数列与函数的极限公式概念
- 格式:doc
- 大小:1.06 MB
- 文档页数:5
数列极限与函数极限数列极限与函数极限一、数列极限在数学分析中,数列是一组按照一定规律排列的数。
当数列中的数随着下标的增加趋近于某个确定的值,这个确定的值就叫做该数列的极限。
例如,数列{1, 1/2, 1/3, ... , 1/n}当n趋近于正无穷时,其极限为0。
数列极限的概念具有广泛的应用。
在微积分、实分析和复分析等领域,数列极限是基础性的概念。
我们可以通过研究数列极限性质,研究数学中最基本的概念和问题,如无穷级数、函数极限等。
二、函数极限与数列极限类似,函数极限也是数学分析中的重要概念。
当自变量x趋近于某个确定的值时,函数f(x)的值也随之趋近于某个确定的值,这个确定的值就叫做该函数的极限。
例如,当x趋近于0时,f(x) = 2x的极限为0。
函数极限的研究能使我们更好地理解和准确描述各种自然现象和科学实验。
高等数学中的导数和积分等概念都与函数极限密切相关。
三、函数极限和数列极限的联系函数极限和数列极限是大量数学理论的基础,这两者之间也存在着联系。
我们知道,当自变量x取无穷大或无穷小时,函数的极限可能存在,也可能不存在。
在这些无穷大或无穷小的情况下,函数极限可以用数列极限来表示。
具体来说,当x趋近于正无穷时,我们可以通过构造数列{f(x1), f(x2), f(x3), ...},其中x1<x2<x3<...,使得该数列趋近于函数的极限L。
同理,当x趋近于负无穷时,我们也可以通过类似的方法得到函数极限。
此外,函数的导数和积分等重要概念也可以通过数列极限的思想表示和求解。
四、结语数列极限和函数极限是数学中极其重要的概念,无论在实际应用还是理论研究中都起着举足轻重的作用。
熟练掌握数列极限和函数极限的概念和性质,对于学习高等数学以及其他数学分支学科都有很大的帮助。
数列、函数极限和函数连续性数列极限定义1(N ε-语言):设{}n a 是个数列,a 是一个常数,若0ε∀>,∃正整数N ,使得当n N >时,都有n a a ε-<,则称a 是数列{}n a 当n 无限增大时的极限,或称{}n a 收敛于a ,记作lim n n a a →+∞=,或()n a a n →→+∞.这时,也称{}n a 的极限存在.定义2(A N -语言):若0A >,∃正整数N ,使得当n N >时,都有n a A >,则称+∞是数列{}n a 当n 无限增大时的非正常极限,或称{}n a 发散于+∞,记作lim n n a →+∞=+∞或()n a n →+∞→+∞,这时,称{}n a 有非正常极限,对于,-∞∞的定义类似,就不作介绍了.为了后面数列极限的解法做铺垫,我们先介绍一些常用定理.1.2 数列极限求法的常用定理定理1.2.1(数列极限的四则运算法则) 若{}n a 和{}n b 为收敛数列,则{}{}{},,n n n n n n a b a b a b +-⋅也都是收敛数列,且有()()lim lim lim ,lim lim lim .n n n n n n n n n n nn n n a b a b a b a b →∞→∞→∞→∞→∞→∞±=±⋅=⋅若再假设0n b ≠及lim 0n n b →∞≠,则n n a b ⎧⎫⎨⎬⎩⎭也是收敛数列,且有lim lim /lim n n n n n n n a a b b →∞→∞→∞⎛⎫= ⎪⎝⎭. 定理1.2.2(单调有界定理) 在实数系中,有界的单调数列必有极限.定理1.2.3(∞Stoltz 公式) 设有数列{}n x ,{}n y ,其中{}n x 严格增,且lim n n x →+∞=+∞(注意:不必lim n n y →+∞=+∞).如果11limn n n n n y y a x x -→+∞--=-(实数,,+∞-∞),则 11limlim.n n n n n nn n y y y a x x x -→+∞→+∞--==-定理1.2.3'(00Stoltz 公式) 设{}n x 严格减,且lim 0n n x →+∞=,lim 0n n y →+∞=.若11limn n n n n y y a x x -→+∞--=-(实数,,+∞-∞), 则 11limlimn n n n n nn n y y y a x x x -→+∞→+∞--==-.定理1.2.4(几何算术平均收敛公式) 设lim n n a a →∞=,则(1)12 (i)nn a a a a n→∞+++=,(2)若()01,2,...n a n >=,则12lim ...n n n a a a a →∞=.定理1.2.5(夹逼准则)设收敛数列{}{},n n a b 都以a 为极限,数列{}n c 满足:存在正数0N ,当0n N >时,有 n n n a c b ≤≤, 则数列{}n c 收敛,且lim n n c a →∞=.定理1.2.6(归结原则)设f 在()0;U x δ' 内有定义.