2020高考数学(理)一轮复习配套文档:第8章 第1节 直线的倾斜角与斜率、直线的方程
- 格式:doc
- 大小:173.50 KB
- 文档页数:3
第一节 直线的方程及应用教材细梳理知识点1 直线的倾斜角与斜率(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 的倾斜角的范围是[0,π). (3)直线的斜率(4)①直线都有倾斜角,但不一定都有斜率.②不是倾斜角越大,斜率k 就越大,因为k =tan α,当α∈⎣⎡⎭⎫0,π2时,α越大,斜率k就越大,同样α∈⎝⎛⎭⎫π2,π时也是如此,但当α∈[0,π)且α≠π2时就不是了.(5)“截距”的实质“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,并不一定是“距离”.知识点2 直线方程的几种形式 直线方程的五种形式(1)交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C2=0的解一一对应. (2)相交⇔方程组有唯一解,交点坐标就是方程组的解. (3)平行⇔方程组无解. (4)重合⇔方程组有无数组解. 知识点5 三种距离1212提示:既不充分又不必要条件.思考2:直线l 1⊥l 2是其斜率k 1·k 2=-1的什么条件? 提示:必要不充分条件.四基精演练1.思考辨析(在括号内打“√”或“×”)(1)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k ·(x -x 0)表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(4)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,当k 1≠k 2时,l 1与l 2相交.( )(5)过l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ).( )(6)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( )答案:(1)× (2)√ (3)√ (4)√ (5)× (6)×2.(知识点1)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) ⇐源自必修二P 100T 3 A.33B . 3C .- 3D .-33答案:A3.(知识点5)点(1,-1)到直线x -y +1=0的距离是( ) ⇐源自必修二P 108练习T 2 A.12 B .32C.22D .322答案:D4.(知识点2)过点(-1,2)且与直线2x -3y +4=0垂直的直线方程为( ) ⇐源自必修二P 109A 组T 5A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0答案:A5.(知识点3)已知P (-2,m ),Q (m ,4),且直线PQ 垂直于直线x +y +1=0,则m =________.⇐源自必修二P 101A 组T 10答案:1考点一 直线的倾斜角与斜率[基础练通]1.[一题多解]已知直线l :x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的取值范围是( )A .[0,π)B .⎝⎛⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4D .⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π2,3π4解析:选C.解法一:当cos θ=0时,α=π2,当cos θ≠0时,斜率k =-1cos θ,∵cos θ∈[-1,0)∪(0,1], ∴k ∈(-∞,-1]∪[1,+∞).∴α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,34π.综上α∈⎣⎢⎡⎦⎥⎤π4,34π.解法二:选C.当cos θ=0时,直线方程为x +3=0,此时直线的倾斜角为π2,排除B ,D.因为x 的系数为1,所以斜率k ≠0,故倾斜角α≠0,排除A.故选C.2.直线3x +3y +m =0(m 为实常数)的倾斜角的大小是________.解析:设直线的倾斜角为θ,直线的斜率k =-3,即tan θ=-3,所以倾斜角为120°. 答案:120°3.已知直线x +(a 2+1)y +1=0,则直线的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4B .⎣⎡⎭⎫3π4,π C.⎝⎛⎭⎫π2,π D .⎣⎡⎭⎫π4,π2∪⎣⎡⎦⎤34π,π 解析:设直线的倾斜角为θ,由题意得tan θ=-1a 2+1,∴0>tan θ≥-1,∴θ∈⎣⎢⎡⎭⎪⎫3π4,π.答案:B求直线斜率的几种方法1.求斜率可用k =tan α⎝ ⎛⎭⎪⎫α≠π2,其中α为倾斜角,斜率k 是一个实数,每条直线都存在唯一的倾斜角,但并不是每条直线都存在斜率.倾斜角为π2的直线斜率不存在.如图,当α∈⎣⎢⎡⎭⎪⎫0,π2时,随α增大k 单调递增且k ≥0;当α∈⎝ ⎛⎭⎪⎫π2,π时,随α增大k 单调递增且k <0.2.求斜率可用直线上两点的坐标,k =y 1-y 2x 1-x 2(x 1≠x 2)即y 1-y 2x 1-x 2的几何意义表示两点(x 1,y 1)与(x 2,y 2)连线的斜率.3.求斜率可用直线方程Ax +By +C =0,当B ≠0时,y =-A B x -C B ,故斜率k =-AB .4.摆动直线的斜率范围如图1,设直线l 1,l 2,l 的斜率分别为k 1,k 2,k ,且k 1<k 2.当直线l 在阴影区域摆动时,k <k 1或k >k 2;当直线l 在非阴影区域摆动时,k 1<k <k 2,这叫取边夹中法则.总结成口诀:界线斜率先计算,九十度线是关键;包含此线取两边,不含此线夹中间.图15.摆动直线倾斜角的大小关系如图2,若k 2>k 1>0>k 4>k 3(斜率为k 1,k 2,k 3,k 4的直线分别对应的倾斜角为α1,α2,α3,α4),则π>α4>α3>π2>α2>α1>0.图2考点二 求直线方程[探究变通][例1] 求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________.解析:由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0. 答案:3x -y +6=0(2)经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程为________.解析:①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时直线方程为y =-25x ,即2x +5y =0;②当横截距、纵截距都不是零时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12,此时直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0. 答案:x +2y +1=0或2x +5y =0 [母题变式]1.若本例(1)变为:一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是________.解析:∵直线y =13x 的倾斜角α=30°, 所以所求直线的倾斜角为60°, 斜率k =tan 60°= 3. 又该直线过点A (2,-3),故所求直线方程为y -(-3)=3(x -2), 即3x -y -33=0. 答案:3x -y -33=02.若本例(2)变为:过点A (-5,2),且在两坐标轴上的截距和为0的直线方程为________. 解析:直线在两坐标轴上的截距和为0,即斜率k =1或过原点, 若k =1,则直线方程为y -2=x +5,即x -y +7=0, 若过原点,则k =-25,其方程为y =-25x ,即2x +5y =0.答案:x -y +7=0或2x +5y =03.若本例(2)变为:求过点A (-5,2),且在两坐标轴上的截距相等的直线方程. 解:①当所求直线过原点时,其斜率k =-25,方程为y =-25x ,即2x +5y =0,②当直线不过原点时,设为x a +ya=1,有-5a+2a=1,∴a=-3.∴所以所求直线方程为x+y+3=0.综上所述,所求直线的方程为2x+5y=0或x+y+3=0.求直线方程的两种方法1.直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.2.待定系数法,具体步骤为:(1)设所求直线方程的某种形式;(2)由条件建立所求参数方程(组);(3)解这个方程(组)求出参数;(4)把参数的值代入所设直线方程.考点三直线的位置关系及应用[创新贯通][例2](1)已知直线l1:(a+2)x+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y+2=0,则“a=1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:l1⊥l2的充要条件是(a+2)(a-1)+(1-a)·(2a+3)=0,即a2-1=0,故有(a-1)(a +1)=0,解得a=±1.显然“a=1”是“a=±1”的充分不必要条件,故“a=1”是“l1⊥l2”的充分不必要条件.故选A.答案:A(2)已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+3=0平行,则a=()A.-1B.2C .0或-2D .-1或2解析:若a =0,两直线方程为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0.当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或a =2.答案:D [母题变式]若本例(1)中直线l 1与l 2的方程不变,则“l 1⊥l 2”是“a =-1”的什么条件?解:由两直线方程知a =-1⇒l 1⊥l 2,但l 1⊥l 2⇒/ a =-1,故“l 1⊥l 2”是“a =-1”的必要不充分条件.两直线平行,垂直的判定或求参数的方法1.已知两直线的斜率存在(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1. 2.已知两直线的一般方程可利用直线方程求出斜率,然后判断平行或垂直,或利用以下方法求解:[例3] (1)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:设所求直线方程为x -2y +m =0,由1+m =0得m =-1,所以直线方程为x -2y -1=0.答案:A(2)[一题多解]经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:解法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0x +y -2=0得x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.解法二:因为直线l 过直线l 1和l 2的交点,所以可设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.因为l ⊥l 3,所以3(1+λ)+(-4)(λ-2)=0,所以λ=11,所以直线l 的方程为12x +9y -18=0,即4x +3y -6=0.答案:4x +3y -6=0(3)已知A (1,2),B (3,1)两点到直线l 的距离分别是2,5-2,则满足条件的直线l 共有( )A .1条B .2条C .3条D .4条解析:当A ,B 两点位于直线l 的同一侧时,一定存在这样的直线l ,且有两条.又|AB |=(3-1)2+(1-2)2=5,而点A 到直线l 与点B 到直线l 的距离之和为2+5-2=5,所以当A ,B 两点位于直线l 的两侧时,存在一条满足条件的直线.综上可知满足条件的直线共有3条.答案:C [母题变式]若本例(2)改为过点(1,0)与直线x -2y -2=0垂直的直线方程为________. 解析:∵x -2y -2=0的斜率为12,∴所求直线的斜率为-2,∴直线方程为y =-2(x -1),即2x +y -2=0. 答案:2x +y -2=0根据平行或垂直求直线方程的方法1.根据直线平行或垂直关系求出斜率 2.设出直线方程再待定(1)与Ax +By +C =0平行的直线可设为Ax +By +C ′=0(C ′≠C ); (2)与Ax +By +C =0垂直的直线可设为Bx -Ay +C ′=0.1.(2018·河南郑州一模)如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a =________.解析:∵直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行, 即直线ax +2y +3a =0与直线3x +(a -1)y -(a -7)=0平行, ∴a 3=2a -1≠3a -(a -7),解得a =3. 答案:3★2.(2018·新疆乌鲁木齐模拟)直线a 1x +b 1y =2和a 2x +b 2y =2交于点P (3,2),则过点A (a 1,b 1)、B (a 2,b 2)的直线方程是( )A .2x +3y -2=0B .3x +2y -2=0C .3x +2y +2=0D .2x +3y +2=0解析:选B.∵直线a 1x +b 1y =2和a 2x +b 2y =2,交于点P (3,2),所以3a 1+2b 1=2,3a 2+2b 2=2,∴过点A (a 1,b 1)、B (a 2,b 2)的直线方程为3x +2y =2,即3x +2y -2=0,故选B. 3.