当前位置:文档之家› 函数及极限练习题

函数及极限练习题

函数及极限练习题
函数及极限练习题

题型

一.求下列函数的极限

二.求下列函数的定义域、值域

三.判断函数的连续性,以及求它的间断点的类型

一.函数

1.函数的概念

2.函数的性质——有界性、单调性、周期性、奇偶性

3.复合函数

4.基本初等函数与初等函数

5.分段函数

二.极限

(一)数列的极限

1.数列极限的定义

2.收敛数列的基本性质

3.数列收敛的准则

(二)函数的极限

1.函数在无穷大处的极限

2.函数在有限点处的极限

3.函数极限的性质

4.极限的运算法则

(三)无穷小量与无穷大量

1. 无穷小量

2. 无穷大量

3. 无穷小量的性质

4. 无穷小量的比较

5. 等价无穷小的替换原理 三.

函数的连续性

1. 函数在点

0x 处连续的定义

2. 函数的间断点

3. 间断点的分类

4. 连续函数的运算

5. 闭区间上连续函数的性质

例题详解

题型I 函数的概念与性质

题型II 求函数的极限(重点讨论未定式的极限) 题型III 求数列的极限

题型IV 已知极限,求待定参数、函数、函数值 题型V 无穷小的比较

题型VI 判断函数的连续性与间断点类型 题型VII 与闭区间上连续函数有关的命题证明

自测题一

一. 填空题 二. 选择题

三. 解答题

4月27日函数与极限练习题

一.填空题

1.若函数121)x (f x

-??

?

??=,则______)x (f lim x =+∞

2.若函数1

x 1

x )x (f 2--=,则______)x (f lim _1x =→

3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________

4. 设

cos 0()0

x

x f x x ≤??=?

>?? ,则 (0)f = __________

5.已知函数 2

0()1

ax b

x f x x x +

(A) a b + (B) b a - (C) 1 (D) 2 6. 函数 3

x 2

x y --=

的定义域是 ( ) (A) (2,)+∞ (B) [2,]+∞ (C) (,3)(3,)-∞+∞U (D) [2,3)(3,)+∞U

7. 已知 11

()1f x x

=- ,则 (2)f = __________

8.

y =

,其定义域为 __________ 9. 2

2x

11x 1arcsin y -+

-= 的定义域是 ______

10. 考虑奇偶性,函数

ln(y x = 为 ___________ 函数

11.计算极限:(1) sin lim x x

x

→∞= _______;(2)711lim

1x x x →-=- ______

(3)x

x x

x sin lim +∞→ = _______;(4)1253lim 22-+∞→n n n n = _______

12.计算:(1)当 0x → 时,1cos x - 是比 x ______ 阶的无穷小量; (2)当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a = ______;

13.

已知函数2,()1,f x x ?-?

=-?1

1001x x x ≤--<<≤<,则1

lim ()x f x →- 和 0lim ()x f x →( )

(A) 都存在 (B) 都不存在

(C) 第一个存在,第二个不存在 (D) 第一个不存在,第二个存在

14. 设 232,0

()2,0

x x f x x x +≤?=?->? ,则 0

lim ()x f x +

→= ( ) (A) 2 (B) 0 (C) 1- (D) 2-

15. 当 n →∞ 时,1

sin

n n

是 ( ) (A)无穷小量 (B) 无穷大量 (C) 无界变量 (D) 有界变量

计算与应用题

设 )(x f 在点 2x =处连续,且232

,2(),x x x f x a ?-+?-??

