中考数学复习切线的概念判定性质[人教版]
- 格式:ppt
- 大小:191.50 KB
- 文档页数:11
人教版九下数学第二十四章第2节第2课时切线的判定与性质课标要求:了解直线和圆的位置关系,掌握切线的概念、性质和判定,探索切线与过切点的半径的关系教材分析:切线的性质和判定它是学了直线和圆三种位置关系之后提出的,切线的性质和判定定理是研究三角形的内切圆,切线长定理的基础。
学好它今后数学和物理学科的学习会有很大的帮助。
学情分析:学生在七、八年级基础上有了一定的分析、归纳和简单的逻辑推理能力,以及通过添加辅助线解决几何问题的能力,本节课通过学生动脑动手进一步提升学生的识图能力和总结经验方法的能力。
学之难,教之困,思维误区与障碍:学生普遍的问题是看到题没思路,不会用已学知识,方法解决问题,没有捕捉典型图的能力,识图能力弱,分析能力弱,缺少给什么想什么,缺什么找什么的意识,导致没思路,而且思路不清,逻辑关系混乱,推理过程繁琐。
教学目标:1.通过练习回顾知识,形成相应的知识结构,从而整体复习圆的切线的判定定理与性质定理。
2.通过题组练习,让学生熟练运用圆的切线的判定定理和性质定理解决与圆有关的数学问题,并进一步培养学生运用已有知识解决数学问题的能力。
3.通过运用圆的切线的判定定理和性质定理解决数学问题的过程中,拓宽了解题思路,提高了解题技巧,从而使学生能够灵活应用所学知识解决问题。
教学重点:让学生熟练运用圆的切线的判定定理和性质定理解决与圆有关的数学问题,并归纳总结运用切线的性质和判定解决问题的方法。
教学难点:掌握切线性质和判定解决问题的方法,并能灵活运用。
教学环节一、知识回顾在上面三个图中,直线l和圆的三种位置关系分别是__相交__、__相切__、__相离__.设计意图通过具体图形形象直观的感受切线的特征。
通过几个图形的识别复习了切线的三种判定方法。
以及判定和性质的符号语言。
二、新课导入问题1:我们这一章主要研究了什么图形?请大家看图,你有什么样的方法判断直线与圆相切呢?生活动:教师引导,在图形中,直线l满足了什么条件?“,我们可以把直线与圆相切的定义,从图形的角度来理解.如何重新描述这个定义?引导学生得出:d=r板书:今天我们重点研究切线,如何判断一条直线是否是某个圆的切线呢?定义法:和圆有且只有一个公共点的直线是圆的切线.数量关系法(d=r):到圆心的距离等于半径的直线是圆的切线.例1 如图,在 Rt△ABC 中,∠ABC = 90°,∠BAC 的平分线交 BC 于 D,以 D为圆心,DB 长为半径作⊙D .求证:AC 是⊙O 的切线.证明:如图,过 D 作 DE ⊥AC 于 E.∵∠ABC = 90°∴ DB ⊥AB.∵ AD 平分∠BAC ,DE ⊥AC ,∴ DE = DB = r实例引入法切线的性质与判定的内容看似与生活关系不大,实际上,生活中有不少的圆的切线的例子.本节课的教学中可以从生活中的实例引入,提出问题,激发学生的求知欲.如图所示,下雨天,快速转动雨伞时雨滴飞出的方向和用砂轮打磨工件火星飞出的方向都是沿圆的切线方向飞出的.那么,怎么判定是不是圆的切线呢?图1通过实例引出问题,让学生带着问题去听课,加强学习的针对性,增强学生的听课效果,并让学生明确本节课的知识目标.二:提出问题,问题1:我们这一章主要研究了什么图形?请大家看图1,你能过圆上的点A 画出⊙O 的什么线? 师生活动:学生思考,并动手画一画,然后教师借助几何画板演示,过点A 的无数条直线中,有圆的割线、切线,割线可以画出无数条,而圆的切线只有一条. O A l设计意图:通过问题,引导学生回顾上节课学过的直线与圆的位置关系,为本节课学习切线的判定定理和性质定理作好铺垫.由旧知得出新知,探索切线的判定定理问题2:在生活中,有许多直线和圆相切的实例,你能举出几个吗?设计意图:通过展示实际生活中的图片,让学生感受切线与现实有着密切的联系. 问题3:在图1中,除了上面提到的当直线与圆有唯一公共点时,直线是圆的切线.我们还可以根据什么判断一条直线是圆的切线?你能过点A画出⊙O的切线吗?师生活动:让学生回顾上节课所学内容,什么是圆的切线?学生思考得出,要想准确画出圆的切线,就得出现d=r,因此得需要做出半径r和d.连接OA,过点A 作直线l⊥OA,则此时直线l是⊙O的切线(如图2).问题4:你能从图形的角度概括上面得出的结论吗?师生活动:教师引导,在图形中,直线l满足了什么条件?“垂直于半径”、“经过半径的外端”.为了便于应用,我们可以把直线与圆相切的定义,从图形的角度来理解.如何重新描述这个定义?引导学生得出:经过半径的外端并且垂直于半径的直线是圆的切线,同时引导学生得出切线判定定理的符号语言.设计意图:通过问题,引导学生借助旧知得到新知,也就是利用直线和圆相切的定义得出切线的判定定理;学生通过自己思考,动手画图可以更深刻的感受切线的判定定理.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.∵OA⊥l于A∴ l 是⊙O 的切线.4.运用定理,解决问题.例2. 如图,△ABC 中,AB = AC ,以 AB 为直径的 ⊙O 交边 BC 于 P ,PE ⊥AC 于 E. 求证:PE 是 ⊙O 的切线.证明:连接 OP ,如图.∵ AB = AC ,∴∠B =∠C.∵ OB = OP ,∴∠B =∠OPB.∴∠OPB =∠C.∴ OP ∥AC.∵ PE ⊥AC ,∴ PE ⊥OP.∴ PE 为 ⊙O 的切线.三.探索切线的性质定理.问题1:把得到的切线的判定定理中题设结论反过来,结论还成立吗?