(2018·淮南模拟)直线l 过点(3,1)且与直线2x -y -2=0平行,则直线l 的方程为( ) A .2x -y -5=0 B .2x -y +1=0 C .x +2y -7=0 D .x +2y -5=0答案:A考点四 距离与对称问题[探究变通][例4] (2018·厦门模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则实数c 的值是________.解析:依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x-2y +c 2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6.答案:2或-6[注意] 用两平行线间距离公式时,应使两平行直线方程中x ,y 的系数分别对应相等. [母题变式]若本例变为:设点P 到直线3x -2y -1=0的距离为21313,则P 点的轨迹方程是________.解析:设P (x ,y ),则|3x -2y -1|32+22=21313,∴|3x -2y -1|=2,即3x -2y -3=0或3x -2y +1=0. 答案:3x -2y -3=0或3x -2y +1=[例5] (1)A (-1,-2)关于直线l :2x -3y +1=0的对称点A ′的坐标为________.解析:设A ′(x ,y ),由已知⎩⎨⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0解得⎩⎨⎧x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. 答案:⎝⎛⎭⎫-3313,413 (2)[一题多解]求l :2x -3y +1=0关于A (-1,-2)的对称直线l ′的方程.解:解法一:在l 上取点P (1,1)关于A (-1,-2)的对称点为P ′(-3,-5), 设l 关于A 的对称直线l ′为2x -3y +b =0,P ′在l ′上, ∴2×(-3)-3×(-5)+b =0,∴b =-9, ∴l ′的方程为2x -3y -9=0解法二:设P (x ,y )为l ′上任一点,则P (x ,y )关于A 的对称点P ′(-2-x ,-4-y )在l 上 ∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0(3)直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________.解析:由⎩⎪⎨⎪⎧y =2x +3,y =x +1解得直线l 1与l 的交点坐标为(-2,-1),∴可设直线l 2的方程为y +1=k (x +2),即 kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1,l 2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),∴直线l 2的方程为x -2y =0. 答案:x -2y =0 [母题变式]1.若本例(1)变为点A (-1,-2)关于y =x 的对称点A 1为________,关于y =x +1的对称点A 2为________.解析:点关于直线y =x 对称,即x 与y 相互交换,故A 1(-2,-1).关于y =x +1对称,即纵坐标y =x +1=-1+1=0,横坐标为x =y -1=-2-1=-3.∴A 2(-3,0).答案:(-2,-1);(-3,0)2.若本例(2)变为:直线l :2x -3y +1=0关于(0,0)的对称直线的方程为________. 解析:所求直线上P (x ,y )关于(0,0)的对称点为(-x ,-y )在l 上,∴-2x +3y +1=0,即2x -3y -1=0. 答案:2x -3y -1=03.若本例(3)变为:求直线l 1:y =2x +3关于y =-x +1对称的直线方程为________. 解析:将y =-x +1,x =-y +1代入y =2x +3中得-x +1=-2y +2+3,即x -2y +4=0.答案:x -2y +4=01.中心对称问题的两个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点对称;①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程; ③轨迹法,设对称直线上任一点M (x ,y ),其关于已知点的对称点在已知直线上. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎨⎧A ×x 1+x 22+B ×y 1+y 22+C =0,y 2-y 1x 2-x 1×⎝⎛⎭⎫-AB =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.4.如果直线l 1:ax +(1-b )y +5=0和直线l 2:(1+a )x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b )=0,同理-2(1+a )+1=0,解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,d =2 5.答案:2 55.[一题多解]光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:解法一:由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎨⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.解法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-yx 0-x =-23,又PP ′的中点Q ⎝⎛⎭⎪⎫x +x 02,y +y 02在l 上, ∴3×x +x 02-2×y +y 02+7=0,由⎩⎨⎧y 0-y x 0-x=-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.巧用对称性求直线方程关于点的中心对称问题,可利用中点坐标公式来转化两对称点的横坐标,纵坐标(x 1+x 2或y 1+y 2)的关系.关于线的轴对称问题,既有两对称点间的中点关系,也有两对称点连线与对称轴的垂直关系,利用好这些关系,可以简化解题过程.[例6] 过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为________.解析:设所求直线与l 1交于A (x 1,y 1)与l 2交于B (x 2,y 2)且x 1+x 2=0,∴x 2=-x 1. y 1+y 2=2,y 2=2-y 1,∴⎩⎪⎨⎪⎧x 1-3y 1+10=0-2x 1+2-y 1-8=0,解得⎩⎪⎨⎪⎧x 1=-4,y 1=2.即A (-4,2). 故过M 和A 的方程为x +4y -4=0. 答案:x +4y -4=0巧用对称性求距离最值问题对称性体现了对称,平分的特点,结合平面几何知识利用对称的方法求有关最值.[例7] 已知直线l :y =x ,圆C 1:(x -3)2+y 2=2.若圆C 2与圆C 1关于直线l 对称,点A ,B 分别为圆C 1,C 2上任意一点,则|AB |的最小值为________.解析:因为圆C 1的圆心坐标为(3,0),半径为2,所以C 1到直线l 的距离d =|3-0|2=322,所以圆C 1上的点到直线l 的最短距离为322-2=22.因为圆C 2与圆C 1关于直线l 对称, 所以|AB |min =2×22= 2. 答案: 2限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2解析:选A.因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2,所以直线l 的方程为y =3x +2.2.已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A.因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.3.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:选D.设直线的斜率为k ,则直线方程为y -2=k (x -1), 令y =0,得直线l 在x 轴上的截距为1-2k ,则-3<1-2k <3,解得k >12或k <-1.4.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12 B .-12C .2D .-2解析:选A.直线y =2x +3与y =-x 的交点为A (-1,1),而直线y =2x +3上的点(0,3)关于y =-x 的对称点为B (-3,0),而A ,B 两点都在l 2上,所以kl 2=1-0-1-(-3)=12.5.已知函数f (x )=a x (a >0且a ≠1),当x <0时,f (x )>1,方程y =ax +1a表示的直线是( )解析:选C.因为x <0时,a x >1,所以0<a <1. 则直线y =ax +1a 的斜率为0<a <1,在y 轴上的截距1a>1.故选C.6.(2018·江西南昌二中月考)设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,-52∪⎝⎛⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43 D.⎝⎛⎭⎫-∞,-43∪⎝⎛⎭⎫52,+∞ 解析:选B.易知直线ax +y +2=0过定点P (0,-2),k P A =-52,k PB =43,设直线ax +y+2=0的斜率为k ,若直线ax +y +2=0与线段AB 没有交点,根据图象(图略)可知-52<k <43,即-52<-a <43,解得-43<a <52,故选B. 7.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值范围是[-2,2].答案:[-2,2]8.已知一直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________.解析:若所求直线的斜率存在,则可设其方程为: y -2=k (x -1),即kx -y -k +2=0,由题设有|2k -3-k +2|1+k 2=|0+5-k +2|1+k 2,即|k -1|=|k -7|,解得k =4. 此时直线方程为4x -y -2=0.若所求直线的斜率不存在,方程为x =1, 满足题设条件.故所求直线的方程为4x -y -2=0或x =1. 答案:4x -y -2=0或x =19.(2018·山西四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎨⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎨⎧m =35,n =315,所以m +n =345.答案:34510.点P 为直线y =34x 上任一点,F 1(-5,0),F 2(5,0),则||PF 1|-|PF 2||的取值范围为________.解析:由题意,P 在原点时,||PF 1|-|PF 2||=0,F 2(5,0)关于直线y =34x 对称点的坐标为F (a ,b ),则⎩⎪⎨⎪⎧b a -5×34=-1,b 2=34×a +52,所以a =75,b =245,所以||PF 1|-|PF 2||的最大值为⎝⎛⎭⎫75+52+⎝⎛⎭⎫2452=8,所以||PF 1|-|PF 2||的取值范围为[0,8].。
8.1 直线的倾斜角、斜率与直线的方程[知识梳理] 1.直线的斜率(1)当α≠90°时,tan α表示直线l 的斜率,用k 表示,即k =tan α.当α=90°时,直线l 的斜率k 不存在.(2)斜率公式给定两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),经过P 1,P 2两点的直线的斜率公式为 k =y 2-y 1x 2-x 1. 2.直线方程的五种形式[诊断自测]1.概念思辨(1)直线的斜率为tanα,则其倾斜角为α.( )(2)斜率相等的两直线的倾斜角不一定相等.( )(3)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.( )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )答案(1)×(2)×(3)×(4)√2.教材衍化(1)(必修A2P109A组T2)如果A·C<0,且B·C<0,那么直线Ax+By+C=0不经过( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析由已知得直线Ax+By+C=0在x轴上的截距-CA>0,在y轴上的截距-CB>0,故直线经过一、二、四象限,不经过第三象限.故选C.(2)(必修A2P95T3)倾斜角为150°,在y轴上的截距为-3的直线方程为________.答案y=-33x-3解析由直线的倾斜角为150°,知该直线的斜率为k=tan150°=-33,依据直线的斜截式方程y=kx+b,得y=-33x-3.3.小题热身(1)(2017·贵州模拟)已知直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案 A解析 由点斜式方程知直线l 的方程为y -5=-34(x +2),即3x +4y -14=0.故选A.(2)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 答案 D解析 当a =0时,直线方程为y -2=0,不满足题意,所以a ≠0,所以在x 轴上的截距为2+a a ,在y 轴上的截距为2+a ,则由2+a =2+a a,得a =-2或a =1.故选D.题型1 直线的倾斜角与斜率典例 直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.