暖通空调-第5章-辐射采暖与辐射供冷汇总
- 格式:doc
- 大小:358.50 KB
- 文档页数:17
《暖通空调》教学计划总学时:56(14周*4学时/周)《暖通空调》讲义本课程学习要求第1章绪论(2学时)1.采暖通风与空气调节的含义人工环境技术采暖(Heating):向建筑物供给热量,保持室内一定温度。
通风(Ventilating):利用室外空气(新风)置换室内空气,以改善室内空气品质。
通风功能举例P1. 其中,除去室内多余热湿量受室外空气状态的限制。
空气调节(Air conditioning):用技术手段对特定空间室内参数进行调节与控制,并提供足够量的新鲜空气。
室内参数包括建筑热湿环境和空气品质等方面。
暖通空调:HV AC(Heating, Ventilating and Air conditioning)2.采暖通风与空气调节系统的工作原理介绍工业建筑和民用建筑采暖通风空调系统。
P2。
提供冷量热量和风量,控制室内状态和空气品质。
冷负荷、湿负荷、热负荷:概念工作原理: 通过采暖通风空调系统控制进出房间的热量、湿量和空气量,在所希望维持的特定空间室内状态范围内实现热量、湿量和风量的动态平衡。
3.采暖通风与空气调节系统的分类按教材介绍4.采暖通风与空调技术的发展概况第2章热负荷、冷负荷与湿负荷计算(4学时)房间热负荷、冷负荷与湿负荷的概念:P9注:1)对建筑而言,热负荷主要在冬季过程,冷负荷主要在夏季过程,湿负荷不取决于季节,只取决于过程。
2)上述负荷是暖通空调设计依据。
其计算以室外气象参数和室内空气参数为依据。
1.室内外空气计算参数1)室外空气计算参数:按《采暖通风空调设计规范》(GBJ19-87)规定。
同规范(GBT19-87)中的“暖通空调设计计算室外气象参数”,按全年有少数时间不保证室内温湿度标准而制定。
主要有夏季空调室外计算干、湿球温度用于计算夏季新风冷负荷夏季空调室外计算年均温度和逐时温度用于计算围护结构的非稳态传热量冬季空调室外空气计算温度、相对湿度用于计算围护结构的热负荷和新风热负荷冬季采暖室外计算温度和冬季通风设计温度用于计算通风量和通风冷负荷2)室内空气计算参数:取决于舒适性、地区、节能等,参照《采暖通风空调设计规范》(GBJ19-87)规定。
《暖通空调》教学大纲大纲说明课程代码:5135031总学时:72学时(讲课66学时、实验6学时)总学分:4.5课程类别:专业选修适用专业:建筑环境与设备工程预修要求:传热学、工程热力学、流体力学、建筑环境学、流体输配管网、热质交换原理与设备一、课程的性质、目的、任务:本课程是建筑环境与设备工程专业学生的一门主干专业课程,其目的是通过该门课程的学习,使学生了解创造建筑物热、湿、空气品质环境的技术,即采暖、通风与空气调节技术,涵盖了所培养的毕业生将来从事准业工作所需的主要专业技术。
通过该课程的学习,并辅以一定的实践环节训练后,能具有一般建筑的采暖、通风与空调系统的设计与管理的初步能力。
二、课程教学的基本要求:1、掌握建筑冷热负荷和湿负荷的计算;2、掌握各种采暖、通风与空调系统的组成、功能、特点和调节方法;3、掌握系统中主要设备、构件的构造、工作原理、特性和选用方法;4、了解建筑节能、暖通空通自动控制、暖通空通领域的新发展和新技术。
三、大纲的使用说明:本大纲适用于建筑环境与设备工程专业本科教学。
大纲正文第一章绪论学时:2学时(讲课2学时)本章讲授要点:采暖通风与空气调节的含义、工作原理、分类。
重点:采暖通风与空气调节系统的工作原理。
1、采暖通风与空气调节的含义;2、采暖通风与空气调节系统的工作原理;3、采暖通风与空气调节系统的分类;4、采暖通风与空气技术的发展概况。
