超声振动磨削技术、
- 格式:doc
- 大小:288.50 KB
- 文档页数:9
超声振动切削报告关键信息项:1、超声振动切削的原理和技术特点原理:____________________________技术特点:____________________________2、应用领域和优势应用领域:____________________________优势:____________________________3、设备和工具要求设备类型:____________________________工具规格:____________________________4、切削参数和工艺控制切削参数:____________________________工艺控制要点:____________________________ 5、质量检测和评估标准检测方法:____________________________评估标准:____________________________6、安全注意事项和防护措施安全风险:____________________________防护措施:____________________________11 超声振动切削的原理超声振动切削是一种在传统切削加工基础上引入超声振动的先进加工技术。
其原理是通过在刀具或工件上施加高频振动,使切削过程中的切削力、切削热等发生显著变化,从而改善切削性能。
具体来说,超声振动使得刀具与工件之间的接触状态发生周期性改变,实现了断续切削,减少了刀具与工件之间的摩擦和粘结,降低了切削力和切削温度。
111 技术特点超声振动切削具有以下显著特点:1111 降低切削力由于断续切削和摩擦的减少,切削力大幅降低,这有助于减少机床的负荷,提高加工精度和表面质量。
1112 减小切削热振动切削过程中的热量产生减少,有利于防止工件的热变形和热损伤,提高加工精度。
1113 改善表面质量能够获得更光滑、更低粗糙度的加工表面,提高零件的使用性能和寿命。
超声波振动切削原理一、超声波振动切削原理超声振动切削,是使刀具以20-40KHz的频率,沿切削方向高速振动的一种特种切削技术。
超声振动切削从微观上看是一种脉冲切削,在一个振动周期中,刀具的有效切削时间很短,一个振动周期内绝大部分时间里刀具与工件切屑完全分离,刀具与工件切屑断续接触,切削热量大大减少,并且没有普通切削时的“让刀”现象。
?利用这种振动切削,在普通机床上就可以进行精密加工,圆度、圆柱度、平面度、平行度、直线度等形位公差主要取决于机床主轴及导轨精度,最高可达到接近零误差,使以车代磨、以钻代铰、以铣代磨成为可能。
与高速硬切削相比,不需要过高的机床刚性,并且不破坏工件表面组织,在曲线轮廓零件的精加工中,可以借助数控车床、加工中心等进行仿形加工,可以节约高昂的数控磨床购置费用。
超声波振动切削用于各种难以磨削而对表面质量及精度要求较高的零件的精加工,具有很大的优越性。
超声波振动切削装置由超声波发生器、换能器、变幅杆及刀具等四部分组成,由超声波发生器发出的高频电讯号经换能器转化为高频机械振动,再由变幅杆将振动的振幅放大并施加到道具上,一般将换能器与变幅杆组成的部件称为声学头。
二、超声振动切削的优势特点1.切削力小,约为普通刀具切削力的1/3—1/10;2.加工精度高;3.切削温度低,工件保持室温状态;4.不产生积屑瘤,工件变形小,没有毛刺;5.粗糙度低,可接近理论粗糙度值;6.被加工零件的“刚性化”,即与普通切削相比,相当于工件刚性提高;7.加工过程稳定,有效消除颤振;8.切削液的冷却,润滑作用提高;9.刀具耐用度呈几倍到几十倍提高;10.工件表面呈压应力状态,耐磨性、耐腐蚀性提高;11.切削后的工件表面呈彩虹效果。
