电动力学重点知识总结(期末复习必备)
- 格式:doc
- 大小:548.50 KB
- 文档页数:8
电动力学重点的知识地总结电动力学是物理学的一个分支,主要研究带电粒子受力和电磁场的相互作用。
以下是电动力学的重点知识总结,供期末复习必备。
1.库仑定律库仑定律描述了两个电荷之间的相互作用力,它与电荷之间的距离成反比,与电荷的大小成正比。
库仑定律可以表示为:F=k*(q1*q2)/r^2其中,F是两个电荷之间的相互作用力,k是库仑常数,q1和q2是两个电荷的大小,r是两个电荷之间的距离。
2.电场电场是电荷周围空间的属性,描述了电荷对其他电荷施加的力的结果。
电场可以通过电场强度来描述,表示为E。
电场强度的大小是电场力对单位正电荷的大小。
电场强度的方向指向力的方向,因为正电荷会受到力的作用向电场强度的方向移动,而负电荷则相反。
3.电场线和等势线电场线是描述电场分布的曲线,它是指电场强度方向的切线。
电场线的特点是从正电荷发出,朝着负电荷流动,并且彼此之间不会交叉。
等势线是与电场线垂直的曲线,它表示了电势相同的点的集合。
4.电势能电势能是指电荷由于存在于电场中而具有的能量。
电荷在电场中移动时会改变其电势能。
电场中的电势能与电荷的位置和电势有关。
5.电势差和电势电势差是指单位正电荷从一个点移动到另一个点时电场力所做的功。
电势差可以通过下式计算:∆V = - ∫ E * dl其中,∆V是电势差,E是电场强度,dl是电场强度方向的位移。
电势是电势差的比例,可以表示为V = ∆V / q,其中V是电势,q是电荷大小。
电势是标量,单位为伏特(Volt)。
6.静电场中的电势对于一个静电场中的电势,可以通过电场强度的分布来计算。
电势的分布可以通过库仑定律计算。
对于一个点电荷,其电势可以表示为:V=k*q/r7.平行板电容器和电容平行板电容器是由两个平行的金属板组成的,中间有绝缘介质隔开。
在平行板电容器中,当两个电容板分别带有正负电荷时,会形成电场,电场的强度在电容器中是均匀的。
电容是指在一定电势差下,存储在平行板电容器中的电荷量的比例,可以表示为C = q / V,其中C是电容,q是电荷量,V是电势差。
一1.静电场的基本方程#微分形式:积分形式:物理意义:反映电荷激发电场及电场内部联系的规律性 物理图像:电荷是电场的源,静电场是有源无旋场2.静磁场的基本方程#微分形式 积分形式反映静磁场为无源有旋场,磁力线总闭合。
它的激发源仍然是运动的电荷。
注意:静电场可单独存在,稳恒电流磁场不能单独存在(永磁体磁场可以单独存在,且没有宏观静电场)。
#电荷守恒实验定律:#稳恒电流: ,*#3.真空中的麦克斯韦方程组0,E E ρε∇⨯=∇⋅=()010LSVQE dl E dS x dV ρεε''⋅=⋅==⎰⎰⎰ , 0J tρ∂∇⋅+=∂00LSB dl I B d S μ⋅=⋅=⎰⎰, 00B J B μ∇⨯=∇⋅=,0J ∇⋅=21(-)0n J J ⋅=揭示了电磁场内部的矛盾和运动,即电荷激发电场,时变电磁场相互激发。
微分形式反映点与点之间场的联系,积分方程反映场的局域特性。
*真空中位移电流,实质上是电场的变化率*#4.介质中的麦克斯韦方程组1)介质中普适的电磁场基本方程,可用于任意介质,当 ,回到真空情况。
2)12个未知量,6个独立方程,求解必须给出 与 , 与 的关系。
#5.1)边值关系一般表达式 2)理想介质边值关系表达式6.电磁场能量守恒公式D J t D ρ∂BE =-∂H =+∂∇⋅=⋅B =0==P M H B E D)(00M H B P E D+=+=με()()⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅ασ12121212ˆ0ˆ0)(ˆ)(ˆH H nE E nB B nD D n ()()⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅0ˆ0ˆ0) (ˆ0)(ˆ12121212H H nE E nB B nD D nDE J tε∂=∂二1.静电场的标势#静电势:电势差:#2. 电势满足的方程泊松方程(适用于均匀介质):拉普拉斯方程(适用于无自由电荷分布的均匀介质):3. 静电势的边值关系#1) 两介质分界面2)导体表面上的边值关系*4. 静电场的能量1)一般方程:能量密度:2)只适合于静电场情况。