=?????22=≠x x ,求 a

求极限:2

0cos 1lim 2x x x →- 求极限: 1

21lim()21x x x x +→∞+- 求极限: 512lim 43-+-∞→x x x x

求极限:x x x 1

0)41(lim -→ 求极限:2x x )x 211(lim -∞→- 求极限:20cos 1lim x

x

x -→

求极限: 2111lim()222n n →∞+++L 求极限:22lim(1)n n n

→∞- 求极限:lim()1x

x x x →∞+

求极限 211

lim ln x x x →- 求极限:201lim x x e x x →-- 求极限:2100

2lim(1)x x x +→∞+

求极限:

lim x →- 求极限:21lim()1x x x x →∞-+ 求极限: 3131

lim()11x x x →---

4月28日函数与极限练习题

一.基础题 1.设函数,1

1)(1

-=

-x x

e

x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点

(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 2. 下列极限正确的( )

A . sin lim

1x x x →∞= B . sin lim

sin x x x

x x

→∞-+不存在 C . 1lim sin 1x x x →∞= D . limarctan 2

x x π

→∞=

3. 设()1

sin (0)0(0)

1sin (0)

x x x x f x x a x x ?

=?=??+>???

且()0lim x f x →存在,则a = ( )

A .-1

B .0

C .1

D .2 4. 已知9)a

x a x (

lim x

x =-+∞

→,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 5. 极限:x

11x lim 0x -+→=( )

A.0;

B.∞; C 2

1; D.2.

6.极限:=+∞

→x

x )1

x (

lim ( ) A.1; B.∞; C.2

-e ; D.2

e 7. 函数 2

2)1x (x y -=在区间 (0,1) ( )

(A) 单调增加 (B) 单调减少 (C) 不增不减 (D)有增有减 8. 4.若()0

2lim

2x f x x

→=,则()0lim

3x x

f x →= ( ) A .3 B .

13 C .2 D .1

2

9.计算:lim 1x

x x x →∞??

= ?+??

2112lim 11x x x →??-= ?--?? ()()()

3

100213297lim 31x x x x →∞-+=

+

n = 1201arcsin lim sin x

x x e x x -→??+= ???

0)

lim sin x x x

+→= __________ ;

10.若函数2x 3x 1

x y 22+--=,则它的间断点是___________________

11.设 21,

0()0,

x e x f x x -??

≠=??=? 在 0x =

处________(是、否)连续

二.综合题

12.计算:

求sin 32lim sin 23x x x x x →∞+-

求()01cos x x x →- 求21lim sin cos x

x x x →∞?

?+ ??

? 求0ln cos 2lim ln cos3x x x → 求02lim sin x x x e e x x x -→--- 求21lim ln 1x x x x →∞????-+ ??????

?

求(lim 3x x →∞

求()11

1lim x

x

x x e

→??+???

????

?

13. 设()f

x ,0

x e a x x +>?=<且()0lim x f x →存在,求a 的值。

14. 已知()22281

lim 225x x mx x n x n →-+=-++,求常数,m n 的值。

15. 求11

1()111x x f x x x

-

+=--的间断点,并判别间断点的类型。

16.设()1

1,0

()ln 1,10

x e x f x x x -??>=??+-<≤?指出()f x 的间断点,并判断间断点的类型。

4月29日函数与极限练习题

一.填空题

1.极限:)(lim 2x x x x -+∞

+

→=( ) A.0; B.∞; C.2; D. 2

1.

2.极限: x x x x 2sin sin tan lim

30

-→=( )

A.0;

B.∞;

C. 16

1; D.16.

3.若()22

0l n1l i m 0s i n n x x x x →+=,

且0sin lim 01cos n x x

x →=-,则正整数n = 4.计算:极限12sin

lim 2

+∞

→x x

x x = lim 0

→x x

arctanx

=___________

=-∞

→n

n n

)2

1(lim _________________

5.若函数2

31

22+--=x x x y ,则它的间断点是___________________

6.已知极限22l i m ()0x x a x x

→∞++=,则常数a 等于( )。 A -1 B 0 C 1 D 2

7.111l

i m []1223(1)

n n n →∞+++??+L =_____ 21lim(1)x x x →∞-=______

8.极限2

01

lim cos 1

x x e x →--等于( )。

A ∞

B 2

C 0

D -2

9.当0x →+时,无穷小l n (1)A x α=+与无穷小s i n3x β=等价,则常数A=______

10.若10

5l im 1,k n

n e n --→∞

??+= ?