第二章热负荷、冷负荷和湿负荷的计算 6学时(讲课6学时)本章讲授要点:室内外空气计算参数,冬季建筑的热负荷,夏季建筑围护结构的冷负荷,室内热源散热引起的冷负荷,湿负荷,新风负荷及空调室内的冷负荷与制冷系统的冷负荷计算。
重点:热负荷、冷负荷和湿负荷的计算。
第一节:室内外空气计算参数第二节:冬季建筑的热负荷第三节:夏季建筑围护结构的冷负荷第四节:室内热源散热引起的冷负荷第五节:湿负荷第六节:新风负荷第七节:空调室内的冷负荷与制冷系统的冷负荷第八节:计算举例第三章全水系统 6学时(讲课6学时)本章讲授要点:全水系统的末端装置,热水采暖系统的分类与特点,高层建筑热水采暖系统,分户热计量采暖系统,热水采暖系统的作用压头,热水采暖系统的水力计算,热水采暖系统的失调与调节,全水风机盘管系统。
《暖通空调》教学计划总学时:56〔14周*4学时/周〕《暖通空调》讲义本课程学习要求第1章绪论〔2学时〕1.采暖通风与空气调节的含义人工环境技术采暖〔Heating〕:向建筑物供给热量,保持室内一定温度。
通风(Ventilating):利用室外空气〔新风〕置换室内空气,以改善室内空气品质。
通风功能举例P1. 其中,除去室内多余热湿量受室外空气状态的限制。
空气调节(Air conditioning):用技术手段对特定空间室内参数进展调节与控制,并提供足够量的新鲜空气。
室内参数包括建筑热湿环境和空气品质等方面。
暖通空调:HVAC(Heating, Ventilating and Air conditioning)2.采暖通风与空气调节系统的工作原理介绍工业建筑和民用建筑采暖通风空调系统。
P2。
提供冷量热量和风量,控制室内状态和空气品质。
冷负荷、湿负荷、热负荷:概念工作原理: 通过采暖通风空调系统控制进出房间的热量、湿量和空气量,在所希望维持的特定空间室内状态X围内实现热量、湿量和风量的动态平衡。
3.采暖通风与空气调节系统的分类按教材介绍4.采暖通风与空调技术的开展概况第2章热负荷、冷负荷与湿负荷计算〔4学时〕房间热负荷、冷负荷与湿负荷的概念:P9注:1〕对建筑而言,热负荷主要在冬季过程,冷负荷主要在夏季过程,湿负荷不取决于季节,只取决于过程。
2〕上述负荷是暖通空调设计依据。
其计算以室外气象参数和室内空气参数为依据。
1.室内外空气计算参数1)室外空气计算参数:按《采暖通风空调设计规X》〔GBJ19-87〕规定。
同规X(GBT19-87)中的“暖通空调设计计算室外气象参数〞,按全年有少数时间不保证室内温湿度标准而制定。
主要有夏季空调室外计算干、湿球温度用于计算夏季新风冷负荷夏季空调室外计算年均温度和逐时温度用于计算围护结构的非稳态传热量冬季空调室外空气计算温度、相对湿度用于计算围护结构的热负荷和新风热负荷冬季采暖室外计算温度和冬季通风设计温度用于计算通风量和通风冷负荷2)室内空气计算参数:取决于舒适性、地区、节能等,参照《采暖通风空调设计规X》〔GBJ19-87〕规定。
暖通空调知识点暖通空调课件⽂字容1.3 介绍“暖通空调”课程主要容(⼀) 采暖通风与空⽓调节的含义建筑环境的作⽤;建筑环境的组成;建筑环境的控制技术(供暖、通风、空⽓调节)1)什么是供暖系统?保证建筑物卫⽣和舒适条件的⽤热系统供暖系统的组成:热媒制备——热源:供热热媒的来源,如区域锅炉房、热电⼚热媒输送——热⽹:由热源向热⽤户输送和分配供热介质的管线系统热媒利⽤——热⽤户:利⽤热能的⽤户供暖系统作⽤:冬季室外温度低于室温度,因⽽房间的热量不断地传向室外,为使室保持所需要的温度,必须向室供热。