数形结合,由斜率公式求得k PA ,k PB .答案 (-∞,-3]∪[1,+∞)解析 如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴k ∈(-∞,-3]∪[1,+∞). 方法技巧求直线倾斜角与斜率问题的求解策略1.求直线倾斜角或斜率的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).2.先画出满足条件的图形,找到直线所过的点,然后求定点与端点决定的直线的斜率.见典例.冲关针对训练已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.答案 -23≤m ≤12解析如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l=-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.题型2 直线方程的求法典例 求适合下列条件的直线的方程: (1)在y 轴上的截距为-5,倾斜角的正弦值是35;(2)经过点P (3,2),且在两坐标轴上的截距相等;(3)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍.根据已知条件代入相应公式,分别为斜截式、截距式、点斜式.解 (1)设直线的倾斜角为α,则sin α=35.∴cos α=±45,直线的斜率k =tan α=±34.又直线在y 轴上的截距是-5, 由斜截式得直线方程为y =±34x -5.即3x -4y -20=0或3x +4y +20=0.(2)设直线l 在x ,y 轴上的截距均为a ,若a =0, 即l 过点(0,0)和(3,2).∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1. ∵l 过点P (3,2),∴3a +2a=1.∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (3)设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α. ∵tan α=3,∴tan2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 方法技巧给定条件求直线方程的思路1.求直线方程常用的两种方法(1)直接法:根据已知条件,直接写出直线的方程,如本例(1)、(3)求直线方程,则直接利用斜截式即可.(2)待定系数法:即设定含有参数的直线方程,结合条件列出方程(组),求出参数,再代入直线方程即可.必要时要注意分类讨论,如本例(2)中不要忽略过原点的情况,否则会造成漏解.2.设直线方程的常用技巧(1)已知直线纵截距b 时,常设其方程为y =kx +b 或y =b . (2)已知直线横截距a 时,常设其方程为x =my +a .(3)已知直线过点(x 0,y 0),且k 存在时,常设y -y 0=k (x -x 0). 冲关针对训练根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0≤α<π),从而cos α=±31010,则k =tan α=±13,故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)当斜率不存在时,所求直线方程为x -5=0,满足题意. 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34,故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.题型3 直线方程的综合应用角度1 由直线方程求参数问题典例(2018·泰安模拟)已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.将l 1,l 2分别化为y -2=a 2(x -2),y -2=-2a2(x-2),知l 1,l 2恒过定点P (2,2).答案 12解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,面积最小.角度2 与直线方程有关的最值问题典例 过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)求直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程.本题采用基本不等式法求最值.解 (1)设所求直线l 的方程为x a +y b=1(a >0,b >0),则2a +1b=1.又∵2a +1b≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4.此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)设所求直线l 的方程为y -1=k (x -2). 则可得A ⎝⎛⎭⎪⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k+1-2k =3-2k -1k≥3+2(-2k )·⎝ ⎛⎭⎪⎫-1k =3+2 2.此时-2k =-1k ⇒k =-22.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即x +2y -2-2=0.方法技巧与直线方程有关问题的常见类型及解题策略1.求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值或用函数的单调性解决.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.冲关针对训练已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解 (1)设A (a,0),B (0,b )(a >0,b >0).设直线l 的方程为x a +y b=1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+a b +b a≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1),则A ⎝⎛⎭⎪⎫1-1k,0,B (0,1-k ),所以|MA |2+|MB |2=⎝ ⎛⎭⎪⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4.当且仅当k 2=1k2,即k =-1时取等号,此时直线l 的方程为y -1=-(x -1),即x +y-2=0.1.(2017·大庆模拟)两直线x m -y n =a 与x n -y m=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =m nx -ma ,由此可知两条直线的斜率同号.故选B.2.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( )A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎪⎨⎪⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.3.(2018·江西南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150°B .135°C .120°D .105°答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,2为半径的圆的一部分,如图所示.由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB =12×|2k |1+k2×22-2k 21+k 2≤(2k )2+2-2k22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝ ⎛⎭⎪⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A.4.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且PA ⊥PB ,∴|PA |2+|PB |2=|AB |2=10,∴|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时取“=”).[基础送分 提速狂刷练]一、选择题1.(2018·朝阳模拟)直线x +3y +1=0的倾斜角为( ) A.π6 B.π3 C.2π3D.5π6答案 D解析 直线斜率为-33,即tan α=-33,0≤α<π,∴α=5π6,故选D. 2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( ) A .40° B .50° C .130° D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.故选B.3.(2018·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax-by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4答案 D解析 由函数y =f (x )=a sin x -b cos x 的一条对称轴为x =π4知,f (0)=f ⎝ ⎛⎭⎪⎫π2,即-b =a ,∴直线l 的斜率为-1,∴倾斜角为3π4.故选D.4.(2018·衡阳期末)已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( )A. 3 B .- 3 C .0 D .1+ 3答案 A解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan60°= 3.故选A.5.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1) 答案 D解析 因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA=-3,所以直线AB 的点斜式方程为y -3=-3(x -1).故选D.6.(2017·河南新乡一中周考)若m ,n 满足m +2n -1=0,则直线mx +3y +n =0过定点( )A.⎝ ⎛⎭⎪⎫12,16B.⎝ ⎛⎭⎪⎫12,-16C.⎝ ⎛⎭⎪⎫16,-12D.⎝ ⎛⎭⎪⎫-16,12 答案 B解析 ∵m +2n -1=0,∴m +2n =1.∵mx +3y +n =0,∴(mx +n )+3y =0,当x =12时,mx +n =12m +n =12,∴3y =-12,∴y =-16,故直线过定点⎝⎛⎭⎪⎫12,-16.故选B. 7.若经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0答案 B解析 解法一:直线过P (1,4),代入,排除A 、D ;又在两坐标轴上的截距为正,排除C ,故选B.解法二:设方程为x a +y b=1, 将(1,4)代入得1a +4b=1.a +b =(a +b )⎝ ⎛⎭⎪⎫1a +4b =5+⎝ ⎛⎭⎪⎫b a +4a b ≥9, 当且仅当b =2a ,即a =3,b =6时,截距之和最小. 所以直线方程为x 3+y6=1,即2x +y -6=0.故选B. 8.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.故选C.9.(2017·烟台期末)直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( )A .m =-3,n =-2B .m =3,n =2C .m =3,n =-2D .m =-3,n =2答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0, 变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan120°=-3,又由l 在y 轴上的截距是-1, 则其方程为y =-3x -1;又由其一般式方程为mx +n2y -1=0,分析可得m =-3,n =-2.故选A.10.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( ) A .2 B .2 2 C .4 D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值.而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图. 当过原点和点(m ,n )的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小,最小值为2.故m 2+n 2的最小值为4.故选C. 二、填空题11.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-73,-13解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ =13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13.12.(2018·石家庄期末)一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程是________.答案 x +3y -9=0或y =4x +16 解析 设横截距为a ,则纵截距为12-a , 直线方程为x a +y12-a=1,把A (-3,4)代入,得-3a +412-a =1,解得a =-4,a =9.a =9时,直线方程为x 9+y3=1,整理可得x +3y -9=0.a =-4时,直线方程为x -4+y16=1, 整理可得4x -y +16=0.