()0lim x xf x →存在的充要条件是:对任何含于()0;U x δ' 且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等.数列极限的求法2.1 极限定义求法在用数列极限定义法求时,关键是找到正数N .我们前面一节的定理1.2.4(几何算术平均收敛公式)的证明就可用数列极限来证明,我们来看几个例子. 例2.1.1 求lim n n a →∞,其中0a >.解:lim 1n n a →∞=.事实上,当1a =时,结论显然成立.现设1a >.记11n a α=-,则0α>. 由()11111nn a n n a αα⎛⎫=+≥+=+- ⎪⎝⎭,得 111n a a n--≤. (5)任给0ε>,由(5)式可见,当1a n N ε->=时,就有11n a ε-<.即11n a ε-<.所以lim 1n n a →∞=.对于01a <<的情况,因11a>,由上述结论知1lim1nn a→∞=,故11lim lim111/n nn n a a→∞→∞===.综合得0a >时,lim 1n n a →∞=.例2.1.2 定理1.2.4(1)式证明.证明:由lim n n a a →∞=,则0ε∀>,存在10N >,使当1n N >时,有/2n a a ε-<, 则()111211...1......nN N n a a a a aa a a a a a ann++++-≤-++-+-++-.令11...N c a a a a =-++-,那么121 (2)na a a n N c a nnn ε+++--≤+⋅.由lim0n c n→∞=,知存在20N >,使当2n N >时,有2c n ε<.再令{}12max ,N N N =,故当n N >时,由上述不等式知121 (2)222na a a n N a nn εεεεε+++--≤+⋅<+=.所以 12 (i)nn a a a a n→∞+++=.例 2.1.3 求7lim!nn n →∞.解:7lim0!nn n →∞=.事实上,7777777777771......!127817!6!n n n n n n=⋅⋅⋅≤⋅=⋅-.即77710!6!nn n-≤⋅.对0ε∀>,存在7716!N ε⎡⎤=⋅⎢⎥⎣⎦,则当n N >时,便有77710!6!nn nε-≤⋅<,所以7lim0!nn n →∞=. 注:上述例题中的7可用c 替换,即()lim00!nn cc n →∞=>.2.2 极限运算法则法我们知道如果每次求极限都用定义法的话,计算量会太大.若已知某些极限的大小,用定理1.2.1就可以简化数列极限的求法. 例2.2.1 求11101110 (i)...mm m m k k n k k a n a n a n a b n b nb n b ---→∞-++++++++,其中00m k m k a b ≤≠≠,,.解:分子分母同乘k n -,所求极限式化为1111011110 (i)...m km kkkm m kkn k k a na na na nb b nb n b n---------→∞-++++++++.由()lim 00n n αα-→∞=>,知,当m k =时,所求极限等于m ma b ;当m k <时,由于()00m k n n -→→,故此时所求极限等于0.综上所述,得到 11101110, (i)....0,mm m m m m kk n k k a k m a n a n a n a b b n b nb n b k m ---→∞-⎧=++++⎪=⎨++++⎪>⎩例2.2.2 求lim1nnn aa →∞+,其中1a ≠-.解: 若1a =,则显然有1lim12nn n aa →∞=+;若1a <,则由lim 0n n a →∞=得()lim lim /lim 101nnnnn n n aa a a →∞→∞→∞=+=+;若1a >,则11limlim111101nnn n naa a→∞→∞===+++.2.3 夹逼准则求法定理1.2.5又称迫敛性,它不仅给出了判定数列收敛的一种方法,而且也提供了一个求极限的工具. 例2.3.1 求极限()()1321lim 242n n n →∞⋅⋅⋅⋅-⋅⋅⋅⋅.解:因为()()()()2224412121212121n n n n n n n n =>-=+--=-⋅-,, 所以()()13211332121102421335212121n n n n n n n ⋅⋅⋅⋅-⋅-⋅-<<⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅-⋅++.因 1lim021n n →∞=+,再由迫敛性知()()1321lim242n n n →∞⋅⋅⋅⋅-=⋅⋅⋅⋅.例2.3.2 求数列{}n n 的极限.