供暖⼯程课程研究的对象和主要容:对象:是以热⽔或蒸汽作为热媒的建筑供暖系统容:研究⽤⼈⼯⽅法向室供给热量,保持⼀定的室温度.供暖系统的分类:局部供暖系统:集中式供暖系统1)什么是建筑通风系统?建筑通风任务:把室被污染的空⽓直接或净化后排⾄室外,把新鲜空⽓补充进来。
建筑通风意义:改善室的空⽓环境;满⾜⼈体舒适需要;保证产品质量;促进⽣产发展;防⽌⼤⽓污染。
建筑通风的⽅式:★局部通风★全⾯通风;★机械通风★⾃然通风。
3)什么是空⽓调节系统?空⽓调节的意义:?在⼀个部受控的空⽓环境空间(房间),对空⽓的温度、湿度、空⽓流动速度、洁净度进⾏⼈⼯调节, 使空⽓达到所要求的状态,或者说使空⽓处于正常状态,以满⾜⼈体舒适和⼯艺⽣产过程的要求.空⽓调节主要涉及的容:建筑部空间、外⼲扰量的计算;空⽓调节的⽅式和⽅法;空⽓的各种处理⽅法;空⽓的输送与分配及⼲扰量变化的运⾏调节。
空⽓调节的技术种类:?供暖与降温:室环境温度的调节;?建筑通风:室环境卫⽣要求;?空⽓调节:上述两种技术的综合应⽤。
(⼆) 暖通空调系统的⼯作原理原理:室得到热量(夏季);室失去热量(冬季) ;室保持⼀定的湿度;保持室空⽓品质。
采取的控制⽅式:设置采暖通风与空⽓调节系统(三) 暖通空调系统的分类分类的种类:按对建筑环境控制功能分类;按承担室热负荷、冷负荷和湿负荷的介质分类;按空⽓处理设备的集中程度分类;按空调系统⽤途分类;以建筑污染物为主要控制对象的分类。
名词解释第一章供暖:向建筑供给热量,保持室内一定温度。
通风:用自然或机械的方法向室内输送室外空气,和某一房间或空间排出空气的过程。
空气调节:对室内空气的温度、湿度、洁净度和空气流动速度进行控制与调节,并提供足量新鲜空气。
暖通空调:使室内的温度、湿度、污染物浓度达到所要求的值调控技术。
全水系统:全部以水为介质把热量或冷量传递给所控制的环境,以承担室内热负荷或冷负荷的系统。
舒适性空调系统:为室内人员创造舒适健康环境的空调系统。
工艺性空调系统:为生产工艺或设备运行创造必要环境条件的空调系统。
冷负荷:为了维持室内热湿参数于一定范围,单位时间需从室内去除的热量。
得热量:某一时刻由室内和室外热源进入到室内的热量总和。
第二章散热器金属热强度:指每1摄氏度传热温差,单位质量金属所能散发的热量。
散热器进流系数:指流进散热器的水流量与通过立管流量之比。
围护结构基本耗热量:在计算条件下,通过门窗、墙体、地板、屋顶等围护结构从室内传到室外的稳态传热量的总和。
室内空气计算参数:舒适性空调用于评价人的舒适性指标,指人员活动区内测点总数中,符合要求的测点所占百分比。
第三章富裕度:指资用压头除去管网阻力后的压力所占资用压头的比值。
并联管路阻力不平衡率:立管资用压头与其计算阻力损失绝对差值在该立管的资用压头中的占比。
资用压头:可资利用的压头,用户入口供回水压差。
膨胀水箱有效容积:膨胀水箱信号管到溢流管之间高度的容积。
第四章疏水器的选择倍率:疏水器排水能力与用热设备的计算凝水量的比值。
疏水器的背压:疏水器二次侧压力。
第五章辐射供暖:依靠温度较高的辐射末端设备与围护结构内表面的辐射换热和与室内空气的对流换热,使房间围护结构内表面的平均温度高于室内空气温度的供暖。
辐射供冷:依靠温度较低的辐射末端设备与围护结构内表面的辐射换热和与室内空气的对流换热,使房间围护结构内表面的平均温度低于室内空气温度的供暖。
第六章压力有关型vav末端机组:恒温控制器直接控制风门的角度,送风量随系统静压的变化而波动的末端机组。