综上所述,此直线方程是x +3y -9=0或4x -y +16=0.13.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k,依题意有12×⎪⎪⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x-2y +2=0.综上知,直线m 的方程为x -2y +2=0或x =2. 14.在下列叙述中:①若一条直线的倾斜角为α,则它的斜率为k =tan α; ②若直线斜率k =-1,则它的倾斜角为135°;③已知点A (1,-3),B (1,3),则直线AB 的倾斜角为90°;④若直线过点(1,2),且它的倾斜角为45°,则这条直线必过点(3,4); ⑤若直线斜率为34,则这条直线必过(1,1)与(5,4)两点.其中正确的命题是________.(填序号) 答案 ②③④解析 ①当α=90°时,斜率k 不存在,故①错误;②倾斜角的正切值为-1时,倾斜角为135°,故②正确;③直线AB 与x 轴垂直,斜率不存在,倾斜角为90°,故③正确;④直线过定点(1,2),斜率为1,又4-23-1=1,故直线必过点(3,4),故④正确;⑤斜率为34的直线有无数条,所以直线不一定过(1,1)与(5,4)两点,故⑤错误.三、解答题15.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零, ∴a =2,方程即为3x +y =0.当直线不经过原点时,截距存在且均不为0. ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,∴a ≤-1.综上可知a 的取值范围是(-∞,-1]. 16.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解 (1)证明:直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围为[0,+∞).(3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.。
第一节 直线与方程突破点一 直线的倾斜角与斜率、两直线的位置关系[基本知识]1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). 2.直线的斜率公式(1)定义式:若直线l 的倾斜角α≠π2,则斜率k =tan_α.(2)两点式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.两条直线平行与垂直的判定[基本能力]一、判断题(对的打“√”,错的打“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (3)直线的倾斜角越大,其斜率就越大.( )(4)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (5)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) 答案:(1)√ (2)× (3)× (4)× (5)× 二、填空题1.过点M (-1,m ),N (m +1,4)的直线的斜率等于1,则m 的值为________. 答案:12.若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为________.答案:343.(2019·湖南百所中学检测)若直线l 1:ax +y -1=0与l 2:3x +(a +2)y +1=0平行,则a 的值为________.答案:14.直线x +(a 2+1)y +1=0的倾斜角的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫3π4,π[全析考法]考法一 直线的倾斜角与斜率1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k =tan α的单调性,如图所示:(1)当α取值在⎣⎢⎡⎭⎪⎫0,π2内,由0增大到π2⎝ ⎛⎭⎪⎫α≠π2时,k 由0增大并趋向于正无穷大;(2)当α取值在⎝ ⎛⎭⎪⎫π2,π内,由π2⎝ ⎛⎭⎪⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)(2019·江西五校联考)已知直线l 与两条直线y =1,x -y -7=0分别交于P ,Q 两点,线段P Q 的中点坐标为(1,-1),那么直线l 的斜率是( )A.23 B.32 C .-23D .-32(2)(2019·张家口模拟)直线l 经过A (2,1),B (1,-m 2)(m ∈R)两点,则直线l 的倾斜角α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π4B.⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎭⎪⎫π4,π2D.⎝⎛⎦⎥⎤π2,3π4[解析] (1)设P (a,1),Q(b ,b -7),则⎩⎪⎨⎪⎧a +b 2=1,1+b -72=-1,解得⎩⎪⎨⎪⎧a =-2,b =4,所以P (-2,1),Q(4,-3),所以直线l 的斜率k =1---2-4=-23,故选C.(2)直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.[答案] (1)C (2)C [方法技巧]求直线倾斜角范围的注意事项直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).考法二 两直线的位置关系 两直线位置关系的判断方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.[例2] (1)(2019·武邑中学月考)已知过两点A (-3,m ),B (m,5)的直线与直线3x +y -1=0平行,则m 的值为( )A .3B .7C .-7D .-9(2)(2019·安徽六安四校联考)设m ∈R ,则“m =0”是“直线l 1:(m +1)x +(1-m )y -1=0与直线l 2:(m -1)x +(2m +1)y +4=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)由题可知,5-mm +3=-3,解得m =-7,故选C.(2)由直线l 1与l 2垂直可得(m +1)(m -1)+(1-m )·(2m +1)=0,解得m =0或m =1.所以“m =0”是“直线l 1:(m +1)x +(1-m )y -1=0与直线l 2:(m -1)x +(2m +1)y +4=0垂直”的充分不必要条件.故选A.[答案] (1)C (2)A [方法技巧]由一般式方程确定两直线位置关系的方法到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.[集训冲关]1.[考法一]已知直线过A (2,4),B (1,m )两点,且倾斜角为45°,则m =( ) A .3 B .-3 C .5D .-1解析:选A ∵直线过A (2,4),B (1,m )两点,∴直线的斜率为m -41-2=4-m .又∵直线的倾斜角为45°,∴直线的斜率为1,即4-m =1,∴m =3.故选A.2.[考法一、二]已知倾斜角为θ的直线l 与直线x +2y -3=0垂直,则cos 2θ的值为( )A.35 B .-35C.15D .-15解析:选B 由题意得-12·tan θ=-1,∴tan θ=2,cos 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,故选B. 3.[考法二]若直线l 1:ax -(a +1)y +1=0与直线l 2:2x -ay -1=0垂直,则实数a =( )A .3B .0C .-3D .0或-3解析:选D ∵直线l 1与直线l 2垂直,∴2a +a (a +1)=0,整理得a 2+3a =0, 解得a =0或a =-3.故选D.4.[考法二]设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:选C 当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0的斜率都是-12,截距不相等,∴两条直线平行,故前者是后者的充分条件;当两条直线平行时,得a 1=2a +1≠-14,解得a =-2或a =1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选C.突破点二 直线的方程[基本知识]直线方程的五种形式[基本能力]一、判断题(对的打“√”,错的打“×”)(1)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )(3)不经过原点的直线都可以用x a +yb=1表示.( ) 答案:(1)× (2)√ (3)× 二、填空题1.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为______________. 答案:4x +3y =0或x +y +1=02.(2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 斜率的-14的直线方程为____________.答案:3x +4y +15=03.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为____________.解析:由已知,得BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,且直线BC 边上的中线过点A ,则BC 边上中线的斜率k =-113,故BC 边上的中线所在直线方程为y +12=-113⎝ ⎛⎭⎪⎫x -32,即x +13y +5=0.答案:x +13y +5=0[全析考法]考法一 求直线方程[例1] (2019·湖北十堰模拟)已知菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程. [解] (1)k BC =-5--6-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4), 即2x -y +15=0. (2)k AC =-5-76--=-65.∵菱形的对角线互相垂直,∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.[方法技巧]求直线方程的注意事项(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).考法二 与直线方程有关的最值问题[例2] (1)已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( )A .0B .2 C. 2D .1(2)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)[解析] (1)直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a,此直线在x 轴,y 轴上的截距和为a +1a≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a=0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D.(2)令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].[答案] (1)D (2)C [方法技巧]与直线方程有关的最值问题的解题思路(1)借助直线方程,用y 表示x 或用x 表示y ; (2)将问题转化成关于x (或y )的函数;(3)利用函数的单调性或基本不等式求最值.[集训冲关]1.[考法一]已知直线l 过点P (1,3),且与x 轴,y 轴的正半轴所围成的三角形的面积等于6,则直线l 的方程是( )A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0解析:选A 设直线l 的方程为x a +yb=1(a >0,b >0). 由题意得⎩⎪⎨⎪⎧1a +3b =1,12ab =6,解得a =2,b =6.故直线l 的方程为x 2+y6=1,即3x +y -6=0.故选A.2.[考法一]过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为_________. 解析:当直线过原点时,直线方程为y =-53x ;当直线不过原点时,设直线方程为x a +y-a=1(a ≠0), 即x -y =a (a ≠0),把(-3,5)代入,得a =-8, 所以直线方程为x -y +8=0.故所求直线方程为y =-53x 或x -y +8=0.答案:y =-53x 或x -y +8=03.[考法二]已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:直线l 1可写成a (x -2)=2(y -2),直线l 2可写成2(x -2)=a 2(2-y ),所以直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154.当a =12时,面积最小.答案:12突破点三 直线的交点、距离与对称问题[基本知识]1.两条直线的交点2.三种距离|P 1P 2|=x 2-x 12+y 2-y 12[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (2)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( ) (3)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )(4)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB的中点在直线l 上.