三、超声振动切削的应用范围(一)难切削材料的加工不锈钢、淬硬钢、高速钢、钛合金、高温合金、冷硬铸铁以及陶瓷、玻璃、石材等非金属材料,由于力学、物理、化学等特性而难以加工,如采用超声振动切削则可化难为易。
超声振动切削加工的研究现状及进展摘要:简述了超声振动切削技术的发展、优点及应用领域。
通过将超声振动切削与普通切削比较以及对振动切削过程特点的描述,探讨了超声振动切削的切削机理。
文章还分析了振动切削技术的最新发展, 认为超声振动切削是一项有发展前途的新型技术。
关键词:超声振动切削;难加工材料:切削机理Research of vibration assisted turning cutting technology andIts developmentAbstract:Introduces the history, advantages and application field of the ultrasonic cutting technology(UCT). By compared with ordinary cutting and the characteristics description of the ultrasonic vibration cutting process, explored Ultrasonic vibration cutting of the cutting mechanism. The paper also analyzes an up- to- date vibrating cutting technology and summarizes that the ultrasonic vibration cutting is a promising new technology.Key Words: Ultrasonically vibrating cutting; Difficult - to - machine materials; Cutting Mechanism0 前言超声振动切削技术是把超声波振动的力有规律地加在刀具上,使刀具周期性地切削和离开工件的加工技术, 是结合超声波技术和传统切削工艺的一种新型切削技术。
摘要:超声振动切削技术具有独特的切削原理和优越的工艺效果,广泛应用于难加工材料。
本文主要介绍了超声振动切削的原理、优点和应用,概述了超声振动切削的国内外发展现状。
关键词:超声振动切削发展现状0引言随着科学技术的发展,各种难加工的新材料和复合材料在工业中的应用日益广泛,特别是光学玻璃、人工晶体、工程陶瓷等硬脆性材料也得到了极为广泛地应用。
由于材料的高硬度、高脆性和零件结构的复杂性给加工带来了极大的困难,从而限制了新材料和新结构应用范围的进一步扩展。
超声振动切削技术具有独特的切削原理和优越的工艺效果。
它可以明显地提高加工表面质量、加工精度和加工效率,特别是对工程陶瓷等硬脆难加工材料、有色金属的精密加工具有独特的优越性,因而引起了国内外学者的广泛重视。
1超声振动切削技术超声振动切削是一种脉冲切削。
振动切削过程中,由于刀具有规律的振动,刀具和工件产生周期性的接触与分离,使刀具在振动的一个周期中的极短时间内完成了切削,从而形成了脉冲切削的方式。
超声振动切削的脉冲切削力的平均值要远小于普通切削,一般可减小到普通切削的1/3~1/10。
振动切削中,刀具在振动源驱动下周期性接触、离开工件,切削液可充分进入切削区,切削液使用效果得到提高,刀具的耐用度也得到了提高。
同时,切屑容易顺利排出,加工表面的耐磨性和耐腐蚀性得到提高。
2国内外研究现状振动切削是一种新型的非传统的特种切削加工方法,它是给刀具(或工件)以适当的方向、一定的频率和振幅的振动,以改善其切削功效的脉冲切削方法。