四、辐射供暖(供冷)概述(了解)注:摘自《全国勘察设计注册公用设备工程师暖通空调考试复习教材》四、辐射供暖(供冷)概述(了解)注:摘自《全国勘察设计注册公用设备工程师暖通空调考试复习教材》四、辐射供暖(供冷) (一)热水辐射供暖 (熟悉) 注:摘自《全国勘察设计注册公用设备工程师暖通空调考试复习教材》JGJ26、5.3.3-②:低温地面辐射供暖系统楼(户)内供水温度不应高于45℃,供回水温差 不宜大于10℃。
JGJ142、3.1.3JGJ142、3.1.1 GB50736(50019、5.4.2有相似规定,表5.4.1-2即表1.4-3)四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)JGJ26JGJ142JGJ173、4.2.6:地面辐射供暖系统宜在热力入口设置混水站或组装式热交换机组。
GB50189四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)注:摘自《全国勘察设计注册公用设备工程师暖通空调考试复习教材》四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)注:摘自《全国勘察设计注册公用设备工程师暖通空调考试复习教材》四、辐射供暖(供冷)(一)热水辐射供暖(了解) JGJ142四、辐射供暖(供冷)(一)热水辐射供暖(了解) JGJ142四、辐射供暖(供冷)(一)热水辐射供暖(熟悉) JGJ142四、辐射供暖(供冷)(一)热水辐射供暖(熟悉) JGJ142四、辐射供暖(供冷)(一)热水辐射供暖(熟悉) JGJ142四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)A、低温热水地面辐射供暖系统形式注:摘自《全国勘察设计注册公用设备工程师暖通空调考试复习教材》四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)A、低温热水地面辐射供暖系统形式四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)A、低温热水地面辐射供暖系统形式四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)A、低温热水地面辐射供暖系统形式四、辐射供暖(供冷) (一)热水辐射供暖(熟悉) JGJ142A 、低温热水地面辐射供暖系统形式 GB50736四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)A、低温热水地面辐射供暖系统形式四、辐射供暖(供冷)(一)热水辐射供暖(熟悉)A、低温热水地面辐射供暖系统形式四、辐射供暖(供冷)(一)热水辐射供暖(熟悉) JGJ142A、低温热水地面辐射供暖系统形式2016 ★真题示例四、辐射供暖(供冷)低温辐射地板热水供暖系统于分水器的总进水管和集水器的总出水管之间设置旁通管的有关表述,正确的是下列何项?A.用于所服务系统的流量调节B.旁通管设于分水器总进水管上阀门之后(按流向)C.旁通管设于集水器总进水管上阀门之后(按流向)D.用于系统供暖管路进行冲洗时,使冲洗水不流进加热管解析:JGJ142、3.5.14答案:D某多层住宅采用低温辐射地板热水供暖系统,某房间设有两个对称布置环路、环路长度相同。
第十一章暖通空调第一节采暖采暖是使室内获得热量并保持一定的温度,以达到适宜的生活或丁作条件的技术。
采暖系统由热源、热媒输送设备和散热设备三个主要部分构成。
一、采暖系统(一)采暖系统概述1.采暖系统分类根据三个主要组成部分的位置分为局部采暖系统和集中采暖系统。
根据采暖系统散热给室内的方式不同,分为对流采暖和辐射采暖。
根据热媒不同分为热水采暖系统、蒸汽采暖系统与热风采暖系统。