( )答案:(1)√ (2)× (3)√ (4)√ 二、填空题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 的值为________. 答案:2-12.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为________.答案:8233.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.答案:二4.(2018·忻州检测)在平面直角坐标系中,点(0,2)与点(4,0)关于直线l 对称,则直线l 的方程为______________.答案:2x -y -3=0[全析考法]考法一 距离问题[例1] (2019·北京西城期中)已知直线l 经过点P (-2,1). (1)若点Q(-1,-2)到直线l 的距离为1,求直线l 的方程; (2)若直线l 在两坐标轴上截距相等,求直线l 的方程.[解] (1)当直线l 的斜率不存在时,即直线l 的方程为x =-2,符合要求; 当直线l 的斜率存在时,设直线l 的方程为y -1=k (x +2), 整理得kx -y +2k +1=0,Q(-1,-2)到直线l 的距离d =|-k +2+2k +1|k 2+-2=|k +3|k 2+1=1,解得k =-43,所以直线l 的方程为4x +3y +5=0.(2)由题知,直线l 的斜率k 一定存在且k ≠0,故可设直线l 的方程为kx -y +2k +1=0,当x =0时,y =2k +1,当y =0时,x =-2k +1k,∴2k +1=-2k +1k ,解得k =-1或-12,即直线l 的方程为x +2y =0或x +y +1=0. [方法技巧]1.解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.2.求两条平行线间的距离要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.考法二 对称问题[例2] 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. [解] (1)设A ′(x ,y ),由题意知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧ 2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.[方法技巧]1.中心对称问题的两种类型及求解方法2.轴对称问题的两种类型及求解方法[集训冲关]1.[考法一]“C =2”是“点(1,3)到直线x +3y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 若点(1,3)到直线x +3y +C =0的距离为3,则有|1+3+C |12+32=3,解得C =2或C =-10,故“C =2”是“点(1,3)到直线x +3y +C =0的距离为3”的充分不必要条件,故选B.2.[考法二]直线3x -4y +5=0关于x 轴对称的直线的方程是( )A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 在所求直线上任取一点P (x ,y ),则点P 关于x 轴的对称点P ′(x ,-y )在已知的直线3x -4y +5=0上,所以3x -4(-y )+5=0,即3x +4y +5=0,故选A.3.[考法一]已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=04.[考法二]若直线l 与直线2x -y -2=0关于直线x +y -4=0对称,则直线l 的方程为________________.解析:由⎩⎪⎨⎪⎧ 2x -y -2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,即两直线的交点坐标为(2,2),在直线2x -y-2=0上取一点A (1,0),设点A 关于直线x +y -4=0的对称点的坐标为(a ,b ),则⎩⎪⎨⎪⎧ b a -1=1,a +12+b 2-4=0,解得⎩⎪⎨⎪⎧ a =4,b =3,即点A 关于直线x +y -4=0的对称点的坐标为(4,3),则直线l 的方程为y -23-2=x -24-2,整理得x -2y +2=0. 答案:x -2y +2=0。
第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与轴相交时,取轴作为基准,轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率=tan_α.(2)P 1(1,y 1),P 2(2,y 2)在直线l 上,且1≠2,则l 的斜率=y 2-y 1x 2-x 1.3.直线方程的五种形式 名称 几何条件 方程 适用范围斜截式 纵截距、斜率 y =+b 与轴不垂直的直线 点斜式 过一点、斜率y -y 0=(-0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均不垂直的直线 一般式A +By +C =0(A 2+B 2≠0)所有直线 若点P 1,P 2的坐标分别为(1,y 1),(2,y 2),线段P 1P 2的中点M 的坐标为(,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=表示过点P 1(1,y 1),且斜率为的直线方程 B .直线y =+b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb=1D .方程(2-1)(y -y 1)=(y 2-y 1)(-1)表示过点P 1(1,y 1),P 2(2,y 2)的直线解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D正确.故选D.3.(2018·嘉兴检测)直线l 1:+y +2=0在轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:+y +2=0,令y =0,得=-2,即直线l 1在轴上的截距为-2;令=0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =-2,即-y -2=0.答案:-2 -y -2=01.点斜式、斜截式方程适用于不垂直于轴的直线;两点式方程不能表示垂直于,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.直线cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数, 故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为-5=0满足题意; 当斜率存在时,设其为, 则所求直线方程为y -10=(-5), 即-y +10-5=0.由距离公式,得|10-5k |k 2+1=5,解得=34.故所求直线方程为3-4y +25=0.综上知,所求直线方程为-5=0或3-4y +25=0. 答案:-5=0或3-4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率=tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则PA ≤≤PB ,而PB >0,PA <0,故<0时,倾斜角α为钝角,=0时,α=0,>0时,α为锐角.又PA =-2-(-1)1-0=-1,PB =1-(-1)2-0=1,∴-1≤≤1. 又当0≤≤1时,0≤α≤π4;当-1≤<0时,3π4≤α<π. 故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b 的值.解:∵AB =0-2a -2=-2a -2,AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴AB =AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,的值由-∞趋近于0(≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据=tan α求斜率. (2)公式法:若已知直线上两点A (1,y 1),B (2,y 2),一般根据斜率公式=y 2-y 1x 2-x 1(1≠2)求斜率.(3)方程法:若已知直线的方程为A +By +C =0(B ≠0),则l 的斜率=-AB . 考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1),∴直线方程为y =14,即-4y =0;若a ≠0,则设直线方程为x a +ya =1,∵直线方程过点(4,1),∴4a +1a =1,解得a =5,∴直线方程为+y -5=0.综上可知,所求直线的方程为-4y =0或+y -5=0.(2)由已知,设直线y =3的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(+1),即3+4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(-3). 即所求直线的方程为-y +1=0或+y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3+y +1=0的倾斜角的一半的直线方程为________.(2)过点(2,1)且在轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3+y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(+3), 即3-y +6=0.(2)由题意可设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2.故所求直线方程为+y -3=0或+2y -4=0. 答案:(1)3-y +6=0 (2)+y -3=0或+2y -4=0考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=(-2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2). ∵直线l 与轴,y 轴正半轴分别交于A ,B 两点, ∴⎩⎪⎨⎪⎧2k -1k >0,1-2k >0,得<0. ∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2)=12⎝⎛⎭⎫4-1k -4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4,即=-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(-2),即+2y-4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2)(<0),∴截距之和为2-1k +1-2=3-2-1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2=-1k ,即=-22时等号成立.故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(-2), 即+2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2)(<0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎡⎦⎤1-k +(-k )≥4, 当且仅当-=-1k ,即=-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(-2),即+y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =2+2+3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2+2,设P (0,y 0), 则=20+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤≤1,即0≤20+2≤1,故-1≤0≤-12.角度三:由直线方程解决参数问题3.已知直线l 1:a -2y =2a -4,l 2:2+a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12. [通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线+my =0和过定点B 的动直线m -y -m +3=0交于点P (,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线+my =0与m -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :-y +1+2=0(∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求的取值范围;(3)若直线l 交轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =(+2)+1,故无论取何值,直线l 总过定点(-2,1). (2)直线l 的方程为y =+2+1,则直线l 在y 轴上的截距为2+1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得≥0,故的取值范围为[)0,+∞.(3)依题意,直线l 在轴上的截距为-1+2kk ,在y 轴上的截距为1+2, ∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2).