与普通切削相比,振动切削具有切削力小、切削热降低、工件表面质量高、切屑处理容易、刀具耐用度提高、加工稳定、生产效率高等优点。
我国超声加工技术的研究始于50年代末,60年代初,哈尔滨工业大学应用超声车削,加工了一批飞机上的铝制细长轴,取得了良好的切削效果。
1973年上海超声波电子仪器厂研制成功CNM-2型超声研磨机。
1982年,上海钢管厂、中国科学院声学研究所及上海超声波仪器厂研制成功超声拉管设备,为我国超声加工在金属塑性加工中的应用填补了空白。
超声振动钻削的原理超声振动钻削是一种应用超声振动的钻孔工艺技术,它利用超声波的机械振动来促进钻头与工件之间的相互作用,从而提高钻削的效率和质量。
其原理主要包括超声振动的发生、传导和作用三个方面。
首先是超声振动的发生。
超声振动的产生是通过将高频电能转换为机械振动能,进而形成超声波。
多数超声振动钻削系统采用的是压电换能器,其内部由陶瓷材料构成的换能器能将电能转换为机械能。
当外加交变电压作用于换能器时,由于压电效应的作用,换能器内部的陶瓷材料会产生相应的压缩变形,进而使结构上固定的反射器或声振头产生弹性振动。
这种振动以高频和微小振幅的形态传导至钻头。
其次是超声振动的传导。
超声波的传输方式有固体传导、气体耦合和液体耦合三种形式,而超声振动钻削主要采用的是固体传导方式。
通过将超声波能量由振动系统传导至钻头,能够充分利用能量,并将其集中到钻头的工作部分。
传导过程中,由于超声波在固体中传播的特性,钻头表面的振动状态经过传导会发生改变,形成相应的振动频率和振幅。
最后是超声振动的作用。
超声振动在钻削过程中能够对切削区域产生直接和间接的影响。
首先,超声振动的直接作用是通过改变切削行为的方式来提高钻削效率和质量。
超声波的振动作用使切削液和切削碎屑在切削点得到更好的清洗和排除,从而减小切削角度和切削力。
其次,超声振动还能对切削加工区域进行间接的改善。
超声振动对切削液和切削碎屑的清洗和排除能减少加工过程中的热量生成和磨损,减少切削环境中的摩擦。
这些作用可以减小钻头与工件之间的摩擦力,降低工件表面的粗糙度,并提高钻削的精度和质量。
总结起来,超声振动钻削的原理是通过超声波的机械振动来促进钻头与工件之间的相互作用,提高钻削的效率和质量。
它通过超声振动的发生、传导和作用,改变切削行为的方式、优化切削加工区域,从而达到提高钻削效果和提高工件表面质量的目的。
在实际应用中,超声振动钻削已经成为一种常用的高效率加工技术,广泛用于航空航天、汽车制造和精密机械加工等领域。
2、超声辅助磨削的发展超声辅助磨削技术的发展:超声辅助磨削通常分为:一维超声辅助磨削技术、二维振动磨削技术和旋转超声磨削技术,如图1所示。
一维超声辅助磨削技术可归结为三类①砂轮轴向振动磨削,即工件相对于砂轮做轴向反复振动;②砂轮径向振动磨削;③砂轮切向振动磨削。
二维振动磨削技术有两类:①平行于工件平面的二维振动磨削,即对工件同时施加砂轮切向和砂轮轴向的超声振动;②平行于砂轮端面的二维振动磨削。
一维轴向超声振动磨削关注的焦点在于加工表面质量的显著提高;一维径向超声辅助磨削关注的焦点在于加工效率的大幅度提高。
二维振动磨削技术充分利用了一维振动磨削的特点,具有优越的综合加工性能,但是加工过程中磨削速度较低,这在一定程度上限制了该技术的广泛应用。
(a)一维轴向超声磨削(b)一维径向超声磨削(c)一维切向超声磨削(d)二维超声磨削(e)旋转超声磨削旋转超声辅助磨削加工技术是在传统的超声游离磨粒加工技术的基础上发展而来的。
旋转超声辅助磨削加工分为两种,一种采用悬浮液游离磨粒,另一种则采用固着磨粒,通常所说的旋转超声辅助磨削加工技术是指采用固着磨粒的超声加工。