民用建筑应采用热水作热媒,并应有可靠的水质保证措施;工业建筑,当厂区只有采暖用热或以采暖用热为主时,宜采用高温水作热媒;当厂区供热以工艺用蒸汽为主时,在不违反卫生标准和节能要求的条件下,可采用蒸汽作热媒。
2.采用集中采暖的气候条件(1)累年日平均温度稳定低于或等于5℃的日数大于或等于90d的地区,宜采用集中采暖。
指严寒和寒冷地区,主要包括东北,华北和西北地区。
(2)累年日平均温度稳定低于或等于5℃的日数为60~89天;以及累年日平均温度稳定低于或等于5℃的日数不足60天,但累年日平均温度稳定低于或等于8o C的日数大于或等于75天的地区,其幼儿园、养老院、中小学校、医疗机构等建筑宜采用集中采暖。
3.集中采暖室内计算参数(1 )民用建筑的主要房间,严寒和寒冷地区的主要房间应采用18 一24 ℃,夏热冬冷地区的主要房间应采用16 一22 ℃,设置值班供暖房间不宜低于5℃:辐射供暖室内设计温度宜降低2℃.(2 )工业建筑的工作地点,宜采用:轻作业,18 一21 ℃;中作业,16 一18 ℃;重作业,14 一16 ℃;过重作业,12 一14 ℃;(3 )辅助建筑物及辅助用室,不应低于下列数值:浴室、更衣室,25 ℃;办公室、休息室、食堂,18 ℃;盥洗室、厕所12℃。
(二)热水采暖系统1.热水采暖系统分类(1)按热水在系统内循环的动力可分为重力循环(自然循环)和机械循环两种。
重力循环热水采暖系统不需电力,但作用半径小。
只适合用于半径不大于50m,3层以下的小型建筑,如图5—1所示。
暖通空调复习知识点第一章1.采暖通风与空气调节的含义:采暖,指向建筑物供给热量,保持室内一定温度。
通风,利用室外空气来置换建筑物内的空气以改善室内空气品质。
空气调节:对某一房间或空间内的温度、湿度、洁净程度和空气流动速度等进行调节与控制,并提供足够量的新鲜空气。
2.采暖通风与空气调节系统的工作原理:任务,向室内提供冷量和热量,并稀释室内的污染物,以保证室内具有适宜的舒适环境和良好的空气品质。
工作原理,当室内得到热量或失去热量时,则从室内取出热量或向室内补充热量,使进出房间的热量相等,即达到热平衡,从而使室内保持一定的温度;或使进出房间的湿量平衡,以使室内保持一定的湿度;或从室内排除污染空气,同时补入等量的室外清洁空气,即达到空气平衡。
第二章1冷负荷、热负荷与湿负荷:冷负荷,为了保持建筑物的热湿环境,在单位时间内需向房间供应的冷量称为冷负荷。
热负荷,为了补偿房间失热在单位时间内需向房间供应的热量。
湿负荷,威客维持房间相对湿度,在单位时间内需向房间除去的湿量。
2.室内外空气计算参数1)夏季空调室外计算干球温度:取夏季室外空气历年平均不保证50h的干球温度夏季空调室外计算湿球温度:取室外空气历年平均不保证50h的湿球温度。
2)夏季空调室外计算日平均温度:取历年平均不保证5天的日平均温度。
夏季空调室外机算逐时温度:3)冬季空调室外计算温度:采用历年平均不保证一天的日平均温度。
冬季空调室外相对湿度:采用累年最冷月平均相对湿度。
4)采暖室外计算温度:取冬季历年平均不保证5天的日平均的温度冬季通风室外计算温度:取累年最冷月的平均温度。
5)夏季通风室外计算温度:取历年最热月14时的月平均温度的平均值。
夏季通风室外计算相对湿度:取历年最热月14时的月平均相对湿度的平均值。
3.得热量与冷负荷的区别与练习:得热量指某一时刻由室内和室外热源进入房间的热量总和.冷负荷是维持室温恒定,在某一时刻应从室内除去的热量,瞬时的热量中以对流方式传递的显热得热和潜热得热部分,直接散发到房间的空气中,立刻构成间瞬时冷负荷,以辐射得热方式传递的得热量,首先为围护结构和室内物体所吸收并贮存其中,当围护结构和室内物体表面温度高于室内温度后,所贮存热量以对流方式放出,形成冷负荷。