第一章 电磁现象的普遍规律§1.1 电荷与电场1、库仑定律(1)库仑定律如图1-1-1所示,真空中静止电荷'Q 对另一个静止电荷Q 的作用力F 为()'3''041r r rr Q Q F --=πε (1.1.1)式中0ε是真空介电常数。
(2)电场强度E静止的点电荷'Q 在真空中所产生的电场强度E为()'3''41r r r r Q E --=πε (1.1.2)(3)电场的叠加原理N 个分立的点电荷在r 处产生的场强为()'13'0'4iNi i i r r r r Q E --=∑=πε (1.1.3)体积V 内的体电荷分布()'rρ所产生的场强为()()'3'''041r r r r dV r E V--=⎰ρπε (1.1.4)式中'r 为源点的坐标,r为场点的坐标。
2、高斯定理和电场的散度高斯定理:电场强度E穿出封闭曲面S 的总电通量等于S 内的电荷的代数和)(∑ii Q 除以0ε。
用公式表示为∑⎰=⋅iiSQS d E 01ε (分离电荷情形) (1.1.5)或⎰⎰=⋅VSdV S d E ρε01(电荷连续分布情形) (1.1.6)其中V 为S 所包住的体积,S d为S 上的面元,其方向是外法线方向。
应用积分变换的高斯公式⎰⎰⋅∇=⋅VSdV E S d E(1.1.7)由(1.1.6)式可得静电场的散度为ρε01=⋅∇E 3. 静电场的旋度由库仑定律可推得静电场E的环量为0=⋅⎰Ll d E(1.1.8)应用积分变换的斯托克斯公式⎰⎰⋅⨯∇=⋅SLS d E l d E从(1.1.8)式得出静电场的旋度为0=⨯∇E(1.1.9)§1.2 电流和磁场1、电荷守恒定律不与外界交换电荷的系统,其电荷的代数和不随时间变化。
对于体积为V ,边界面为S 的有限区域内,有⎰⎰-=⋅V S dV dtdS d J ρ (1.2.1) 或0=∂∂+⋅∇tJ ρ(1.2.2)这就是电荷守恒定律的数学表达式。
电动力学重点知识总结(期末复习必备)电动力学重点知识总结(期末复习必备)电动力学是物理学的重要分支之一,研究电荷之间相互作用导致的电场和磁场的规律。
在这篇文章中,我们将整理电动力学的重点知识,以帮助大家进行期末复习。
一、库仑定律库仑定律是描述电荷之间相互作用的基本定律。
根据库仑定律,电荷之间的力与它们的电量大小和距离的平方成正比。
即$$ F = k\frac{q_1q_2}{r^2} $$其中$F$为电荷之间的力,$q_1$和$q_2$分别为两个电荷的电量,$r$为它们之间的距离,$k$为库仑常数。
二、电场电场是描述电荷对周围空间产生影响的物理量。
任何一个电荷在其周围都会产生一个电场,其他电荷受到这个电场的力作用。
1. 电场强度电场强度$E$定义为单位正电荷所受到的电场力。
即$$ E =\frac{F}{q} $$电场强度的方向与电场力方向相同。
2. 电荷在电场中的受力当一个电荷$q$在电场中时,它受到的电场力$F$为$F = qE$,其中$E$为电场强度。
3. 电场线电场线是一种用于表示电场分布的图形。
电场线从正电荷发出,或者进入负电荷。
电场线的密度表示电场强度大小,电场线越密集,电场强度越大。
三、高斯定律高斯定律是用于计算电场分布的重要工具。
它描述了电场与通过闭合曲面的电通量之间的关系。
1. 电通量电通量是电场通过曲面的总电场线数。
电通量的大小等于电场强度与曲面垂直方向的投影之积。
电通量的计算公式为$$ \Phi = \int \mathbf{E} \cdot \mathbf{dA} $$其中$\mathbf{E}$为电场强度,$\mathbf{dA}$为曲面元。
2. 高斯定律高斯定律表示电通量与包围曲面内所有电荷之和的比例关系。