(通过烧结或者电镀的方式把磨粒固定在刀具上,带有中心孔的磨削刀具沿着刀轴方向高频振动的同时,也进行着高速的回转运动,切削液不再含有磨粒,并从刀具中心孔流出带走切屑并对加工区域进行冷却。
)超声加工机床的发展:旋转超声加工技术始于1964 年,早期的旋转超声加工设备只能用于孔结构的加工,而随着数控加工技术的发展,旋转超声加工设备已经可以用于复杂三维结构的加工。
2007 年德国的DMG/Sauer 公司研制的Ultrasonic 20 五轴联动超声振动高速加工中心,实现了多种加工功能的集成,不仅可以钻孔、攻螺纹,还可以加工复杂形状的硬脆材料零件,被认为是旋转超声加工设备的新飞跃。
国:对于旋转超声加工技术和设备的研究主要集中在部分高校戴向国探索了旋转超声加工机床的研制,该机床采用具有频率自动跟踪功能超声波电源;福令开发出基于Windows平台的旋转超声加工机床的数控系统,2002 年于思远等人开发了配置气浮工作台的旋转超声加工机2008 年,天津大学的房丰洲开发出集大电流放电铣削粗加工、旋转超声辅助磨削加工、超声辅助放电加工和传统铣削加工为一体的五轴超声复合加工机床。
平面磨床磨削方法
平面磨床是一种常用的磨削设备,本文将介绍一些常用的平面磨床磨削方法。
1. 平面磨削
平面磨削是最常见的磨削方法之一。
它通过将工件固定在磨床上,然后将切削刀具移动到工件表面,逐渐磨削掉表面的材料,实现对工件平面的加工。
2. 磨砂磨削
磨砂磨削是一种利用磨砂轮进行表面加工的方法。
在这种方法中,磨砂轮将在工件表面移动,从而磨削掉表面的材料。
磨砂磨削适用于需要高精度和光滑表面的工件,但是会留下磨痕。
3. 砂带磨削
砂带磨削是一种将磨削带固定在磨床上,然后将工件表面移动到磨削带上进行磨削的方法。
这种方法可以快速地进行表面磨削,而且可以得到光滑表面。
4. 超声波磨削
超声波磨削是一种利用超声波振动进行表面加工的方法。
在这种方法中,超声波振动使磨削粒子在工件表面振动,从而磨削掉表面的材料。
超声波磨削适用于需要高精度和光滑表面的工件。
总之,平面磨床磨削方法多种多样,具体的选择应根据不同的工件和加工要求进行选择。
- 1 -。
机加工的至高境界——超声振动切削,还能切削出色彩来!亲爱的金粉们,大家都是从事机械加工行业的,你们可知道有一种切削叫“超声振动辅助切削(UEVT)”?小编你说啥?UEVT?这是啥切削?用的什么刀?使的什么机床?怎么切削的?切削出来的产品什么样?大家不要急,小编今天一定给大家讲清楚!先给大家看几张图片,看完这个,大家可能就知道一半了。
大家能看出来这是什么类型的图案吗?这种图案的制作运用的什么技术?解读:这是激光图案,激光图案是指在不同角度观看时,图案的颜色或者图片本身将发生变化的一类特殊图案。
由于其色彩绚丽,立体感强,又难于仿造等特点,在政府文件加密,产品防伪等领域得到越来越广泛的关注。
在高倍显微镜下观看光学可变图案时,可以看到图片是由一个个像素点构成,每一个像素由一组间距不足一微米(约等于头发直径的1/60)的光栅结构组成。
由于光的衍射效应,不同特征长度的光栅微结构将衍射出不同的颜色,以构成彩色斑斓的图案。
同时,由于衍射效应的特性,图片的颜色将随着观看的角度不同而发生变化。
激光图案跟超声振动切削有什么关系?哈哈,之前还真没有关系,现在有关系了,激光图案就是由超声振动切削产生的。
小编你逗谁呢?切削出来图案我信,还能切出色彩来?再说了,激光图案是全息激光模压加工工艺制作的。
哎,这你就不懂了吧,小编给你科普一下哈。
激光图案制作:目前市场上对激光图案的精密光栅微结构的加工,通常采用的高科技的全息激光模压加工工艺。
