条件概率及有关公式
- 格式:pdf
- 大小:180.33 KB
- 文档页数:29
概率论中的条件概率与全概率公式概率论是数学中的一个分支,研究的是随机事件发生的概率及其规律。
在概率论中,条件概率和全概率公式是两个重要的概念和工具,用于计算复杂事件的概率。
本文将详细介绍条件概率与全概率公式的定义和应用。
一、条件概率的定义条件概率是指在某一事件发生的前提下,另一事件发生的概率。
用数学符号表示为P(A|B),读作“事件B发生的条件下事件A发生的概率”。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率, P(B)表示事件B发生的概率。
条件概率的计算可以通过实际观测数据或假设条件来进行推导。
例如,某班有30名男生和20名女生,现从中随机抽取一人,假设该人是男生,求其来自某个特定城市的概率。
根据条件概率的定义,我们有:P(来自某个特定城市|男生) = P(来自某个特定城市∩男生) / P(男生)假设该特定城市的男生人数为10,那么有:P(来自某个特定城市|男生) = 10 / 30 = 1/3二、全概率公式的定义和应用全概率公式是一种计算复杂事件概率的方法,它基于对样本空间的划分和对条件概率的累加。
全概率公式的定义如下:对于事件A,若存在一组互不相容的事件B1,B2,…,Bn,并且它们的并集覆盖了样本空间,即B1∪B2∪…∪Bn = S,则有:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + … + P(A|Bn)P(Bn)其中,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率。
全概率公式的应用非常广泛,可以用于解决各种与条件发生相关的概率问题。
例如,在某人可能患有某种疾病的情况下,通过一系列检查可以得到以下信息:检查结果为阳性的人中,有80%实际患有该疾病;检查结果为阴性的人中,有10%实际患有该疾病。
现在假设某人检查结果为阳性,请问他实际上患有该疾病的概率是多少?根据题意,可以将该问题划分为两个互不相容的事件:实际患病(A)和不患病(A'),其中A'表示“不患有该疾病”。
杨鑫的数学课堂条件概率、全概率、贝叶斯公式、p(A|B)=P(A∩B)P(B)⇒p(A∩B)=p(A|B)×p(B)⇒p(A∩B)=P(B|A)×P(A)(1)p(A|B)=P(A∩B)P(B)=p(B|A)×P(A)p(B)(2)先举个例子,小张从家到公司上班总共有三条路可以直达(如下图),但是每条路每天拥堵的可能性不太一样,由于路的远近不同,选择每条路的概率如下:p(L1)=0.5,p(L2)=0.3,p(L3)=0.2(3)每天上述三条路不拥堵的概率分别为:p(C1)=0.2,p(C2)=0.4,p(C3)=0.7(4)其实不迟到就是对应着不拥堵,设事件C为到公司不迟到,事件Li为选择第i 条路,则:p(C)=p(L1)×p(C|L1)+p(L2)×p(C|L)+p(L3)×p(C|L3) p(C)=p(L1)×p(C1)+p(L2)×p(C2)+p(L3)×p(C3)p(C)=0.5×0.2+0.3×0.4+0.2×0.7=0.36(5)全概率计算公式p(C)=p(L1)p(C|L1)······p(L n)p(C|L n)=n∑i=1p(L i)p(C|L i)(6)三、贝叶斯公式仍旧借用上述的例子,但是问题发生了改变,问题修改为:到达公司未迟到选择第1条路的概率是多少?0.5这个概率表示的是,选择第一条路的时候并没有靠考虑是不是迟到,只是因为距离公司近才知道选择它的概率,而现在我们是知道未迟到这个结果,是在这个基础上问你选择第一条路的概率,所以并不是直接就可以得出的。
故有:p(L1|C)=p(C|L1)×p(L1)p(C)p(L1|C)=p(C|L1)×p(L1)P(L1)×p(C|L1)+P(L2)×p(C|L2)+P(L3)×p(C|L3)p(L1|C)=0.2×0.50.2×0.5+0.3×0.4+0.2×0.7=0.28(7)1。
第三节条件概率全概率公式条件概率、全概率公式是概率论中两个重要的概念和方法。
在实际问题中,我们常常需要考虑一些事件发生的条件下,另一个事件发生的概率,即条件概率。
而全概率公式则是一种根据一组互斥事件的概率可以计算出其他事件概率的方法。
本节将详细介绍条件概率和全概率公式的概念、性质以及应用。
一、条件概率条件概率是指在一个已知事件B发生的条件下,事件A发生的概率。
记为P(A,B),读作“A在B下的概率”。
其计算公式为:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率具有以下性质:1.非负性:对于任意的事件A和B,有P(A,B)≥0。
2.规范性:当P(B)>0时,有P(B,B)=13.直积性:对于任意的事件A和B,有P(A∩B)=P(B)×P(A,B)。
4.反转性:若P(B)>0,有P(A,B)=P(A∩B)/P(B)=P(B,A)×P(A)/P(B)。
条件概率在实际应用中非常重要。
例如,在医学诊断中,我们常常需要计算一些疾病在一些检查结果呈阳性的条件下的概率,以判断该疾病的可能性大小。
全概率公式是指通过一组互斥事件的概率可以计算出另一个事件的概率的方法。
假设事件B1、B2、..、Bn互不相容且构成样本空间S,即B1、B2、..、Bn是一组完备事件,且P(Bi)>0,那么对任意事件A有:P(A)=P(A,B1)×P(B1)+P(A,B2)×P(B2)+...+P(A,Bn)×P(Bn)全概率公式的核心思想是将事件A在各个互斥事件的条件下进行考虑,并加权求和得到事件A的概率。
全概率公式的应用非常广泛。
例如,在市场营销中,一个产品的销量可能受到不同市场环境的影响。
我们可以通过对不同市场环境下产品销售的数据进行分析,运用全概率公式计算出在不同市场环境下产品销售的概率,进而制定相应的营销策略。
条件概率及条件分布知识点整理
1. 条件概率
条件概率是指在已知某一事件发生的条件下,其他事件发生的概率。
用符号表示为 P(A|B),表示在事件 B 已经发生的情况下,事件 A 发生的概率。
条件概率的计算公式为:
P(A|B) = P(A∩B) / P(B)
其中,P(A∩B) 表示事件 A 和事件 B 同时发生的概率,P(B) 表示事件 B 发生的概率。
2. 条件分布
在概率论和统计学中,条件分布是指在给定某个条件下,随机变量的概率分布。
条件分布可以通过条件概率来计算。
给定随机变量 X 和随机变量 Y,条件分布可以表示为
P(X|Y=y),表示在事件 Y=y 发生的条件下,随机变量 X 的概率分布。
条件分布的计算公式为:
P(X|Y=y) = P(X∩Y=y) / P(Y=y)
其中,P(X∩Y=y) 表示随机变量 X 和事件 Y=y 同时发生的概率,P(Y=y) 表示事件 Y=y 发生的概率。