即$$ \Phi = \frac{Q_{\text{内}}}{\epsilon_0} $$其中$\Phi$为通过曲面的电通量,$Q_{\text{内}}$为曲面内的总电荷,$\epsilon_0$为真空介电常数。
电动力学知识点归纳电动力学是物理学的一个分支,研究电荷和电流以及它们与电场和磁场之间的相互作用。
电动力学是现代工程学和科学研究的基础,也是解释电子、电力、磁性材料、光学和无线通信等现象的关键。
以下是电动力学的几个重要知识点的归纳:1.库仑定律:描述了两个电荷之间的作用力,称为电场力。
它表明,两个电荷之间的作用力正比于它们的电荷量的乘积,反比于它们之间距离的平方。
2.电场:由电荷产生的电场是描述电荷周围的空间的力场。
电场可以通过电场线来可视化,箭头指向正电荷,箭头离开负电荷,线的密度表示电场的强度。
3.电势能和电势差:电势能是一个电荷在电场中的能量,它与电荷量、电场强度和距离之间都有关系。
电势差是沿电场中两点之间的电势能变化,用来描述电荷从一个点移动到另一个点时的能量变化。
4.电流和电阻:电流是电荷在单位时间内通过导体的量,通常用安培(A)来衡量。
电阻是导体对电流的阻碍,其大小与导体材料的特性有关。
欧姆定律描述了电流、电势差和电阻之间的关系,即电流等于电势差与电阻的比值。
5.麦克斯韦方程组:麦克斯韦方程组是描述电磁场行为的一组方程,它们是电动力学的核心。
方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和高斯磁定律。
这些方程描述了电荷和电流如何产生电场和磁场,以及电场和磁场之间如何相互作用。
6.磁场:磁场是由电流产生的,可以通过磁感线来可视化,箭头指向磁南极,箭头离开磁北极。
磁场对运动带电粒子施以洛伦兹力,使其偏离原来的轨道。
7.麦克斯韦-安培定理:描述了电流生成的磁场的环路积分等于通过环路的总电流的情况。
它建立了电流与磁场之间的关系。
8.电感和电容:电感是储存电磁能的元件,通过存储磁场的能量来抵抗电流变化。
电容是储存电荷的元件,通过储存电场的能量来抵抗电压变化。
以上只是电动力学领域中的一些重要概念和原理,还有很多细节和衍生知识需要进一步学习和理解。
电动力学的应用也非常广泛,例如电路设计、电子设备制造、电力输送、无线通信等领域都离不开电动力学的原理。
矢量分析重点内容:三矢量的混合积.叉乘及顺序;nabla算和矢量性; 拉普拉斯算符;各种矢量公式的推导;符和梯度.散度.旋度的定义;nabla算符的微分特度场和旋度场的重要性质。
电磁场的普遍规律重点内容:电场磁场的定义,以及散度旋度性质的推导;位移电流;各种情况下的麦克斯韦方程组(必考);边界条件;电荷守恒定律;本构关系;能量守恒定律, 能流密度,能量密度。
重点内容:静电场的散度旋度方程,和边界条件;静电势的泊松方程和拉普拉斯方程,及边界条件(分电介质和导体情况);唯一性定理所对应的两种边界条件;本征函数展开法的物理根据,和用此法求解电势(必考);镜像法求解电势(必考)。
重点内容:重点掌握概念和定义,如下。
静磁场的散度旋度方程,和边界条件;矢势的泊松方程,及边界条件;磁标势的适用条件,方程和边界条件电磁波传播重点内容:从麦克斯韦方程组推导波动方程,以及波动方程的物理意义;如何从波动方程得到Helmholtz 方程(Helmholtz方程要配合V • D = 0和V • B = 0—起使用);电磁波在均匀的各向同性且无衰减介质中的色散关系;如何通过= 0和V B = 0 (横波条件)得出电磁波是否为TE 波和TM波;求得电场后,如何通过法拉第关系得到磁场H,以及电磁波的手性问题; 介质的折射率和阻抗的定义;电磁波的偏振;斯涅尔定律的物理意义;从界面处切向波矢守恒的角度讨论全反射和倏逝波问题;菲涅耳公式中的TE (s波)和TM (p波)如何区分,以及界面处入射光反射和透射光的偏振示意图(菲涅耳公式不用记);Brewster角;导体的趋肤效应;完美金属边界条件;从驻波的角度得到谐振腔的本征振荡模式满足的条件,并理解其物理意义,以及从驻波条件得出谐振腔的所允许的】振荡频率;从驻波的角度得到波导的本征传播模式满足的条件,并理解其物理意义,以及从驻波条件理解波导的最低截止频率及意义(即最低传播频率);波导内传播模式的偏振特点。
