26.1.3 二次函数y=ax2+c的图象和性质
- 格式:ppt
- 大小:760.50 KB
- 文档页数:21
二次函数的概念及的图像与性质要点一、二次函数的概念 1.二次函数的概念一般地,形如y=ax 2+bx+c (a≠0,a, b, c 为常数)的函数是二次函数. 若b=0,则y=ax 2+c ; 若c=0,则y=ax 2+bx ; 若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c (a ≠0)是二次函数的一般式. 二次函数由特殊到一般,可分为以下几种形式:①(a ≠0);②(a ≠0);③(a ≠0);④(a ≠0),其中;⑤(a ≠0).要点诠释:如果y=ax 2+bx+c(a,b,c 是常数,a≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.2.二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标)(或称交点式).要点诠释:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.1.下列函数中,是关于x 的二次函数的是________(填序号). (1)y =-3x 2;(2)21y x x=+; (3)y =3x 2-4-x 3;(4)2123y x =--; (5)y =ax 2+3x+6; (6)y = 【答案】(1)、(4);【解析】紧扣二次函数的定义去判断,(1)、(4)符合二次函数的条件;(2)中不是关于x 的整式,而是分式;(3)中x 的最高次数不是2,而是3; (5)中二次项系数a 可能为0;(6)不是整式而是根式,所以(2)、(3)、(5)、(6)均不符合二次函数的条件.【总结升华】判断一个函数是否是二次函数,应抓住三个特征:(1)经整理后,函数表达式是含自变量的整式; (2)自变量的最高次数为2;(3)二次项系数不为0,尤其是含有字母系数的函数,应特别注意含字母的二次项系数是否为0.举一反三:【变式】如果函数232(3)1mm y m x mx -+=-++是二次函数,求m 的值.要点二、二次函数y=ax 2(a ≠0)的图象及性质 1.二次函数y=ax 2(a ≠0)的图象用描点法画出二次函数y=ax 2(a ≠0)的图象,如图,它是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x 2关于y 轴对称,所以y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x 2的顶点是图象的最低点。