解: 记1n n n a n h ==+,这里()01n h n >>,则 ()()2112n nn n n n h h -=+>,由上式得 ()2011n h n n <<>-,从而有21111n n a h n ≤=+≤+- , (2)数列211n ⎧⎫⎪⎪+⎨⎬-⎪⎪⎩⎭是收敛于1的,因对任给的0ε>,取221N ε=+,则当n N >时有2111n ε+-<-.于是,不等式(2)的左右两边的极限皆为1,故由迫敛性得lim 1n n n →∞=.例2.3.3 设1a >及*k N ∈,求limk nn n a→∞.解:lim0k nn n a→∞=.事实上,先令1k =,把a 写作1η+,其中0η>.我们有 ()()()22201111...2nnn nn n n an n ηηηη<==<--++++.由于()()22lim021n n n η→∞=≥-,可见n n a ⎧⎫⎨⎬⎩⎭是无穷小.据等式()1/kk nnk n n aa ⎛⎫⎪= ⎪⎝⎭,注意到1/1ka>,由方才所述的结果()1/nk na ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是无穷小.最后的等式表明,k n n a ⎧⎫⎨⎬⎩⎭可表为有限个(k 个)无穷小的乘积,所以也是无穷小,即 lim0k nn n a→∞=.2.4 单调有界定理求法有的时候我们需要先判断一个数列是否收敛,再求其极限,此时该方法将会对我们有很大帮助,我们来看几个例子. 例2.4.1 求例2.1.3注解中的()lim00!nn cc n →∞=>.解:()lim00!nn cc n →∞=>.事实上,令*!nn cx n N n =∈,.当n c ≥时,()11n nn cx x x n +=≤+.因此{}n x 从某一项开始是递减的数列,并且显然有下界0.因此,由单调有界原理知极限lim n n x x →∞=存在,在等式()11n ncx x n +=+的等号两边令n →∞,得到00x x =⋅=,所以{}n x 为无穷小.从而()lim00!nn cc n →∞=>.例2.4.2 求极限lim 333n →∞⋅⋅⋅(n 个根号).解:设3331n a =⋅⋅⋅>,又由133a =<,设3n a <,则13333n n a a +=<⨯=. 因13n n n a a a +=>,故{}n a 单调递增. 综上知{}n a 单增有上界,所以{}n a 收敛. 令lim 13n n a a a →∞=≤≤,,由13n n a a +=, 对两边求极限得3a a =,故3a =. 2.5 函数极限法有些数列极限可先转化为函数极限求可能很方便,再利用归结原则即可求出数列极限.例2.5.1 用函数极限法求例2.1.1,即求lim n n a →∞.解:先求lim xx a →∞,因ln ln lim1/0lim lim lim 1x aa xxxxx x x a aee e →∞→∞→∞→∞=====,再由归结原则知lim 1n n a →∞=.例2.5.2 用函数极限求例2.3.2,即求lim n n n →∞.解:先求limxx x →∞.因ln ln limlimlim 1x xx xxxx x x ee e →∞→∞→∞====,再由归结原则知lim 1n n n →∞=.例2.5.3 用函数极限求例2.3.3,即设1a >及*k N ∈,求limk nn n a→∞.解:先求limk xx x a→∞.因()1!limlim (i)ln ln kk kxxxx x x xkxk a a aaa -→∞→∞→∞====(由洛比达法则),再由归结原则知lim0k nn n a→∞=.2.6 定积分定义法通项中含有!n 的数列极限,由于!n 的特殊性,直接求非常困难,若转化成定积分来求就相对容易多了.例2.6.1 求!limnn n n→∞.解:令!nn y n=,则11ln lnni i y nn==∑.而()++110011lim ln limlnln lim ln lim1ln 1nn n i i y xdx xdx nnεεεεεε→∞→∞→→=====---=-⎡⎤⎣⎦∑⎰⎰,也即ln lim 1n y →∞=-,所以1!lim limnn n n y en-→∞→∞==.例2.6.2 求极限2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫⎪+++ ⎪+ ⎪++⎝⎭. 解:因为22sinsin...sin sinsinsin (111)12nnn n n n n n nππππππ+++<+++++++2sinsin...sin 1nnn nπππ+++<+,2sin sin...sin 12limlimsin sin ...sin 1112lim sin sin ...sin n n n nnn n n n n n n n n πππππππππππππ→∞→∞→∞+++⎡⎤⎛⎫=⋅⋅+++⎪⎢⎥++⎝⎭⎣⎦⎡⎤⎛⎫=+++⎪⎢⎥⎝⎭⎣⎦12sin xdx πππ==⎰,类似地2sinsin...sin lim 1n nnn nπππ→∞++++22122limsin sin ...sin 1n nn nn n ππππππ→∞⎡⎤⎛⎫=⋅⋅+++=⎪⎢⎥+⎝⎭⎣⎦,由夹逼准则知2sin sin sin 2lim ...1112n n n n n n n ππππ→∞⎛⎫ ⎪+++= ⎪+ ⎪++⎝⎭ .