最新电动力学重点知识总结电动力学是物理学的一个重要分支,研究带电粒子在电场和磁场中的运动规律及其相互作用。
以下是最新的电动力学重点知识总结:1.库仑定律:库仑定律描述了两个点电荷之间的电荷间相互作用力的大小和方向。
它以电荷的量及其相对距离为参数,公式为F=k*q1*q2/r^2,其中F是作用力,q1和q2分别是两个电荷的电量,r是两个电荷之间的距离,k是库仑常数。
2.电场强度:电场强度描述了空间中各点受电场力的大小和方向。
电场强度与点电荷的大小和距离成反比,可以用公式E=k*q/r^2表示,其中E是电场强度,q是点电荷的电量,r是点电荷与观察点之间的距离。
3. 电通量:电通量是电场线通过单位面积的数量。
如果一个闭合曲面上的电通量为零,那么在该曲面上没有净电荷。
电通量可以用公式Φ=E*A*cosθ表示,其中Φ是电通量,E是电场强度,A是曲面的面积,θ是电场线与曲面法线之间的夹角。
4.高斯定律:高斯定律是描述电场的一个基本定律,它表明电场的总通量与包围该电场的闭合曲面上的净电荷成正比。
数学表达式为Φ=Q/ε₀,其中Φ是闭合曲面上的电通量,Q是闭合曲面内的净电荷,ε₀是真空的介电常数。
5.电势能:电荷在电场中具有电势能。
电势能是一个量值,并且仅依赖于电荷和它在电场中的位置。
电势能可以用公式U=q*V表示,其中U是电势能,q是电荷的电量,V是电势。
6. 电势差:电势差是单位正电荷从一个点到另一个点的电势能的差值,也可以看作是电场力对单位正电荷所做的功。
电势差可以用公式ΔV=∫E·dl来计算,其中ΔV是电势差,∫E·dl是电场强度在路径上的线积分。
7.电容器:电容器是一种可以存储电荷的装置。
它由两个导体板和介质组成,其中导体板上的电荷存储在电场中。
电容器的电容可以用公式C=Q/V表示,其中C是电容,Q是电荷的量,V是电势差。
8.电流:电流是单位时间内通过导体横截面的电荷量。
电流可以用公式I=ΔQ/Δt表示,其中I是电流,ΔQ是通过导体横截面的电荷量,Δt是时间。
电动力学_知识点总结电动力学是物理学的一个重要分支,研究电荷、电场、电流、磁场等现象和它们之间的相互作用。
下面是电动力学的一些重要知识点的总结。
1.库仑定律:库仑定律描述了两个点电荷之间的力,它与它们之间的距离成反比,与它们的电荷量成正比。
该定律为电场的基础,用数学公式表示为F=k(q1*q2)/r^2,其中F是电荷之间的力,k是库仑常数,q1和q2是电荷量,r是两个电荷之间的距离。
2.电场:电场是指任何点周围的电荷所受到的力的效果。
电场可以通过电场线来表示,电场线从正电荷出发,指向负电荷。
电场线的密度表示了电场的强度,而电场线的形状表示了电场的方向。
3.电势能:电势能是指一个电荷在电场中具有的能量。
电荷在电场中移动时,会因电场做功而改变其势能。
电势能可以表示为U=qV,其中U是电势能,q是电荷量,V是电势。
4.电势:电势是一种描述电场中电场强度的物理量。
电势可以通过电势差来表示,电势差是指两个点之间的电势差异。
电势差可以表示为ΔV=W/q,其中ΔV是电势差,W是从一个点到另一个点所做的功,q是电荷量。
5.高斯定理:高斯定理是描述电场和电荷之间关系的一个重要定律。
它表明,穿过一个闭合曲面的电场通量等于该曲面内部的总电荷除以真空介电常数。
数学表达式为Φ=∮E*dA=Q/ε0,其中Φ是电场通量,E是电场强度,dA是曲面的微元面积,Q是曲面内的电荷,ε0是真空介电常数。
6. 安培定律:安培定律是描述电流和磁场之间关系的一个重要定律。
它表明,通过一个闭合回路的磁场强度等于该回路内部的总电流除以真空中的磁导率。
数学表达式为∮B * dl = μ0I,其中∮B * dl是磁通量,B是磁场强度,dl是回路的微元长度,I是回路内的电流,μ0是真空中的磁导率。
7. 法拉第定律:法拉第定律描述了电磁感应现象。