??

则k = 11.1201a r c s i n l i m s i n x x x e x x -→??+= ???

12.当0→x 时,为无穷小量的是( ). (A )x 1sin

(B )x x 1sin (C )x

x sin (D )x

2 13.设函数??

???=≠-+=)()(002

4)(x k x x

x x f 在0=x 处连续,则k 等于( ). (A )4 (B )

41 (C )2 (D )2

1

14.设1

1

)(--=

x x x f ,则1=x 是函数的( ). (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )无穷间断点.

15.设函数21c o s 0,(),0.x

x x f x k e x +≥?

=?

, 在1=x 处连续,则常数=a

16.l i m A x B x C x 1

3x C

1

x 32

→∞++++=,则A =___,B =___,C =___. 17.=-+---→231lim

22

x x x x =+→

x

x x sec 22

)cos 1(lim π . =+-∞→x

x x

x )1(lim . .

二.综合题

18.计算极限:)323(lim 2

2-+→x x x x x

x 3sin lim 0→

x x x x x -+-→22112lim x x x 2)41(lim -∞→

)11(lim 22--+∞→x x x x x x )(31ln lim 0+→ a x →lim a x e e a x -- 30ta n s in l im x x x

x →- 222111l i m (1)(1)(1)23n n →∞---L 123lim ()21x x x x +→∞++

x →

19.设3214

l i m 1

x x a x x x →---++ 具有极限,求,a l 的值

20.试确定常数a ,使得函数21sin

0()0

x x f x x

a x

x ?

>?=??+≤? ,在(,)-∞+∞连续

4月30日函数与极限练习题

一.选择题

1.设函数2)(2

+=x x f ,则)]([x f f 为( ) (A )4244x x ++ (B )4246x x ++ (C )4264x x ++ (D )4

226x x ++

2.函数

???

???

?

>

≤+=2,sin 2,)1ln()(ππx x x x x f 则)

4(π

f 等于( )

(A )

)

41ln(π

+

(B )22

(C )2π (D )4

π

3.下列函数中是有界函数的是( )

()x y x y C x x y x x y A arcsin D) ( 1log )( (B) 13)(222=+=+=++=

4.当的是时 sin tan , 0x x x →( ) 等价无穷小同阶非等价无穷小低阶无穷小

高阶无穷小 (D) )( (B) )(C A

5.函数()间断是因为

点在点 0 0 x ,1x 10 x ,1

12=???????≤++=x x

x f φ( )

)

0()( )( )(lin (C) (B) 0 x f(x) )( 0

x f x f lin D x f A x ≠=→→不存在左极限不等于右极限

无意义在点

6.=

???

??=≠-=→)(lim , 0 x 0,0 x ,1

e (x)0

x

x f x f x 则设( )

2 (D) 1- )( 0 (B) 1 ) (C A

7.当下列函数为无穷小的是时, 0→x ( )

1

2 (D) x)sin(11 )( sin (B) x sinx )(2-++x x C x x A

8.极限=--→9)3sin(lim 23x x x ( )

(A) 0 (B) 61 (C) 1 (D) 31

9.=

++∞→d bx n x a

)1(lim ( )

(A) b e (B) e (C) ab e (D) d

ab e +

10.=+-∞→n

n n )111(lim ( )

(A) 1

-e (B) e (C) 2

-e (D) 2

e

11.极限==++-→a ,212)2(sin lim 2则x x a x ( )

不存在

(D) 0 )( 21

(B) 2 ) (C A

二.填空题 1.

()_________

)2(_________,)4(,1 ,01 ,sin =-=?????≥=ππf f x x x x f π。

2.设

()2212++=+x x x f ,则()=x f _____________。

3.设x v v u u y arccos , 1 ,3

=+==,则复合函数()_____________==x f y 。 4.设

()??

?