3. 应用
条件概率和条件分布在概率论和统计学中有广泛的应用。
一些
常见的应用包括:
- 贝叶斯定理:用于计算后验概率,即在已知观测数据的情况下,更新先验概率。
- 马尔科夫链:用于建模状态转移过程,在给定当前状态的情
况下,预测未来状态的概率分布。
- 事件独立性检验:通过计算条件概率是否等于边缘概率,来判断事件是否独立。
- 条件随机场:用于序列标注、自然语言处理等任务,通过建模给定条件下,序列输出的概率分布。
以上是关于条件概率和条件分布的简要介绍。
在实际应用中,我们可以根据具体问题选择适当的概率模型和方法来进行推断和计算。
概率论公式1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni i n i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k kB A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = p nk p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有,2,1,0!)1(lim ==---∞→k k e p p C kkn n k n k n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x x td 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ 9. 二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y = )()()(y f xf x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y fy x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E ⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩 )(k X E X 的 k 阶绝对原点矩 )|(|k X E X 的 k 阶中心矩 )))(((k X E X E - X 的 方差 )()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E -- X ,Y 的相关系数 XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2) )()()(22X E X E X D -= 协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±=相关系数 )()(),cov(Y D X D Y X XY =ρ。
第二周条件概率和独立性2.2条件概率有关条件概率的三个重要计算公式上一讲中我们引入了条件概率,有了这一概念,我们对事件的表达就有了更丰富的工具。
下面我们就希望能够有效地计算条件概率,得到我们想要的概率结果。
对于条件概率而言呢,主要有三个计算公式,分别是乘法公式、全概率公式和贝叶斯公式。
这三个计算公式的应用贯穿概率论的始终,是非常基本和重要的计算工具。
下面我们看第一个乘法公式。
*********************************************************乘法公式(1)设B A ,是两个事件,()0>B P ,则()()()B A P B P AB P |=证明:()()()()()()||P AB P A B P AB P B P A B P B =⇒=(2)设n A A A ,,,21 为n 个事件,且()0121>-n A A A P ,则()()()()()12121312121|||-⋅⋅=n n n A A A A P A A A P A A P A P A A A P 。
证明:数学归纳法,设()()()()111211||-⋅⋅=k k k A A A P A A P A P A A P ,()()()1112112|k k k kP A A P A A A P A A A A ++=⋅ ()()()121112||.k k P A P A A P A A A A +=⋅⋅ 直接验证:()()()()121312121|||n n P A P A A P A A A P A A A A -⋅⋅ ()()()()()()()12312121112121n n P A A A P A A A P A A P A P A P A A P A A A -= ()12.n P A A A =*********************************************************例2.2.1设箱子内有a 个白球,b 个黑球,在其中不放回地连取3次,问前2次取到白球而第3次取到黑球的概率。
条件概率的三种求解方法:
在概率论中,条件概率表示一个事件发生的条件下另一个事件发生的概率。
常见的三种求解条件概率的方法如下:
1.通过贝叶斯公式求解: 贝叶斯公式是P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B) 表示
条件概率,P(B|A) 表示B 在A 发生的条件下发生的概率,P(A) 表示A 发生的概率,P(B) 表示B 发生的概率。
2.通过乘法公式求解: 乘法公式是P(A and B) = P(A|B) * P(B) = P(B|A) * P(A),其中P(A
and B) 表示A 和B 同时发生的概率。
3.通过联合概率公式求解: 联合概率公式是P(A and B) = P(A) * P(B|A) = P(B) * P(A|B),
其中P(A and B) 表示A 和B 同时发生的概率。
这三种方法都可以求解条件概率,但是要根据具体情况选择使用哪一种方法。
三维条件概率公式
条件概率三大公式有:乘法公式,全概公式,贝叶斯公式。
条件概率是指事件A在另外一个事件B已经发生条件下的发生概率。
条件概率表示为:P(A|B),读作“在B的条件下A的概率”。
条件概率可以用决策树进行计算。
条件概率的谬论是假设P(A|B)大致等于P(B|A)。
数学家JohnAllenPaulos在其《数学盲》一书中
指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。
这种错误可以通过用实数而不是概率来描述数据的方法来避免。
条件概率的公式:P(A|B)=P(AB)/P(B),条件概率是指事件A在另
外一个事件B已经发生条件下的发生概率。
条件概率表示为:P(A|B),读作“在B的条件下A的概率”。
条件概率可以用决策树进行计算。
条件概率的谬论是假设P(A|B)大致等于P(B|A)。