又-1+2kk<0且1+2>0,∴>0.故S =12|OA ||OB |=12×1+2k k ×(1+2)=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4=1k ,即=12时取等号.故S 的最小值为4,此时直线l 的方程为-2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线+(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π解析:选B 由直线方程可知斜率=-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B.2.直线sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.3.(2018·湖州质检)若直线l 与直线y =1,=7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l 1,l 2,l 3的斜率分别为1,2,3,则( ) A .1<2<3 B .3<1<2 C .3<2<1 D .1<3<2解析:选D 直线l 1的倾斜角α1是钝角,故1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<3<2,因此1<3<2,故选D.5.(2018·豫西五校联考)曲线y =3-+5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=32-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .+y =0 B .-y +2=0 C .+y +2=0D .-y =0解析:选B 因为B (3,1),C (1,3), 所以BC =3-11-3=-1,故BC 边上的高所在直线的斜率=1,又高线经过点A ,所以其直线方程为-y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线-2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3+2B .y =3-2C .y =3+12D .y =-3+2 解析:选A ∵直线-2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2, ∴直线l 的方程为y =3+2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:a +y +b =0和直线l 2:b +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线-2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令=0,得y =b 2,令y =0,得=-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].5.函数y =a 1-(a >0,a ≠1)的图象恒过定点A ,若点A 在m +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-(a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n 的最小值为4.6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即+13y +5=0.答案:+13y +5=07.若直线a +y +3a -1=0恒过定点M ,则直线2+3y -6=0关于M 点对称的直线方程为________________.解析:由a +y +3a -1=0,可得a (+3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2+3y -6=0上,设直线2+3y -6=0关于M 点对称的直线方程为2+3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2+3y +12=0.答案:2+3y +12=08.若圆2+y 2+2-6y +1=0关于直线a -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆2+y 2+2-6y +1=0知其标准方程为(+1)2+(y -3)2=9, ∵圆2+y 2+2-6y +1=0关于直线a -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =(+3)+4,它在轴,y 轴上的截距分别是-4k -3,3+4,由已知,得(3+4)⎝⎛⎭⎫4k +3=±6, 解得1=-23或2=-83.故直线l 的方程为2+3y -6=0或8+3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16+b ,它在轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为-6y +6=0或-6y -6=0.10.如图,射线OA ,OB 分别与轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12上时,求直线AB 的方程.解:由题意可得OA =tan 45°=1, OB =tan(180°-30°)=-33, 所以直线l OA :y =,l OB :y =-33. 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以AB =AP =33-1=3+32,所以l AB :y =3+32(-1), 即直线AB 的方程为(3+3)-2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x+1ex +2, 因为e >0,所以e +1e x ≥2e x ·1e x =2(当且仅当e =1e x ,即=0时取等号),所以e +1ex +2≥4, 故y ′=-1e x +1ex +2≥-14(当且仅当=0时取等号). 所以当=0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(-0),即+4y -2=0.该切线在轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1. 因为l 过点P (3,2),所以3a +2b =1.因为1=3a +2b ≥2 6ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2+3y -12=0.法二:依题意知,直线l 的斜率存在且<0, 可设直线l 的方程为y -2=(-3)(<0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3), S △ABO =12(2-3)⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4-k ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9=4-k,即=-23时,等号成立.所以所求直线l 的方程为2+3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为1,2,则有l 1∥l 2⇔1=2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为1,2,则有l 1⊥l 2⇔1·2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1+B 1y +C 1=0,l 2:A 2+B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式P 1(1,y 1),P 2(2,y 2)两点之间的距离 |P 1P 2|=(x 2-x 1)2+(y 2-y 1)2 点P 0(0,y 0)到直线l :A +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线A +By +C 1=0与A +By +C 2=0间距离d =|C 1-C 2|A 2+B 21.(2018·金华四校联考)直线2+(m +1)y +4=0与直线m +3y -2=0平行,则m =( ) A .2 B .-3 C .2或-3D .-2或-3解析:选C ∵直线2+(m +1)y +4=0与直线m +3y -2=0平行,∴2m =m +13≠4-2,解得m =2或-3.2.“a =14”是“直线(a +1)+3ay +1=0与直线(a -1)+(a +1)y -3=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由直线(a +1)+3ay +1=0与直线(a -1)+(a +1)y -3=0相互垂直,得(a +1)(a -1)+3a (a +1)=0,即4a 2+3a -1=0,解得a =14或-1,∴“a =14”是“直线(a +1)+3ay +1=0与直线(a -1)+(a +1)y -3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P 的坐标为(,1-),∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析:设点P 的坐标为(,y ),则y =1-,即动点P 的轨迹方程为+y -1=0.原点到直线+y -1=0的距离为d =|0+0-1|1+1=22,即为所求原点到动点P 的轨迹的最小值. 答案:+y -1=0221.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:-y -1=0与直线l 2:+ay -2=0平行,Q :a =-1,则P 是Q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:-y -1=0与直线l 2:+ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:+3y +m =0(m >0)与直线l 2:2+6y -3=0的距离为10,则m =( )A .7B.172C .14D .17解析:选B 直线l 1:+3y +m =0(m >0),即2+6y +2m =0,因为它与直线l 2:2+6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线a +(b +2)y +4=0与直线a +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4-1和=3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为=-4a 和y =a 4-34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2-4b +2和y =-a b -2+3b -2,此时两直线的斜率分别为-a b +2,-a b -2,由-a b +2·⎝⎛⎭⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线a +by -6=0与直线2+(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b=1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:m +8y +n =0和l 2:2+my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:+ay +6=0与l 2:(a -2)+3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1,所以l 1:-y +6=0,l 2:-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3+4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=(+1),即-y ++2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3-1|=|-3-3|,∴=-13.∴直线l 的方程为y -2=-13(+1),即+3y -5=0.当直线l 的斜率不存在时,直线l 的方程为=-1,也符合题意. 故所求直线l 的方程为+3y -5=0或=-1.法二:当AB ∥l 时,有=AB =-13,∴直线l 的方程为y -2=-13(+1),即+3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为=-1.故所求直线l 的方程为+3y -5=0或=-1. 答案:+3y -5=0或=-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2-3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎨⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4). 法二:线段OA 的中垂线方程为-y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l :a +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等, 则AB ∥l ,或A ,B 的中点(2,4)在直线l 上. 所以-a =6-23-1=2或2a +4-1=0,解得a =-2或-32.