第5章 辐射采暖与辐射供冷5.1 定义与分类华北电力大学-荆有印5.1.1 辐射采暖(供冷)定义主要依靠供热(冷)部件与围护结构内表面之间的辐射换热向房间供热(冷)的采暖(供冷)方式称为辐射采暖(供冷)。
辐射采暖与对流采暖的主要区别:辐射采暖时,房间各围护结构内表面(包括供热部件表面)的平均温度m s t .高于室内空气温度R t ,即m s t .> R t对流采暖时,m s t .< R t 。
通常称辐射采暖的供热部件为采暖辐射板。
辐射供冷时,房间各围护结构内表面(包括供冷部件表面)的平均温度m s t .低于室内空气温度R t ,即m s t .<R t5.1.2 辐射板的分类1.按与建筑物的结合关系埋管式辐射板:将通冷、热媒(冷冻水或热水)的金属管或塑料管埋在建筑结构内,与其合为一体,如图5-1(a);风道式辐射板:利用建筑结构内的连贯空腔输送热媒(热空气等)向室内供热,如图5-l(b)。
图5-1 与建筑结构结合的辐射采暖板(整体式)(a)埋管式 (b)风道式l-防水层 2-水泥找平层 3-保温层 4-采暖辐射板5-钢筋混凝土板 6-加热管(流通热媒的钢管) 7-抹灰层贴附式辐射板:将辐射板贴附于建筑结构表面,如图5-2所示。
单体式:由加热管1、挡板2、辐射板3(或5)和隔热层4制成的金属辐射板。
如图5-3所示。
单体式辐射板还可串联成带状辐射板吊在顶棚下,挂在墙上或柱上,如图5-4。
吊棚式辐射板:将通热媒(或冷媒)的管道4、隔热层3和装饰孔板5构成的辐射面板用吊钩挂在房间钢筋混凝土顶板2之下,如图5-5所示。
这种辐射板也常用于辐射供冷。
2.采暖辐射板按其位置5.1.3 辐射采暖的特点1.辐射供暖比对流供暖舒适辐射采暖同对流采暖相比,↑围护结构内表面温度 (R m s t t .),创造了对人体有利的热环境,↓人体向围护结构内表面的辐射放热量,热舒适度增加。
辐射采暖同对流采暖相比,↑辐射换热的比例,但仍存在对流换热。
↑辐射换热比例=f(热媒的温度、辐射热表面的位置)各种辐射采暖方式的辐射放热量比例:顶面式70%-75%;地面式30%-40%;墙面式30%-60%2.辐射采暖时沿房间高度方向温度比较均匀,温度梯度小,房间无效热损失减少,节省采暖能耗。
图5-8给出不同采暖方式下沿高度方向室内温度的变化。
比较条件:以房间高h 为1.5m 处,空气温度R t 为18℃。
从图上可看出:⑴热风采暖时(曲线1),沿高度方向温度变化最大,房间上部区域温度偏高,工作区温度偏低。
⑵采用辐射采暖(曲线3和4),特别是地面辐射采暖(曲线4)时,工作区温度较高,地面附近温度升高,有利于改善人的舒适度。
⑶设计辐射采暖时相对于对流采暖时规定的房间平均温度可低1-3℃,使人体对流放热量↑,人的舒适感↑,并↓房间上部温度升高增加的无效热损失。
因此辐射采暖可节省采暖能耗。
图5-8 不同采暖方式下沿房间高度室内温度的变化1-热风采暖 2-窗下散热器采暖3-顶面辐射采暖 4-地面辐射采暖3.辐射供暖对流散热量少,室内气流速度低,避免了尘土飞扬,卫生条件好。
4.辐射供暖出投资大。
5.2 辐射采暖系统5.2.1 辐射采暖系统的热媒可用:热水、蒸汽、空气和电。
1.用热水作热媒温升慢,混凝土板不易出现裂缝;可以采用集中质调节。
2.蒸汽作热媒温升快,混凝土板易出现裂缝;不能采用集中质调节。
混凝土板热惰性大,与蒸汽迅速加热房间的特点不相适应。
3.用热空气作热媒将墙板或楼板内的空腔作风道,使建筑结构厚度要增加。