注:在此式的求解中用到了放缩法和迫敛性. 2.7 Stoltz 公式法Stoltz 公式,11limlim.n n n n n nn n y y y a x x x -→+∞→+∞--==-在求某些极限时非常方便,尤其是当1nn kk y a ==∑时特别有效.例2.7.1 同例2.1.2,定理1.2.4(1)式证明.证明:前面用N ε-定义法证明,现用Stoltz 公式证明. 令12...,n n n y a a a x n =+++=,则由Stoltz 公式得到()()()1212121 (i)......lim 1nn n n n a a a na a a a a a n n →∞-→∞++++++-+++=--limlim 1n n n n a a a →∞→∞===.例2.7.2 求112...lim kk kk n nn+→+∞+++.解: ()11112 (i)lim1kkkkk k k n n nn nnn +++→+∞→+∞+++=-- (Stoltz 公式)=()112111lim...1kk kk n k k nCn Cn+-→+∞++-+-- (二项式定理)=11111k C k +=+.2.8 几何算术平均收敛公式法上面我们用Stoltz 公式已得出定理1.2.4,下面我们通过例子会发现很多**nn,类型的数列极限可以用此方法来简化其求法. 例2.8.1 同例2.1.1一样求lim n n a →∞,其中0a >. 解:令123,...1n a a a a a =====,由定理1.2.4(2)知lim lim 1n n n n a a →∞→∞==.例2.8.2 同例2.3.2一样求lim n n n →∞.解:令()112,3, (1)n n a a n n ===-,,由定理1.2.4(2)知lim lim lim11n n n n n n n a n →∞→∞→∞===-.例2.8.3 同例2.6.1相似求lim!nn n n →∞.解:令()111nnn nn a n n +⎛⎫=+= ⎪⎝⎭,则()12312231234123nn nn a a a n+⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=()()11!!nnnnn n nn n n++=⋅.所以121!n n nnn a a a nn +⋅⋅⋅⋅⋅=⋅,也即121!nn nnn a a a n n =⋅⋅⋅⋅⋅⋅+,而由定理1.2.4(2)知121lim lim lim 1nnn n n n n a a a a e n →∞→∞→∞⎛⎫⋅⋅⋅⋅⋅==+= ⎪⎝⎭.故12limlimlim11!nn nn n n n n n a a a e e n n n →∞→∞→∞=⋅⋅⋅⋅⋅⋅=⋅=++.例2.8.3 求3123 (i)nn nn→∞++++.解:令(),1,2,3...n n a n n ==,则由定理1.2.4(1)知 3123 (i)lim lim1nnn n n n na n n→∞→∞→∞++++===.2.9 级数法若一个级数收敛,其通项趋于0(0n →),我们可以应用级数的一些性质来求数列极限,我们来看两个实例来领会其数学思想. 例2.9.1 用级数法求例2.1.3注()lim0!nn cc n →∞>.解:考虑级数!ncn ∑,由正项级数的比式判别法,因()1lim/lim011!!1n nn n ccc n n n +→∞→∞==<++,故级数!ncn ∑收敛,从而()lim00!nn cc n →∞=>.例2.9.2 用级数法求例2.3.3,即设1a >及*k N ∈,求limk nn n a→∞.解:考虑正项级数k nn a∑,由正项级数的比式判别法,因()11111lim/lim 1kkkn n n n n nn aa a n a+→∞→∞++⎛⎫=⋅=< ⎪⎝⎭, 故正项级数knn a∑收敛,所以lim0k nn n a→∞=.例2.9.3 求极限()()222111lim ...12n n n n →∞⎡⎤+++⎢⎥+⎢⎥⎣⎦.解: 因级数211n n∞=∑收敛,由级数收敛的柯西准则知,对0ε∀>,存在0N >, 使得当n N >时,21221111nn k k kkε-==-<∑∑,此即()()222111...12nn n ε+++<+,所以()()222111lim ...012n n n n →∞⎡⎤+++=⎢⎥+⎢⎥⎣⎦. 例2.9.4 求极限()212lim ...1n n n a aaa →∞⎛⎫+++>⎪⎝⎭. 解:令1x a=,所以1x <.考虑级数 1n n nx ∞=∑,因为()111limlim1n n nn n nn x a x a nx++→∞→∞+==<,所以此级数收敛.