法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32.答案:-2或-32考点三对称问题(题点多变型考点——多角探明)[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P(0,1)作直线l使它被直线l1:2+y-8=0和l2:-3y+10=0截得的线段被点P平分,则直线l的方程为________________.解析:设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,把B点坐标代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以由两点式得直线l的方程为+4y-4=0.答案:+4y-4=02.已知直线l:2-3y+1=0,点A(-1,-2),则直线l关于点A(-1,-2)对称的直线l′的方程为________.解析:法一:在l:2-3y+1=0上任取两点,如M(1,1),N(4,3),则M,N关于点A的对称点M′,N′均在直线l′上.易知M′(-3,-5),N′(-6,-7),由两点式可得l′的方程为2-3y-9=0.法二:设P(,y)为l′上任意一点,则P(,y)关于点A(-1,-2)的对称点为P′(-2-,-4-y),∵P′在直线l上,∴2(-2-)-3(-4-y)+1=0,即2-3y-9=0.答案:2-3y-9=0角度二:点关于线对称3.已知直线l:2-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3-2y-6=0关于直线l的对称直线m′的方程.解:(1)设A ′(,y ),则⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9-46y +102=0. 角度三:线关于线对称4.直线2-y +3=0关于直线-y +2=0对称的直线方程是( ) A .-2y +3=0 B .-2y -3=0 C .+2y +1=0D .+2y -1=0解析:选A 设所求直线上任意一点P (,y ),则P 关于-y +2=0的对称点为P ′(0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(0,y 0)在直线2-y +3=0上, ∴2(y -2)-(+2)+3=0, 即-2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (1,y 1)及N (,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(1,y 1)与P 2(2,y 2)关于直线l :A +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(2,y 2)(其中B ≠0,1≠2). (2)直线关于直线的对称:一般转化为点关于直线的对称解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2的对称点为(,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(-3),即3+y -10=0.同理可得点B (3,1)关于直线y =2的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(+4),即-3y +10=0.联立⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4).2.已知入射光线经过点M (-3,4),被直线l :-y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :-y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6-y -6=0. 答案:6-y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2-y +2=0上,点C 在轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2-y +2=0的对称点为A 1(1,y 1),点A 关于轴的对称点为A 2(2,y 2),连接A 1A 2交l 于点B ,交轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2-y +2=0对称, ∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5),∴△ABC 周长的最小值为||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线a +3y +3=0和直线+(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线a +3y +3=0和直线+(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C.2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为1=tan 30°=33,因为直线l 2与直线l 1垂直,所以2=-1k 1=-3,所以直线l 1的方程为y =33(+2),直线l 2的方程为y =-3(-2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3). 3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6+5y -1=0B .5+6y +1=0C .5-6y -1=0D .6-5y -1=0解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以AB =6+4-5-7=-56,所以l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(-1),即6-5y -1=0.4.已知点P (4,a )到直线4-3y -1=0的距离不大于3,则a 的取值范围是________. 解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3-2y -1=0,6+ay +c =0之间的距离为21313,则c 的值是________. 解析:依题意知,63=a-2≠c -1,解得a =-4,c ≠-2,即直线6+ay +c =0可化为3-2y +c2=0,又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :a +y -1=0与过定点Q 的直线m :-ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线a +y -1=0与过定点Q 的直线-ay +3=0垂直, ∴M 位于以P Q 为直径的圆上, ∵|P Q |=9+1=10, ∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2-3在=-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-32,由导数的几何意义可知,该切线的斜率为=2-3=-1,所以切线的方程为+y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3+4y -12=0与6+8y +5=0上任意一点,则|P Q |的最小值为( )A.95 B.185 C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行,由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910.4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2-3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎨⎧m =35,n =315,故m +n =345.5.(2018·钦州期中)已知直线l 的方程为f (,y )=0,P 1(1,y 1)和P 2(2,y 2)分别为直线l 上和l 外的点,则方程f (,y )-f (1,y 1)-f (2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (,y )=0,知方程f (,y )-f (1,y 1)-f (2,y 2)=0表示与l 平行的直线,P 1(1,y 1)为直线l 上的点,则f (1,y 1)=0,f (,y )-f (1,y 1)-f (2,y 2)=0化为f (,y )-f (2,y 2)=0,显然P 2(2,y 2)满足方程f (,y )-f (1,y 1)-f (2,y 2)=0,所以f (,y )-f (1,y 1)-f (2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:-y -1=0和l 2:-1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(1,y 1),则有⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,所以A 1(0,3).同理设A 2(2,y 2),易求得A 2(-2,-1). 所以BC 边所在直线方程为2-y +3=0. 答案:2-y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=(-3), 即-y +4-3=0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴=2或=-23.∴所求直线l 的方程为2-y -2=0或2+3y -18=0. 答案:2-y -2=0或2+3y -18=08.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为+y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2-y -5=0,AC 边上的高BH 所在直线方程为-2y -5=0,求直线BC 的方程.解:依题意知:AC =-2,A (5,1), ∴l AC 的方程为2+y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (0,y 0),则AB 的中点M ⎝⎛⎭⎫x 0+52,y 0+12, 代入2-y -5=0, 得20-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴BC =65,∴直线BC 的方程为y -3=65(-4),即6-5y -9=0.。
第一节直线与方程突破点一直线的倾斜角与斜率、两直线的位置关系.直线的倾斜角()定义:当直线与轴相交时,取轴作为基准,轴正向与直线之间所成的角叫做向上方向直线的倾斜角.当直线与轴平行或重合.时,规定它的倾斜角为()范围:直线倾斜角的范围是[,π)..直线的斜率公式α≠()定义式:若直线的倾斜角.α,则斜率=()两点式:(,),(,)在直线上,且≠,则的斜率=..两条直线平行与垂直的判定一、判断题(对的打“√”,错的打“×”)()根据直线的倾斜角的大小不能确定直线的位置.( )()坐标平面内的任何一条直线均有倾斜角与斜率.( )()直线的倾斜角越大,其斜率就越大.( )()当直线和斜率都存在时,一定有=⇒∥.( )()如果两条直线与垂直,则它们的斜率之积一定等于-.( )答案:()√()×()×()×()×二、填空题.过点(-,),(+)的直线的斜率等于,则的值为.答案:.若直线:(-)+-=和直线:++=垂直,则实数的值为.答案:.(·湖南百所中学检测)若直线:+-=与:+(+)+=平行,则的值为.答案:.直线+(+)+=的倾斜角的取值范围是.答案:考法一直线的倾斜角与斜率.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:.在分析直线的倾斜角和斜率的关系时,要根据正切函数=α的单调性,如图所示:()当α取值在内,由增大到时,由增大并趋向于正无穷大;()当α取值在内,由增大到π(α≠π)时,由负无穷大增大并趋近于.解决此类问题,常采用数形结合思想.[例] ()(·江西五校联考)已知直线与两条直线=,--=分别交于,两点,线段的中点坐标为(,-),那么直线的斜率是( ).-.-()(·张家口模拟)直线经过(),(,-)(∈)两点,则直线的倾斜角α的取值范围是( )[解析] ()设(),(,-),则(\\((+)=,,(+-)=-,))解得(\\(=-,=,))所以(-),(,-),所以直线的斜率==-,故选.()直线的斜率=α==+≥,所以≤α<.[答案] () ()[方法技巧]求直线倾斜角范围的注意事项直线倾斜角的范围是[,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分与两种情况讨论.由正切函数图象可以看出,当α∈时,斜率∈[,+∞);当α=时,斜率不存在;当α∈时,斜率∈(-∞,).考法二两直线的位置关系两直线位置关系的判断方法()已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等;②两直线垂直⇔两直线的斜率之积为-.()已知两直线的斜率不存在若两直线的斜率不存在,当两直线在轴上的截距不相等时,两直线平行;否则两直线重合.[例] ()(·武邑中学月考)已知过两点(-,),()的直线与直线+-=平行,则的值为( )...-.-()(·安徽六安四校联考)设∈,则“=”是“直线:(+)+(-)-=与直线:(-)+(+)+=垂直”的( ).必要不充分条件.充分不必要条件.既不充分也不必要条件.充要条件[解析] ()由题可知,=-,解得=-,故选. ()由直线与垂直可得(+)(-)+(-)·(+)=,解得=或=.