4.用电热媒用电加热的辐射板,具有许多优越性,板面温度容易控制,调节方便,但要消耗高品位电能。
5.2.2 热水辐射采暖系统1.采暖辐射板的加热管采暖辐射板加热管的型式与采暖辐射板的位置、尺寸及类型有关。
⑴窗下辐射板加热管如图5-9所示。
图5-9 窗下采暖辐射板的加热管(a)蛇型管 (b)排管⑵踢脚板式采暖辐射板加热管一般采用图5-10所示的U形加热管。
图5-10 踢脚板式采暖辐射板(a)侧视图 (b)正视图⑶墙面采暖辐射板加热管如图5-11所示,(a)为用于带闭合管单管系统;(b)用于双管系统;(c)用于垂直双线系统。
图5-11 墙面采暖辐射板的加热管(a)用于带跨越管的单管系统 (b)用于双管系统;(c)用于垂直双线系统⑷地面采暖辐射板加热管如图5-12所示,(a)平行排管式;(b)蛇形排管式;(c)和蛇形盘管式。
加热管可采用铝塑复合管等热塑性管材,埋设部分无接头,避免了渗漏之忧。
图5-12 地面采暖辐射板的加热管(a)平行排管式 (b)蛇形排管式 (c)蛇形盘管式埋设方案见图5-13。
图5-13 地面采暖辐射板中铝塑复合管的设置l-面层 2-混凝土 3-加热管 4-锚固卡钉5-隔热层和防水层 6-楼板 7-侧面隔热层与建筑结构结合或贴附的顶面采暖辐射板的加热管与地面采暖辐射板类似。
⑸单体悬挂式金属采暖辐射板加热管如图5-14所示。
图中尺寸a、b、c分别为辐射板的长度、高度和厚度。
图5-14 单体悬挂式辐射板的加热管(a)加热管为蛇形管,波形辐射屏 (b)加热管为排管,平面辐射屏l-加热管 2-辐射屏 3-隔热材料2.辐射采暖系统设计要点⑴系统型式热水辐射采暖系统:上供式或下供式,单管或双管系统。
①窗下辐射板可采用单管系统、双管系统或双线系统,如图5-11。
②地面辐射板、顶面辐射板、地面-顶面辐射板应采用双管系统,以利于调节和控制。
a.地面-顶面辐射板如图5-15所示,采用下供上回式双管系统中的辐射板与管路连接方式。
图5-15 下供上回双管系统中的地面-顶面采暖辐射板1-地面-顶面采暖辐射板 2-供水立管 3一回水立管4-关闭调节阀 5-放水阀辐射板1并联于供水立管2和回水立管3之间,可用阀门4独立地关闭,用放水阀5放空和冲洗。
b.墙面采暖辐射板可按图5-11的型式采用单管、双管或双线系统。
可只在建筑物的个别房间(例如公用建筑的进厅)装设混凝土辐射板。
如安装窗下辐射板,可连到供水管上;如安装顶面、地面辐射板,可连到回水管上。
如图5-16所示。
图5-16地面采暖辐射板与回水干管的连接 l-地面采暖辐射板 2-集气罐 3-温度计4-阀门 5-回热源的回水干管 6-来自采暖系统的回水于管 7-旁通管上的调节阀 8-放水阀3.辐射板水平安装时,其加热管内的水流速不应小于0.25m/s ,以便排气。
应设放气阀和放水阀。
4.采暖辐射板作为末端装置,其阻力损失比散热器大得多,且不同辐射板阻力损失差别较大,因此在一个采暖系统中宜采用同类辐射板,否则应有可靠的调节措施及调节性能好的阀门调节流量。
5.3 辐射采暖系统的设计计算5.3.1 辐射板的表面温度混凝土辐射板的表面温度t s 与加热管的管径d 、管间距s 、管子埋设厚度h 、混凝土的导热系数λ、热媒温度t hm 和房间温度t R 等有关,即) , , , , ,(R hm s t t h s d f t λ= (5-3)一般采用铝塑复合管等热塑管,其管径规格为12/16、16/20、20/25(内径/外径)等,在给定R hm t t d , , ,λ的数值后,辐射板表面温度 ) , (h s f t s =。
s 越小,h 越大,板面温度越均匀,但造价越高。