令 ()1nn s x nx ∞==∑,则()11n n s x x nx∞-==⋅∑.再令()11n n f x nx∞-==∑,()1111x x n nn n x f t dt ntdt xx∞∞-=====-∑∑⎰⎰.所以()()2111xf x xx '⎛⎫==⎪-⎝⎭-. 而 ()()()()122111xas x x f x x a --=⋅==--,所以()()122112lim ...1n n n a s x a a a a -→∞-⎛⎫+++== ⎪⎝⎭-.2.10 其它方法除去上述求数列极限的方法外,针对不同的题型可能还有不同的方法,我们可以再看几个例子.例2.10.1 求()22lim sin n n n π→∞+.解:对于这个数列极限可用三角函数的周期性. ()()2222lim sin lim sin n n n n n n n πππ→∞→∞+=+-=222lim sin lim sin111n n n n n nn ππ→∞→∞=++++=2sin 12π=.例2.10.2 设21101222n n a cc c a a +<<==+,,,证明:{}n a 收敛,并求其极限.解:对于这个极限可以先用中值定理来说明其收敛. 首先用数学归纳法可以证明 ()0,1,2...n a c n <<=. 事实上,102c a c <=<.假设01n a c <<<,则2210222222n n a c c cc c a c +<=+<+<+=.令()222c xf x =+,则()f x x '=.()()()111n n n n n n a a f a f a f a a ξ+--'-=-=⋅-=11n n n n a a c a a ξ--⋅-<-, (1)其中ξ介于n a 和1n a -之间.由于01c <<,再由(1)式知{}n a 为压缩数列,故收敛.设lim n n a l →∞=,则2c l c ≤≤.由于2122n n a c a +=+,所以 22,2022c ll l l c =+-+=.解得11l c =+-(舍去),11l c =--. 综上知lim 11n n a c →∞=--.注:对于这个题可也以采用单调有界原理证明其极限的存在性.函数极限一、函数极限的定义定义一:若当x 无限变大时,恒有|f(x)-a|<ε,其中ε是可以任意小的正数,则称当x 趋向无穷大时,函数f (x )趋向于a ,记作+∞→x lim f(x)=a 或f(x)→a(x→+∞)。
函数极限与数列极限的关系
函数的极限可以是自变量从左右趋向于某一值时的函数值极限,或者自变量趋向于无穷时的极限。
但数列的极限不同。
可以将数列看做特殊的函数,定义域为全体正整数集合(N+),是一个在零到正无穷上不连续的函数,设数列的项为an=f(n),因此,可以将数列的极限看做当自变量趋向于正无穷时的函数的极限,数列的极限也可以用函数的极限来运算得到。
lim n→∞an=lim n→∞f(n)
所以,用来计算函数极限的方法也可以用来计算数列的极限,如洛必达法则,等价无穷小的替换,间接计算等等。
a n=f(a n-1)形式计算方法:
设数列的极限为A .则lim n
→∞a n=A,此时A=f(A),带入计算求得极限。
数列极限的性质:1.若数列{an}的极限值存在,则极限值唯一
2.改变数列有限项,不改变数列的收敛与极限值
数列极限的本质:设数列的极限为a,当n>N时an∈(a-ε,a+ε),即|an-a|<ε.。
数列与函数的极限公式
概念
-CAL-FENGHAI.-(YICAI)-Company One1
极限与连续
一、数列的极限定义:
1、给定数列{},如果当n 无限增大时,其通项无限趋过于某个常数A ,则称数列{}以A 为极限,记作:=A 或者(n )
2、当数列{}以实数A 为极限时,称数列{}收敛于A ,否则称数列{}发散。
二、数列极限的性质:
1)极限的惟一性:若数列收敛,则其极限惟一,若=a ,则=a
2)有界性:收敛数列必有界. (数列有界是数列收敛的必要非充分条件)
3)数列的极限:如数列: ,1
2,,432,322,212++n n 则它的极限为3 即:3121
lim 2lim )12(lim =+=++=++∞→∞→∞→n n n n n n n
三、几个需要记忆的常用数列的极限
01lim =∞→n n 11lim =+∞→n n n 0lim =∞→n n q )1(<q )(lim 为常数a a a n =∞
→
四、运算法则:
如果 A a n =∞→lim B b n =∞
→lim 则: B A b a n ±=±∞→)(lim B A b a n ⋅=⋅∞→)(lim )0(,lim ≠=∞→B B
A b a n
二、函数极限:
函数极限
=A 的充分必要条件是==A 函数极限=A 的充分必要条件是==A
分段函数极限与该点有无定义无关,只与左右极限有关.