所以“=”是“直线:(+)+(-)-=与直线:(-)+(+)+=垂直”的充分不必要条件.故选.[答案]()()[方法技巧]由一般式方程确定两直线位置关系的方法到斜率不存在的特殊情况.同时还要注意,的系数不能同时为零这一隐含条件.已知直线过(),(,)两点,且倾斜角为°,则=( ).-..-.解析:选∵直线过(),(,)两点,∴直线的斜率为=-.又∵直线的倾斜角为°,∴直线的斜率为,即-=,∴=.故选.已知倾斜角为θ的直线与直线+-=垂直,则θ的值为( ).-.-解析:选由题意得-· θ=-,∴θ=,θ===-,故选.若直线:-(+)+=与直线:--=垂直,则实数=( )...或-.-解析:选∵直线与直线垂直,∴+(+)=,整理得+=,解得=或=-.故选.设∈,则“=”是“直线:+-=与直线:+(+)+=平行”的( ).必要不充分条件.充分必要条件.既不充分也不必要条件.充分不必要条件解析:选当=时,直线:+-=与直线:++=的斜率都是-,截距不相等,∴两条直线平行,故前者是后者的充分条件;当两条直线平行时,得=≠,解得=-或=,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选.突破点二直线的方程直线方程的五种形式一、判断题(对的打“√”,错的打“×”)()经过定点(,)的直线都可以用方程=+表示.( ) ()经过任意两个不同的点(,),(,)的直线都可以用方程(-)(-)=(-)(-)表示.( )()不经过原点的直线都可以用+=表示.( )答案:()×()√()×二、填空题.过点(,-),且在两坐标轴上的截距相等的直线的方程为.答案:+=或++=.(·开封模拟)过点(-,-),斜率是直线=斜率的-的直线方程为.答案:++=.已知三角形的三个顶点(-),(,-),(),则边上中线所在的直线方程为.解析:由已知,得的中点坐标为,且直线边上的中线过点,则边上中线的斜率=-,故边上的中线所在直线方程为+=-,即++=.答案:++=考法一求直线方程[例] (·湖北十堰模拟)已知菱形的顶点,的坐标分别为(-),(,-),边所在直线过点(,-).求:()边所在直线的方程;()对角线所在直线的方程.[解] ()==,∵∥,∴=.∴边所在直线的方程为-=(+),即-+=.()==-.∵菱形的对角线互相垂直,∴⊥,∴=.∵的中点(),也是的中点,∴对角线所在直线的方程为-=(-),即-+=.[方法技巧]求直线方程的注意事项()在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.()对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).考法二与直线方程有关的最值问题[例] ()已知直线+-=(是正常数),当此直线在轴,轴上的截距和最小时,正数的值是( )...()若直线-+=与两坐标轴所围成的三角形的面积不大于,那么的取值范围是( ).(-∞,-]∪[,+∞).[-].[-)∪(].(-∞,+∞)[解析] ()直线+-=(是正常数)在轴,轴上的截距分别为和,此直线在轴,轴上的截距和为+≥,当且仅当=时,等号成立.故当直线+-=在轴,轴上的截距和最小时,正数的值是,故选. ()令=,得=,令=,得=-,所以所求三角形面积为-=,且≠,因为≤,所以≤,所以的取值范围是[-)∪(].[答案] () ()[方法技巧]与直线方程有关的最值问题的解题思路()借助直线方程,用表示或用表示;()将问题转化成关于(或)的函数;()利用函数的单调性或基本不等式求最值.已知直线过点(),且与轴,轴的正半轴所围成的三角形的面积等于,则直线的方程是( ).+-=.+-=.-+=.-=解析:选设直线的方程为+=(>,>).由题意得(\\(()+()=,,()=,))解得=,=.故直线的方程为+=,即+-=.故选.过点(-)且在两坐标轴上的截距互为相反数的直线方程为.解析:当直线过原点时,直线方程为=-;当直线不过原点时,设直线方程为+=(≠),即-=(≠),把(-)代入,得=-,所以直线方程为-+=.故所求直线方程为=-或-+=.答案:=-或-+=已知直线:-=-,:+=+,当<<时,直线,与两坐标轴围成一个四边形,当四边形的面积最小时,实数=.解析:直线可写成(-)=(-),直线可写成(-)=(-),所以直线,恒过定点(),直线的纵截距为-,直线的横截距为+,所以四边形的面积=××(-)+××(+)=-+=+.当=时,面积最小.答案:突破点三直线的交点、距离与对称问题.两条直线的交点.三种距离一、判断题(对的打“√”,错的打“×”)()若两直线的方程组成的方程组有唯一解,则两直线相交.( )()点(,)到直线=+的距离为.( ) ()直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) ()若点,关于直线:=+(≠)对称,则直线的斜率等于-,且线段的中点在直线上.( )答案:()√()×()√()√二、填空题.已知点()(>)到直线:-+=的距离为,则的值为.答案:-.若直线:++=与:(-)++=平行,则与间的距离为.答案:.当<<时,直线:-=-与直线:-=的交点在第象限.答案:二.(·忻州检测)在平面直角坐标系中,点()与点()关于直线对称,则直线的方程为.答案:--=考法一距离问题[例] (·北京西城期中)已知直线经过点(-,).()若点(-,-)到直线的距离为,求直线的方程;()若直线在两坐标轴上截距相等,求直线的方程.[解] ()当直线的斜率不存在时,即直线的方程为=-,符合要求;当直线的斜率存在时,设直线的方程为-=(+),整理得-++=,(-,-)到直线的距离===,解得=-,所以直线的方程为++=.()由题知,直线的斜率一定存在且≠,故可设直线的方程为-++=,当=时,=+,当=时,=-,∴+=-,解得=-或-,即直线的方程为+=或++=.[方法技巧].解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在..求两条平行线间的距离要先将直线方程中,的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.考法二对称问题[例] 已知直线:-+=,点(-,-).求:()点关于直线的对称点′的坐标;()直线:--=关于直线的对称直线′的方程;()直线关于点(-,-)对称的直线′的方程.[解] ()设′(,),由题意知×(-)-×(-)+=,))解得(\\(=-(),=().))所以′.()在直线上取一点(),则()关于直线的对称点′必在直线′上.设′(,),则)×()=-.))解得′.设直线与直线的交点为,则由(\\(-+=,--=,))得().又因为′经过点(),所以由两点式得直线′的方程为-+=.()设(,)为′上任意一点,则(,)关于点(-,-)的对称点为′(--,--),因为′在直线上,所以(--)-(--)+=,即--=.[方法技巧].中心对称问题的两种类型及求解方法.轴对称问题的两种类型及求解方法“=”是“点(,)到直线++=的距离为”的( ).充分不必要条件.充要条件.既不充分也不必要条件.必要不充分条件解析:选若点(,)到直线++=的距离为,则有=,解得=或=-,故“=”是“点(,)到直线++=的距离为”的充分不必要条件,故选.直线-+=关于轴对称的直线的方程是( ).+-=.++=.-++=.-+-=解析:选在所求直线上任取一点(,),则点关于轴的对称点′(,-)在已知的直线-+=上,所以-(-)+=,即++=,故选.已知,是分别经过(),(,-)两点的两条平行直线,当,间的距离最大时,则直线的方程是.解析:当直线与,垂直时,,间的距离最大.因为(),(,-),所以==,所以两平行直线的斜率为=-,所以直线的方程是-=-(-),即+-=.答案:+-=若直线与直线--=关于直线+-=对称,则直线的方程为.解析:由(\\(--=,+-=,))得(\\(=,=,))即两直线的交点坐标为(),在直线--=上取一点(),设点关于直线+-=的对称点的坐标为(,),则(\\((-)=,,(+)+()-=,))解得(\\(=,=,))即点关于直线+-=的对称点的坐标为(),则直线的方程为=,整理得-+=.答案:-+=。
第一节 直线的倾斜角与斜率、直线的方程
【考纲下载】
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. 2.能根据两条直线的斜率判断这两条直线平行或垂直.
3.掌握确定直线位置的几何要素;掌握直线方程的几种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系.
1.直线的倾斜角与斜率 (1)直线的倾斜角
①一个前提:直线l 与x 轴相交; 一个基准:取x 轴作为基准;
两个方向:x 轴正方向与直线l 向上的方向.
②当直线l 与x 轴平行或重合时,规定:它的倾斜角为0°. ③倾斜角的取值范围为[0,π). (2)直线的斜率
①定义:若直线的倾斜角θ不是90°,则斜率k =tan_θ.
②计算公式:若由A(x 1,y 1),B(x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1
.
2.两条直线平行、垂直与其斜率间的关系 (1)两条直线平行
①对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2; ②当不重合的两条直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为平行. (2)两条直线垂直
①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1;
②如果l 1,l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直.
3.直线方程的几种形式 名称 条件 方程 适用范围
点斜式 斜率k 与点(x 0,y 0) y -y 0=
k(x -x 0)
不含直线x =x 0
斜截式 斜率k 与截距b y =kx +b 不含垂直于x 轴的直线
两点式 两点(x 1,y 1),(x 2,y 2) y -y 1
y 2-y 1=x -x 1x 2-x 1
不含直线x =x 1(x 1=x 2)和
直线y =y 1(y 1=y 2) 截距式 截距a 与b x a +y b =1
不含垂直于坐标轴和过原
点的直线 一般式
Ax +By +C =0(A 2+B 2≠0) 平面直角坐标系内的直线
都适用
1.直线的倾斜角越大,斜率k 就越大,这种说法对吗?
提示:这种说法不正确.因为k =tan θ⎝⎛⎭⎫θ≠π2.当θ∈⎝⎛⎭⎫0,π
2时,θ越大,斜率k 就越大,同样θ∈⎝⎛⎭⎫π2,π时也是如此,但当θ∈(0,π)且θ≠π
2
就不是了. 2.在平面直角坐标系中,如果两条直线平行,则其斜率相等,正确吗? 提示:不正确.还可能两条直线的斜率都不存在.
3.在平面直角坐标系中,任何直线都有点斜式方程吗?
提示:不是.当直线与x 轴垂直时,该直线的斜率不存在,它就没有点斜式方程.
1.(教材习题改编)若直线x =2的倾斜角为α,则α( )
A .等于0
B .等于π4
C .等于π
2
D .不存在
解析:选C 因为直线x =2垂直于x 轴,故其倾斜角为π
2
.
2.(教材习题改编)过点M(-2,m),N(m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4
解析:选A 由题意知,4-m
m +2=1,解得m =1.
3.直线y =kx +1过点⎝⎛⎭
⎫1,3
2,则该直线的斜率为( ) A .-12 B.1
2
C .2
D .-2
解析:选B 因为直线y =kx +1过点⎝⎛⎭⎫1,32,所以32=k +1,即k =12
. 4.过两点A(0,1),B(-2,3)的直线方程为____________.
解析:由两点式方程可得y -13-1=x -0
-2-0
,
整理得x +y -1=0. 答案:x +y -1=0
5.直线l :ax +y -2-a =0在x 轴、y 轴上的截距相等,则a =________.
解析:令x =0,则y =2+a ,即在y 轴上的截距为2+a ,同理在x 轴上的截距为2+a
a
.
所以2+a =2+a
a
,解得a =-2或a =1.
答案:-2或1
易误警示(十)
求直线方程的易误点
[典例] (2014·常州模拟)过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为________________________________________________________________________.
[解题指导] 可利用待定系数法设直线的方程为截距式,但要考虑截距式不能表示过原点的直线.
[解析] (1)当截距不为0时,设所求直线方程为x a +y
a
=1,即x +y -a =0.
∵点P (-2,3)在直线l 上,∴-2+3-a =0,
∴a =1,所求直线l 的方程为x +y -1=0.
(2)当截距为0时,设所求直线方程为y =kx ,则有3=-2k ,即k =-3
2
,
此时直线l 的方程为y =-3
2
x ,即3x +2y =0.
综上,直线l 的方程为x +y -1=0或3x +2y =0. [答案] x +y -1=0或3x +2y =0
[名师点评] 1.因忽略截距为“0”的情况,导致求解时漏掉直线方程3x +2y =0而致错,所以可以借助几何法先判断,再求解,避免漏解.
2.在选用直线方程时,常易忽视的情况还有: (1)选用点斜式与斜截式时忽视斜率不存在的情况;
(2)选用两点式方程时忽视与x 轴垂直的情况及与y 轴垂直的情况.
已知直线l 过(2,1),(m,3)两点,则直线l 的方程为____________________. 解析:(1)当m =2时,直线l 的方程为x =2;
(2)当m ≠2时,直线l 的方程为y -13-1=x -2
m -2
,即2x -(m -2)y +m -6=0.
因为m =2时,方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0。