??<=>+=0 x 0,0

x ,0

x ,1πx x f ,则()[]{}______,1=-f f f 值域为_________。

5. 6)(31

)(-=+=

qx x g p x x f 与函数的图象关于直线

x y =对称,则

________________,==q p 。 6.[]_______________________ )(sin 1,0 )( 的定义域为则的定义域为设x f ,x f 。

7.设

______________)( ,52 ),(212

1

=+-=-==x f t t y

x t f x y x 则且。

8.设函数

????

?≤=1

,

01,1)(φx x x f ,则函数[]____________

)(=x f f 。 9.______

__________)2(cos ,cos 1)2(sin =+=x

f x x f 则设。

10.

是无穷小

时当是无穷大时当)(,____;)(,____,1)-(x 1)(2

x f x x f x x f →→=

11.

________,53

9

5103lim

3==

+-+∞

→k n n n n k n 则若

12.函数()?????=-≠-=1 ,31

1

,2x x x x f 的间断点为_________,是第_____类间断点。 13.函数__

__________22

)(2的可去间断点是---=x x x x f 。

14.设当_________

a ,4tan , 02

2

=→则为等价无穷小与时x ax x 。

15.______

sin lim 2=→x x

x π,______12lim 0=-→x x x 。

16.==-+-→a x a x x x ,32lim 22则若_________。

17.当∞→x 时,函数)(x f 与x 1

是等价无穷小,则________)(2lim =∞→x xf x 。

18.函数()

1 ,cos 1

,2?????<≥+=x x x k x x f π处处处连续,则_________=k 。

19.函数_________________sin 的间断点是x x

y =

20=

--→πππx x x 1

cos )(lim 2

_________。

21.

=

=-→a e ax x

x ,)1(lim 220

则若_________。

22.设当

_________a ,1- 1, 02

2=+→则为等价无穷小与时x ax x 。 三.综合题 1、求下列极限

x x

x x cos sin lim )1(-∞→ 3423lim )2(221+-+-→x x x x x x x x x x 2sin 2sin lim )3(0-+→ x e e x x x 32lim )4(0-+-→

x x x x sin 2cos 1lim )5(0-→ )21812(lim )6(32x x x ---→ n n n n 321lim )7(2++++∞→Λ

x

x x x ??? ??-+∞→1212lim )5( n

x n ???

??-+∞→11lim )3( 11sin 1lim )5(2

--+→x x e x x

2.设e

x k

x x =++∞→)1(lim ,求k 。

2. 求?

?? ?

?

????∞→n n x x x x 2cos 2cos 2cos cos lim 2Λ

3.的值

试求若极限b a b ax x x x ,, 0)11

(lim 2=++++∞→。

4.设

0 ,0 ,2cos )(????

???--≥+=πx x x a a x x x

x f ,0φa ,

(1)当a 取何值时,0=x 是)(x f 的连续点, (2)当a 取何值时,0=x 是)(x f 的是间断点,

(3)当2=a 时,求函数)(x f 的连续区间。

5.

)(的取值范围求内至少有一个实根在已知a ,11,- 01 x 2

5=+++x ax 。 6.设)(x f 在2=x 处连续,且

,3)2(=f 求??????---→4421

)(lim 22x x x f x 。

7.设,

1x ,11,1)(22??

?

??<+>-+-=x x x b

ax x x f 若)

(lim 1

x f x →存在,求b a ,的值。

8.试判定方程0)1)(3()3)(2()2)(1(=--+--+--x x x x x x 有几个实根,分别在什么围?

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

高考数学常考知识点之极限

高考数学常考知识点之极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

函数与极限测试题及标准答案(二)

函数与极限测试题(二) 一. 选择题 1.设F()x 是连续函数()f x 的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有( ). (A )F()x 是偶函数?()f x )是奇函数. (B )F()x 是奇函数?()f x 是偶函数. (C )F()x 是周期函数?()f x 是周期函数. (D )F()x 是单调函数?()f x 是单调函数 2.设函数,1 1)(1 -= -x x e x f 则( ) (A ) 0x =,1x =都是()f x 的第一类间断点. (B ) 0x =,1x =都是()f x 的第二类间断点 (C ) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点. (D ) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 3.设()1x f x x -= ,01x ≠、,,则1 [ ]() f f x = ( ) A ) 1x - B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) 0 lim 11(1+ )x x x + →= B )0lim 1(1+ ) x x e x + →= C ) lim 1(1)x x e x →∞ =-- D )lim 1(1) x x e x -→∞ =+ 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 。 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2.

