.遇到“至少”“至多”问题时,要考虑从对立事件入手计算.4.二项分布模型(1)判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验.②随机变量是否为在这n 次独立重复试验中某事件发生的次数.(2)涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题时,由于产品数量很大,因而抽查时,抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.(3)若随机变量X ~B (n ,p ),则E (X )=np .5.(2012年天津)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ) 【解】 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝⎛⎭⎪⎪⎫13i ⎝ ⎛⎭⎪⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 24⎝⎛⎭⎪⎪⎫132 ⎝ ⎛⎭⎪⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎪⎪⎫133⎝ ⎛⎭⎪⎪⎫23+C 44⎝ ⎛⎭⎪⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列是随机变量ξ的数学期望E (ξ)=0×827+2×4081+4×1781=14881.6. 张先生家住H 小区,他工作在C 科技园区,从家到公司上班的路上有L 1,L 2两条路线(如图所示),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率;(2)若走L 2路线,求遇到红灯的次数X 的数学期望;(3)按照“遇到红灯的平均次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解:(1)设“走L 1路线最多遇到1次红灯”为事件A ,则P (A )=C 03×⎝⎛⎭⎪⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎪⎫122=12.所以走L 1路线,最多遇到1次红灯的概率为12. (2)依题意,X 的可能取值为0,1,2.,P (X =0)=⎝⎛⎭⎪⎪⎫1-34×⎝ ⎛⎭⎪⎪⎫1-35=110,P (X=1)=34×⎝ ⎛⎭⎪⎪⎫1-35+⎝ ⎛⎭⎪⎪⎫1-34×35=920, P (X =2)=34×35=920.故随机变量X 的分布列为 X0 1 2P 110 920 9206.(1)设某种灯管使用了500 h 还能继续使用的概率是0.94,使用到700 h 后还能继续使用的概率是0.87,问已经使用了500 h 的灯管还能继续使用到700 h 的概率是多少?(2)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取1粒,求这粒种子能成长为幼苗的概率.【正确解答】 (1)设A =“能使用到500 h ”,B =“能使用到700h ”,则P (A )=0.94,P (B )=0.87.而所求的概率为P (B |A ),由于B ⊆A ,故P (B |A )=P (A ∩B )P (A )=P (B )P (A )=0.870.94=8794. (2)据题意知P (A )=0.9,P (B |A )=0.8,故由P (B |A )=P (A ∩B )P (A )知P (A ∩B )=P (A )·P (B |A )=0.72,又由于B ⊆A ,故P (A ∩B )=P (B )=0.72即为这粒种子能成长为幼苗的概率.假定生男生女是等可能的,某家庭有3个孩子,其中有1名女孩,求其至少有1个男孩的概率.解:法一:此家庭共有3个孩子,包含基本事件有(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)其中至少有1个女孩共有7种可能,其中至少有1个男孩有6种可能,故其概率为67法二:记事件A表示“其中有1名女孩”,B表示“至少有1个男孩”,P(B|A)=6878=67.。
条件概率知识点一、条件概率的定义。
1. 概念。
- 设A、B为两个事件,且P(A)>0,称P(BA)=(P(AB))/(P(A))为在事件A发生的条件下事件B发生的条件概率。
- 例如,扔一个骰子,事件A为“骰子的点数为偶数”,P(A)=(3)/(6)=(1)/(2),事件B为“骰子的点数小于4”,AB表示“骰子的点数为2”,P(AB)=(1)/(6)。
那么在A发生的条件下B发生的条件概率P(BA)=(P(AB))/(P(A))=(frac{1)/(6)}{(1)/(2)}=(1)/(3)。
2. 性质。
- 非负性:对于任意事件B,A(P(A)>0),有P(BA)≥slant0。
- 规范性:P(ΩA) = 1,这里Ω是样本空间。
- 可列可加性:如果B_1,B_2,·s是两两互不相容的事件,则P(bigcup_i =1^∞B_iA)=∑_i = 1^∞P(B_iA)。
二、条件概率的计算方法。
1. 公式法。
- 直接根据定义P(BA)=(P(AB))/(P(A))计算。
- 例如,有一批产品共100件,其中次品10件,从中不放回地抽取两次,每次取一件。
设事件A为“第一次取到次品”,P(A)=(10)/(100)=(1)/(10);事件B为“第二次取到次品”。
AB表示“第一次和第二次都取到次品”,P(AB)=(10)/(100)×(9)/(99)=(1)/(110)。
那么P(BA)=(P(AB))/(P(A))=(frac{1)/(110)}{(1)/(10)}=(1)/(11)。
2. 缩减样本空间法。
- 当直接计算P(AB)和P(A)比较复杂时,可以考虑缩减样本空间。
- 还是以上面抽取产品的例子,在A发生的条件下,即第一次已经取到了次品,此时样本空间就缩减为99件产品,其中次品还有9件,所以P(BA)=(9)/(99)=(1)/(11)。
三、条件概率的乘法公式。
1. 公式。
- 由P(BA)=(P(AB))/(P(A))可得P(AB)=P(A)P(BA)(P(A)>0)。
2.2.1 条件概率教学目标(一)知识目标在具体情境中,了解条件概率的概念,掌握条件概率的计算公式,并能运用条件概率公式解决有关的简单概率问题.(二)情感目标创设教学情境,培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新的思维品质.(三)能力目标在知识的教学过程中,培养学生从特殊到一般的探索归纳能力及运算能力和应用新知的能力,渗透归纳、转化的数学思想方法.教学重点条件概率的概念,条件概率公式的简单应用.教学难点正确理解条件概率公式,并能灵活运用条件概率公式解决简单实际问题.教学过程一、复习引入1、复习:(1)两个事件A、B的和事件(BABA或+):事件A、B中至少有一个发生,当事件A、B 互斥时,()()()P A B P A P B+=+(2)两个事件A、B的积事件(BAAB或)事件A、B同时发生,若AB为不可能事件,则说事件A与B互斥.(),(),()P AB P A P B有什么关系呢?2、引例1:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问题1:事件B:最后一名同学抽到中奖奖券的概率为多少?1 ()3 P B=问题2: 如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?12 P=问题3:为什么两个问题的概率不一样?通过回答问题3:,引出课题条件概率:因为问题2中已知第一名同学的抽奖结果会影响最后一名同学抽到中奖奖券的概率:若记A:第一名同学没有抽到中奖使得,一般地,在已知另一事件A 发生的前提下,事件B 发生的可能性大小不一定再是P(B).我们将问题2的事件记为(|)P B A ,称为在“A 已发生”的条件下,B 发生的条件概率 二、新授课:(一)条件概率的概念设A 和B 为两个事件,那么,在“A 已发生”的条件下,事件B 发生的概率叫做______________________. 用符号___________表示。