如图3,l 为⊙O 的切线,切点为A ,那么半径OA 与直线l 是不是一定垂直? 师生活动:学生通过观察思考,发现半径OA 垂直于直线l.师生讨论后发现直接证明垂直并不容易.此时引导学生可以考虑反证法:假设OA 与直线l 不垂直,过点O 作OM ⊥l ,根据垂线段最短的性质,有OM <OA ,这说明圆心O 到直线l 的距离小于半径OA ,于是直线l 就与圆相交,而这与直线l 是⊙O 的切线矛盾.因此OA 与直线l 垂直.从而得到切线的性质定理,同时引导学生得出切线性质定理的符号语言. 切线的性质 O A B E P O A 图3 l圆的切线垂直于经过切点的半径.∵直线 l 是⊙O 的切线,A 是切点,∴直线 l⊥OA例1:直线AB经过⊙O上的点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线师生活动:教师引导学生分析证明思路:1中由于直线AB经过⊙O上的点C,所以连接OC,只需证OC⊥AB即可。
2015年中考数学圆的知识点:切线的判定定理及识别方法摘要】中考进入复习阶段,为同学们准备了一些历年各地的中考试题,欢迎大家参考练习,下面是中考数学圆专题复习辅助大家完成中考前的复习,在考试中取的好成绩!
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的识别方法有三种:
(1)和圆只有一个公共点的直线是圆的切线。
(2)和圆心的距离等于圆的半径的直线是圆的切线。
(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
专题07 切线的性质与判定重难点题型分类-高分必刷题专题简介:本份资料包含《切线的性质与判定》这一节在没涉及相似之前各名校常考的主流题型,具体包含的题型有:切线的性质、切线长定理、切线的判定这四类题型;其中,重点是切线的判定这一大类题型,本资料把证明切线的判定方法归纳成四种类型:第I类:用等量代换证半径与直线的夹角等于90°;第II类:用平行+垂直证半径与直线的夹角等于90°;第III类:用全等证半径与直线的夹角等于90°;第IV类:没标出切点时,证圆心到直线的距离等于半径。
本份资料所选题目均出自各名校初三试题,很适合培训学校的老师给学生作切线的专题复习时使用,也适合于想在切线的性质与判定上有系统提升的学生自主刷题使用。
切线的性质:告诉相切,立即连接圆心与切点,得到半径与切线的夹角等于090。
1.如图,AB是⊙O的切线,点B为切点,连接AO并延长交⊙O于点C,连接BC.若∠A =26°,则∠C的度数为()A.26°B.32°C.52°D.64°(第1题图)(第2题图)2.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M (0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)3.(长郡)如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于另一点E.(1)求证:△AOC≌△AOD;(2)若BE=1,BD=3,求⊙O的半径及图中阴影部分的面积S.4.(师大)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线DE交BC于点D,交AC于点E,连接BE,经过C、D、E三点作⊙O,(1)求证:CD是⊙O的直径;(2)若BE是⊙O的切线,求∠ACB的度数;(3)当AB=,BC=6时,求图中阴影部分的面积.切线长定理:5.如图,P A,PB分别切⊙O于点A,B,OP交⊙O于点C,连接AB,下列结论中,错误的是()A.∠1=∠2B.P A=PB C.AB⊥OP D.OP=2OA 6.(长郡)如图,P A、PB切⊙O于点A、B,P A=10,CD切⊙O于点E,交P A、PB于C、D两点,则△PCD的周长是.(第6题图)(第7题图)7.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为()A.44B.42C.46D.478.(青竹湖)如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,以AB 为直径作⊙O ,恰与另一腰CD 相切于点E ,连接OD 、OC 、BE .(1)求证:OD ∥BE ;(2)若梯形ABCD 的面积是48,设OD =x ,OC =y ,且x +y =14,求CD 的长.内切圆与外接圆半径问题9.两直角边长分别为6cm 、8cm 的直角三角形外接圆半径是 cm .10.已知,Rt △ABC 中,∠C =90°,AC =6,AB =10,则三角形内切圆的半径为 .11.在Rt △ABC 中,∠C =90°,AB =6,△ABC 的内切圆半径为1,则△ABC 的周长为( )A .13B .14C .15D .1612.(雅礼)已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_________.13.(长沙中考)如图,在△ABC 中,AD 是边BC 上的中线,∠BAD =∠CAD ,CE ∥AD ,CE 交BA 的延长线于点E ,BC =8,AD =3.(1)求CE 的长;(2)求证:△ABC 为等腰三角形.(3)求△ABC 的外接圆圆心P 与内切圆圆心Q 之间的距离.14.(青竹湖)如图,在矩形ABCD 中,AC 为矩形ABCD 对角线, DG AC ⊥于点G ,延长DG 交AB 于点E ,已知6AD =,8CD =。