即
=
函数极限的性质:
1)极限的惟一性:若函数f(x)当(或)时有极限,则其极限惟一.
极限运算法则:
设limf(x)=A,limg(x)=B,则
1)lim[f(x)]=A B
2)lim[f(x)g(x)]=AB
3)当B时,lim =
4)lim[cf(x)]=climf(x) (c为常数)
5)lim[f(x)= [limf(x) (k为常数)
小结
..:.当,时,有 =
复合函数运算法则:=
数列的夹逼准则:设有3个数列{}{}{},满足条件:
1)(n=1,2,…);
2)==a,则数列{}收敛,且=a
函数夹逼准则:设函数f(x),g(x),h(x)在点的某去心邻域内有定义,且满足条件:
1)g(x)f(x)h(x);
2)=A,. 则极限存在且等于A.
单调有界准则:单调有界数列必有极限.即单调增加有上界的数列必有极限;即单调减少有下界的数列必有极限.
两个重要的极限:
重要极限Ⅰ: =1
重要极限Ⅱ:(1+ =e , (1+x=e
无穷小的性质:
1)有限个无穷小的代数和为无穷小.
2)有界变量与无穷小的乘积为无穷小.
3)常量与无穷小的乘积为无穷小.
4)有极限的量无穷小的乘积为无穷小.
5)有限个无穷小的积为无穷小.
在某个自变量变化过程中limf(x)=A 的充要条件是f(x)=A+(x). 其中(x)是该自变量变化过程中的无穷小量.
无穷小的比较:设=(x) ,=
都是自变量同一变化过程中的无穷小. 1.若lim =c (c ,是常数),则称与是同阶无穷小.
2.若lim =1,则称与是等价无穷小,记作~.
3.若lim =0,则称与是高阶无穷小,记作=o()
4.若lim =c(c ,k 是正整数), 则称与是k 阶无穷小.
5.~的充要条件为-是(或)的高阶无穷小,即
6.,,,,都是自变量同一变化过程中的无穷小,且~,,lim 存在,则有lim = lim 常用等价无穷小:[相乘的无穷小因子可用等价无穷小替换,加、减的不能] x 时,x~ sinx~ tanx~ arcsinx~ arctanx~ ln(1+x)~
; 1-cosx~ ;(1+x -1~ax(a ) ;-1~xlna(a 0,a ); - 1~
常用等价无穷小:当变量0x →时,
21sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~
,2
x x x x x x x x x e x x x x x -+- - 1~
11~,(1)1~x x x x x αα+--+-.
无穷大:函数无穷大 无界
x时,若f(x)为无穷大,则为无穷小;
x时,若f(x)为无穷小,且在的某去心邻域内f(x), 则为无穷大.
[注:分母极限为0,不能用商的运算法则]
初等函数:
连续函数经过四则运算所得到的函数仍是连续函数.
一切初等函数在其定义区间内都是连续的.
如果f(x)是初等函数,是其定义区间内的点,则=f().
最值定理:若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上必有最值.
有界性定理:若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上有界.
介值定理:若函数f(x)在闭区间[a,b]上连续,且f(a)f(b),则对于f(a)与f(b)之间的任何数,在开区间(a,b)内至少存在一点,使得f()=.
零点定理(根的存在性定理):若函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号
(f(a)f(b)),在开区间(a,b)内至少存在一点,使得f()=0
求极限:洛必达法则:
1、0/0型:
方法:将分子分母分解因式(消去公因子)
或者将分子有理化(有理化),再求极限。
1、
方法:将分子分母同时除以自变量的最高次幂。