函数极限的定义的多种表达

函数极限的定义 林芳 20101101903 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

我们就称A 是函数f(x)在点x 0的右极限,记为 0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 ) ()()()(lim ∞→→=∞=∞→x A x f A f A x f x 或 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义

函数与极限练习题

题型 一.求下列函数的极限 二.求下列函数的定义域、值域 三.判断函数的连续性,以及求它的间断点的类型 内容 一.函数 1.函数的概念 2.函数的性质——有界性、单调性、周期性、奇偶性 3.复合函数 4.基本初等函数与初等函数 5.分段函数 二.极限 (一)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则 (二)函数的极限 1.函数在无穷大处的极限 2.函数在有限点处的极限 3.函数极限的性质 4.极限的运算法则 (三)无穷小量与无穷大量 1.无穷小量 2.无穷大量 3.无穷小量的性质 4.无穷小量的比较 5.等价无穷小的替换原理 三.函数的连续性 x处连续的定义 1.函数在点0 2.函数的间断点 3.间断点的分类 4.连续函数的运算 5.闭区间上连续函数的性质 例题详解 题型I函数的概念与性质 题型II求函数的极限(重点讨论未定式的极限) 题型III求数列的极限 题型IV已知极限,求待定参数、函数、函数值 题型V无穷小的比较 题型VI判断函数的连续性与间断点类型 题型VII与闭区间上连续函数有关的命题证明

自测题一 一. 填空题 二. 选择题 三. 解答题 3月18日函数与极限练习题 一.填空题 1.若函数121)x (f x -??? ??=,则______)x (f lim x =+∞ → 2.若函数1 x 1 x )x (f 2--=,则______)x (f lim _1x =→ 3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________ 4. 设 cos 0()0 x x f x x x ≤??=? >?? ,则 (0)f = __________ 5.已知函数 2 ()1 ax b x f x x x +

定义证明二重极限_1

定义证明二重极限 定义证明二重极限就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0户几卜8的一切点P,有不等式V(P)一周。成立,则称A为函数人P)当P~P。时的极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点P(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点P 入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点P。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点P都适合/(P)一A卜利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

极限知识点(2020年10月整理).pdf

高中数学第十三章-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1?=a ,则n n n n a )1(lim lim ?=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim

关于函数极限如何证明

关于函数极限如何证明 函数极限的性质是怎么一回事呢?这类的性质该怎么证明呢?下面就是学习啦给大家的函数极限的性质证明内容,希望大家喜欢。 X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A| 以此类推,改变数列下标可得|Xn-A| |Xn-1-A| …… |X2-A| 向上迭代,可以得到|Xn+1-A| 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。 n/(n^2+1)=0

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

二元函数极限证明

经典合同 二元函数极限证明姓名:XXX 日期:XX年X月X日

二元函数极限证明 目录 第一篇:二元函数极限证明 第二篇:二元函数的极限 第三篇:二元函数极限的研究 第四篇:二元函数的极限与连续 第五篇:函数极限的证明 正文 第一篇:二元函数极限证明 二元函数极限证明 设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。 此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。 我们必须注意有以下几种情形:’ (1)两个二次极限都不存在而二重极限仍有可能存在 (2)两个二次极限存在而不相等 (3)两个二次极限存在且相等,但二重极限仍可能不存在 2 函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0) 根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有 |f(x)-a|<ε 而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ) 第 2 页共 26 页