⑴地面辐射板加热管周围温度分布地面辐射板在每一加热管周围的混凝土块内温度分布,如图5-17所示,图中实线为等温线,虚线表示热流。
①热流线起始于加热管,终止于辐射板表面。
沿不同的热流方向混凝土的热阻是变化的,使得辐射板表面是不等温面。
,两相邻加热管②加热管管顶所对应的混凝土表面温度最高,为t之间(距离s/2处)的混凝土表面温度最低,为t。
s/2图5-17 两面放热的采暖辐射板中的温度场和板表面温度的变化1-地面-顶面混凝土辐射板 2-加热管 3-等温线 4-热流线⑵地面辐射板沿水的流程混凝土表面温度分布图5-18所示。
图5-18 地面采暖辐射板表面温度的变化(a)平行排管式 (b)蛇形排管式 (c)蛇形盘管式t --地面表面平均温度的变化范围。
图中s图(a)平行排管式:用单根管道平排成蛇形,辐射板表面平均温度沿水的流程逐步均匀降低;图(b)蛇形排管式:用供水管和回水管并列平排成蛇形,辐射板表面温度在小面积上波动大,平均温度分布较均匀;图(b)蛇形盘管式:供水管和回水管并列盘成螺旋形,辐射板表面平均温度也是沿水的流程波动的。
混凝土辐射板表面的平均温度是计算辐射采暖的基本数据,辐射板表面最高允许平均温度应根据卫生要求、人的热舒适性条件和房间的用途来确定。
对不同采暖辐射板,各房间的最高允许平均温度:✧ 对地面采暖辐射板托儿所、幼儿园 24℃住宅 24℃厂房 26℃人员长期停留场所 26℃人员短期停留场所 30℃卫生间 31℃✧ 对顶面采暖辐射板层高 2.5-2.8m 28℃2.9-3.0m 30℃3.1-3.4m 33℃3.5-6m 36℃✧ 对墙面采暖辐射板离地面高度 <1m 95℃l-3.5m 45℃>3.5m 不规定顶面辐射板温度过高,使人头部不适;地面辐射板温度过高,时间长久之后,人体也会不适。
地面采暖辐射板表面的平均温度还应受地面覆盖层最高允许温度限制。
例如:镶木地板采用铝塑复合管辐射板时,最高允许温度为27℃。
5.3.2 盘管的水力计算1.铝塑复合管的沿程比摩阻Rdv R 22λρ= 式中 λ--沿程阻力系数,可由下式计算:Kd K d b b i p i 7.3lg1Re lg 7.3lg )2(312.125.0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+=λ b--水的流动相似系数;K--管子的当量粗糙度,m ;对铝塑管:K =1×10-5m ; Re p --实际的雷诺数; d i --铝塑管的内径,m 。
热媒温度为80℃时,铝塑管的比摩阻R 值可查附录5-1“铝塑管的水力计算表”。
如热媒平均温度不等于80℃时,由附录5-1查出的比摩阻R 需用下式进行修正:R R t α= (5-8)式中 R t --热媒在计算温度和流量M下的比摩阻,Pa/m ; R--用M查附录5-1得到的比摩阻,Pa/m ; α--比摩阻修正系数,查表5-1。
2.管径计算铝塑管的材质和制造工艺与钢管不同。
在进行水力计算时应考虑管子的管径及壁厚的制造偏差。
用下式来确定管子的计算直径(内径):)242(5.0s s d d d e e i ∆--∆+= (5-9) 式中 d e --铝塑管外径,m ;Δd e --铝塑管外径的允许误差,m ; s--铝塑管壁厚,m ;Δs--铝塑管壁厚的允许误差,m 。
3.局部阻力损失铝塑管所有的局部阻力系数可由附录5-2确定。
5.3.3 地面辐射板供热量的计算地面采暖辐射板的供热量与热媒的温度、流量,加热管的管径、材质、间距、位置、盘管型式,混凝土的导热系数、厚度,采暖辐射板表面的温度及其分布、背部材料的导热系数、厚度等许多因素有关。