采用超快激光腐蚀制作全息激光模具,然后通过模压工艺将光栅微结构翻印到各类PVC,BOPP薄膜基材上,用于文件加密,产品防伪等领域。
然而,超快激光加工系统不仅设备昂贵,能耗高,且加工工程十分复杂,很大程度上制约了激光图案的进一步发展。
来自于香港中文大学机械与自动化工程系郭平教授课题组,首次提出通过超声振动辅助切削的方法,在模具材料表面制备光学可变图案。
超声振动切削:是使刀具以20-50KHz的频率、沿切削方向高速振动的一种特种切削技术。
超声振动精密磨削技术的发展1、引言随着科学技术的进步,金属间化合物、工程陶瓷、石英、光学玻璃等硬脆材料以及各种增韧、增强的新型复合材料因其高硬度、耐磨损、耐高温、化学稳定性好、耐腐蚀等优点在航空航天、国防科技、生物工程、计算机工程等尖端领域中的应用日益广泛;但由于这些材料的脆硬特性,传统加工方法已不能满足对这些材料零件的精密加工要求,,因此有关其精密超精密磨削加工技术便成为世界各国研究的热点。
超声振动精密磨削技术便是顺应这一需要而发展起来的技术之一。
超声振动磨削技术的基本原理为:由超声波发生器产生的高频电振荡信号(一般为16~25KHz)经超声换能器转换成超声频机械振动,超声振动振幅由变幅杆放大后驱动工具砂轮产生相应频率的振动,使刀具与工件之间形成周期性的切削。
即工具砂轮在旋转磨削的同时做高频振动。
超声加工技术的经历了从传统超声波加工到旋转超声波加工的发展阶段,旋转式超声加工是在传统超声加工的工具上叠加了一个旋转运动。
这种加工用水带走被去除的材料并冷却工具,不需要传统超声加工中的磨料悬浮液,因此,这种方法被广泛的运用于超声振动磨削加工中[6]。
2、超声振动磨削技术发展回顾1927 年,R.W.Wood 和 A.L.Loomis 就发表了有关超声波加工的论文,超声加工首次提出。
1945 年L.Balamuth 就申请了关于超声加工的专利。
20 世纪 50~60 年代日本学者隈部淳一郎发表了许多对振动切削进行系统研究的论文,提出了振动切削理论,并成功实现了振动磨削等加工 [8] 。
1960 年左右,英国 Hawell 原子能研究中心的科学家发明了新的超声磨削复合加工方法。
超声振动磨削加工在难加工材料和高精度零件的加工方面显示了很大的优越性。
1986 年日本学者石川健一受超声电机椭圆振动特性启发,首次提出了“椭圆振动切削方法”(elliptical vibration cutting)。
20 世纪 90 年代初,日本神户大学社本英二等人对超声椭圆振动切削技术进行了深入研究,其最具代表性的研究成果是利用金刚石刀具采用双激励双弯曲合成椭圆振动的方式对黑色金属淬火不锈钢进行精密车削,最小表面粗糙度可以达到 Ra0.0106um,不但解决了金刚石不能加工黑色金属的难题,而且使这项技术达到了实用化阶段。
20世纪50年代,在前苏联的影响下,我国进行了振动加工的初步应用研究工作,对超声振动磨削机理进行了探索研究。
1976年,我国再次开展超声加工的试验研究和理论探索。
1983年,我国机械电子工业部科技司委托《机械工艺师》杂志社在西安召开了我国第一次“振动与切削专题讨论会”。
1985 年前后机械电子工业部第 11 研究所研制成功超声旋转加工机,在玻璃、陶瓷、等硬脆材料的内外圆磨削等加工中取得了优异的工艺效果。
1987年北京市电加工研究所于研究成功了超硬材料超声电火花复合抛光技术。
这项发明技术是世界上首次提出并实现采用超声频调制电火花与超声波复合的研磨、抛光加工技术。
与纯超声波研磨、抛光相比,效率提高5倍以上,并节约了大量的金刚石磨料。
80年代后期,天津大学李天基等人在高速磨削的同时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高了6倍以上,表面质量也有了大幅提高。