又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1 再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)| 证毕 3首先,我的方法不正规,其次,正确不正确有待考察。 1,y以y=x^2-x的路径趋于 0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。 2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。 4 f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x) 显然有y->0,f->(x^2/|x|)*sin(1/x)存在 当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在 而当x->0,y->0时 由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|) 而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2 所以|f|<=|x|+|y| 所以显然当x->0,y->0时,f的极限就为0 这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的 正无穷或负无穷或无穷,我想这个就可以了 就我这个我就线了好久了 第 3 页共 26 页

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

成人高考数学知识点之函数

成人高考数学知识点之函数 (一)函数 1、知识范围 (1)函数的概念 函数的定义、函数的表示法、分段函数、隐函数 (2)函数的性质 单调性、奇偶性、有界性、周期性 (3)反函数 反函数的定义、反函数的图像 (4)基本初等函数 幂函数、指数函数、对数函数、三角函数、反三角函数 (5)函数的四则运算与复合运算 (6)初等函数 2、要求 (1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。 (2)理解函数的单调性、奇偶性、有界性和周期性。 (3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。 (4)熟练掌握函数的四则运算与复合运算。 (5)掌握基本初等函数的性质及其图像。 (6)了解初等函数的概念。 (7)会建立简单实际问题的函数关系式。

(二)极限 1、知识范围 (1)数列极限的概念 数列、数列极限的定义 (2)数列极限的性质 唯一性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理 (3)函数极限的概念 函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义 (4)函数极限的性质 唯一性、四则运算法则、夹通定理 (5)无穷小量与无穷大量 无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶 (6)两个重要极限 2、要求 (1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解极限的有关性质,掌握极限的四则运算法则。 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (4)熟练掌握用两个重要极限求极限的方法。

【高一数学函数相关知识点分析】函数极限的相关知识点总结

【高一数学函数相关知识点分析】函数极限的相关知识点总结 一、增函数和减函数 一般地,设函数f(x)的定义域为I: 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数。 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。 二、单调区间 单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。如果函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。 一、指数函数的定义 指数函数的一般形式为y=a(a0且≠1) (x∈R). 二、指数函数的性质 1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞) 2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞) 一、对数与对数函数定义 1.对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 2.对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。 二、方法点拨 在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果[标签:内容] 感谢您的阅读!

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

二元函数极限证明.docx

二元函数极限证明 二元函数极限证明设P=f, P0=,当P-PO时f的极限是x, y 同时趋向于a, b时所得到的称为二重极限。 此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。 我们必须注意有以下几种情形:' 两个二次极限都不存在而二重极限仍有可能存在两个二次极限存在而不相等 两个二次极限存在且相等,但二重极限仍可能不存在 2 函数f当x-*XO时极限存在,不妨设:limf=a 根据定义:对任意£>0,存在8〉0,使当|x-x 0|而| x-xO | 又因为£有任意性,故可取£ =1,则有:|f -a|再取M=max {|a-l I, |a+l |},则有:存在8 >0,当任意x属于x 0的某个邻域U时,有|f| 证毕 3首先,我的方法不正规,其次,正确不正确有待考察。 1,y 以y=x"2-x 的路径趋于OLimitedsi n/x"2=Limi tedsinx"2/x"2=l而y=x的路径趋于0结果是无穷大。 2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是P以任何方式趋向于该点。

f={/}*sin 显然有y->0 , f-〉*sin存在 当x->0, f->*sin, sin再0处是波动的所以不存在而当 x->0, y->0时 由| sin |而x"2+y"2所以|f|所以显然当x ->0, y->0 时,f 的极限就为0 这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的 正无穷或负无穷或无穷,我想这个就可以了 就我这个我就线了好久了 5 时函数的极限: 以时和为例引入. 介绍符号:的意义,的直观意义. 定义 几何意义介绍邻域其中为充分大的正数?然后用这些邻域语言介绍几何意义. 例1验证例2验证例3验证证…… 时函数的极限: 由考虑时的极限引入. 定义函数极限的"”定义.

相关主题
文本预览
相关文档 最新文档