90年代后,超声振动作为一种新型的高新技术成为了科研机构和大学院校的研究热点,3、国内外研究现状3.1超声振动磨削技术国外研究现状1993年,美国堪萨斯州立大学D.Prabhakar等人提出了一种超声旋转加工陶瓷材料去除率的理论模型,并试验证明了与普通磨削相同的条件下旋转超声加工工具具有低的切削力和相对高的材料去除率。
1996年东京大学的增泽隆久等人用超声激振方式在结构陶瓷材料上加工出了直径为5µm的微孔。
1998年德国工业大学E.Uhlman、G.Spur等人在48届CIPR年会上提出在加工表面的法向施加超声振动,材料的去除率大大提高,并试验证明了在提高材料去除率的同时,并不会对表层造成损伤。
1999年,德国Kaiserslautern大学的G.Warnecke指出,在磨削新型陶瓷和硬金属等硬脆材料时,磨削过程及结果与材料去除机理紧密相关。
美国内布拉斯加大学和内华达大学对Al2O3陶瓷材料微去除量精密超声加工技术进行了研究。
通过模拟陶瓷材料超声加工的力学特性对材料去除机制进行分析,研究发现,低冲击力会引起陶瓷材料结构的变化和晶粒的错位,而高冲击力会导致中心裂纹和凹痕。
美国内布拉斯加大学还第一次分析了Al2O3陶瓷精密超声加工的机理、过程动力学以及发展趋势,并详细讨论了超声技术在陶瓷加工方面的应用情况。
巴西的研究人员对石英晶体的超声研磨技术进行了研究,发现石英晶体的材料去除率取决于晶体的晶向,研磨晶粒的尺寸影响材料去除率和表面粗糙度。
研究指出,加工过程中材料产生微裂纹是材料去除的主要原因。
日本的吴勇波等人建立了超声振动辅助磨削的实验装置(装置如图 1-4)并研究了磨削不锈钢内孔时超声振动对表面粗糙度和切削力的影响,研究发现,当施加 19.2KHz 超声振动后,表面粗糙度可以减少 20%;法向力减少 65%,切向力减少 70%。
3.2超声振动磨削技术国内研究现状国内众多知名院校均对超声振动加工方面进行了研究,超声振动磨削机理的研究在这一时期取得了一系列的理论成果。
哈尔滨工业大学的吴永孝、张广玉等人研制的超声波振动小孔内圆磨削系统在小孔磨削提高磨削效率和加工精度等方面取得了一定的成效,但其使用的磁致伸缩换能器发热大,需要加装制冷装置致使其结构复杂,且超声电能的供应采用的是碳刷集流环的传统供电方式。
河北工学院的李健中等人对超声振动磨削的材料去除机理、表面创成机理、表面粗糙度等进行了一系列的研究。
利用自行研制的超声振动磨削装置使砂轮磨削的同时作轴向超声振动,通过试验得知,由于高频振动,砂轮不易堵塞,保持磨粒锋利性,提高了磨削效率;磨削表面形成网状结构,加工表面质量较好。
1998 年前后兵器工业第五二研究所杨继先、张永宏等人通过对外圆磨床的改造进行了超声振动内圆磨削试验研究,验证了超声振动内圆磨削可明显地提高陶瓷加工效率,能有效地消除普通磨削产生的表面裂纹和崩坑的效果,提高磨削圆度。
1999年上海交通大学赵波等利用自行研制的超声振动珩磨机床对工程陶瓷发动机缸套类零件进行了超声振动磨削试验研究.加工表面微裂纹大幅度减少,加工效率和加工表面质量均得纠很大提高,加工工具耐用度比普通磨削提高至少3倍。
2000 年前后,天津大学于思远、刘殿通、李天基等人 [12] 对各种先进陶瓷小孔加工进行了系统研究,采用无冷压电陶瓷换能器制开发了一台陶瓷小孔超声波磨削加工机床,在工程陶瓷小孔磨削时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高 6 倍以上,表面质量也有大幅度提高。
南京航空航天大学对硬脆金属材料的超声电解复合加工工艺进行了实验研究。
结果表明,该复合加工方法使加工速度、精度及表面质量较单一加工工艺有显著改善东北大学庞楠研究了新型陶瓷材料的超声波复合磨削加工中砂轮堵塞及自锐性分析,砂轮修整方法及最佳砂轮修整程度的分析,提出超声振动磨削的最佳工艺参数[11]。
上海交通大学吴雁在陶瓷材料的超声加工方面进行了深入研究,研究了二维超声振动磨削陶瓷材料的脆-塑性转变机理、塑性去除机理、高效去除机理等相关的超声磨削机理,提出了微-纳米复合陶瓷二维超声振动表面变质层结构模型以及精密磨削复合陶瓷材料是塑性变形为主的去除方式,并且还进行了纳米复相陶瓷超声振动表面微观特性的研究,提出了在特定的磨削条件下,陶瓷材料纳米增韧改性和二维超声振动磨削技术相结合,可实现以非弹性变形为主要去除机理的超精密磨削表面[12][13]。
河南理工大学闫艳燕等进行了陶瓷材料的超声磨削机理和试验研究,分析了陶瓷材料二维超声振动研磨、磨削的去除机理和磨削表面创成机理以及硬脆材料的表面形成和破碎状况,并建立了相关的数学模型,得出了陶瓷材料脆—塑性转化的临界公式,以及超声磨削提高陶瓷材料表面质量的相关结论[15][16]。
山东大学张洪丽、张建华等研究了工件沿砂轮轴向、径向、切向三种超声振动条件下的磨削特性,分析了三种情况下的运动学、磨削力、材料去除机理及表面加工质量,建立了三种加工方式下的表面粗糙度的计算模型,并进行了实验研究[14]。
北京航空航天大学和哈尔滨工业大学将超声振动引入普通聚晶金刚石(PCD)的研磨加工,显著地提高了研磨效率,并在分析PCD材料的微观结构和去除机理的基础上,对PCD超声振动研磨机理进行了深入研究。
研究指出,研磨轨迹的增长和超声振动脉冲力的作用是提高研磨效率的根本原因。
本人及团队在超声振动内圆磨削加工技术上取得了新的突破,通过在普通内圆磨削机床上添加超声振动内圆磨削磨头即可以实现超声内圆磨削,结构简单、成本低廉,并且采用了新型的回转式非接触超声波电能传输方式,解决了一直以来困扰众多学者的碳刷、集流环电能传输方式中存在的问题,并申请了一项有关非接触超声波电能传输的实用新型国家专利。
3.3超声振动磨削装置的研究进展超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。
超声振动磨削系统通常采用一维纵向(轴向)振动方式,并按“全调谐”方式工作。
但近年来,随着超声技术基础研究的发展和在不同领域实际应用的特殊需要,对超声振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展,二维超声振动磨削系统也得到了研究和应用。
超声振动磨削系统依据换能器的振动方式可以分为两大类,单方向激励超声振动磨削系统和复合振动磨削系统。
日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。
日本还研制成一种新型“纵-弯”型振动系统,并已在手持式超声复合振动研磨机上成功应用。
该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。
1994年日本多贺电气株式会社采用“纵一弯”型超声复合振动系统制成研磨机,用于放电加工后的模具沟槽侧壁研磨抛光。
研磨工具做纵向振动和弯曲振动。
研究结果表明,弯曲振动方向不同,可获得不同的研磨效果[8]。
哈尔滨工业大学的吴永孝、张广玉等人研制的超声波振动小孔内圆磨削系统,在小孔磨削提高磨削效率和加工精度等方面取得了一定的成效,所用磁致伸缩换能器发热大,采用了加装制冷装置的方法解决冷却问题,但致使其结构复杂。
1996 年前后华北工学院辛志杰、刘刚通过对超声振动内圆磨削机理的探讨,研制了一套超声内圆磨削装置,在改善工件表面质量、提高生产率和内圆磨削系统结构设计上有了新的突破。