它表明,当一个导体中的磁通量发生变化时,该导体内产生的电动势与磁通量的变化率成正比。
数学表达式为ε = -dΦ/dt,其中ε是产生的电动势,dΦ是磁通量的变化量,dt是时间的微元。
电动力学重点知识总结电动力学是物理学中的一个重要分支,主要研究电荷和电场、电流和磁场之间的相互作用关系。
以下是电动力学的重点知识总结。
1.静电场:静电场是指没有电流的情况下,电荷和电场之间的相互作用。
通过电场线和电势的概念,可以描述电荷的分布和电场强度的分布。
2.高斯定律:高斯定律是描述电场的一个重要定律,它表明通过一个闭合曲面的电通量等于这个曲面内的电荷。
3.电势:电势是描述电荷在电场中的势能,它是标量量,通过定义电势差和电势能,可以计算电场强度。
4.电势差:电势差是指两点之间的电势差异,用于描述电荷在电场中的势能变化。
电势差等于单位正电荷在电场中所受的力做功。
5.电场强度:电场强度是描述电场的物理量,它是一个矢量。
电场强度的方向指向电荷正电荷所受的力的方向。
6.静电力:静电力是电荷和电场之间的相互作用力,它满足库伦定律。
库伦定律表明,电荷之间的相互作用力是与电荷的大小和距离平方成反比的。
7.电容器:电容器是一种储存电荷的装置,由两个导体板和介质构成。
电容器的电容量等于装满电荷后的电压与电荷量的比值。
8.电流:电流是电荷的流动,是电荷通过导体的数量。
电流的方向是正电荷流动的方向。
9.安培定律:安培定律描述了电流和磁场之间的相互作用。
根据安培定律,电流所产生的磁场强度是与电流强度成正比的。
10.磁场:磁场是由电流产生的,它是一个矢量量。
磁场的方向可以通过安培定律的右手定则确定。
11.洛伦兹力:洛伦兹力是带电粒子在磁场中所受的力,它与电荷的速度和磁场强度有关。
洛伦兹力的方向是垂直于电流方向和磁场方向的。
12.法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化对电路中电流的影响。
根据这个定律,磁场的变化会在电路中产生感应电动势。
13.自感和互感:自感是指电流变化时导线本身所产生的感应电动势,而互感是指两个线圈之间由于磁场变化而产生的感应电动势。
14. Maxwell方程组:Maxwell方程组是电动力学的基础方程,它描述了电场和磁场的变化规律。
《电动力学》知识点归纳及典型例题分析一、知识点归纳知识点1:一般情况下,电磁场的基本方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇+∂∂=⨯∇∂∂-=⨯∇.0;;B D J t D H t B Eρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==Jρ)的自由空间(或均匀介质)的电磁场方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇∂∂=⨯∇∂∂-=⨯∇.0;0;B D t D H t B E(齐次的麦克斯韦方程组)知识点2:位移电流及与传导电流的区别。
答:我们知道恒定电流是闭合的: ()恒定电流.0=⋅∇J在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。
一般说来,在非恒定情况下,由电荷守恒定律有.0≠∂∂-=⋅∇t J ρ现在我们考虑电流激发磁场的规律:()@.0J B μ=⨯∇ 取两边散度,由于0≡⨯∇⋅∇B ,因此上式只有当0=⋅∇J 时才能成立。
在非恒定情形下,一般有0≠⋅∇J ,因而()@式与电荷守恒定律发生矛盾。
由于电荷守恒定律是精确的普遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。
把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流J 合起来构成闭合的量 ()()*,0=+⋅∇D J J 并假设位移电流D J 与电流J 一样产生磁效应,即把()@修改为 ()D J J B +=⨯∇0μ。
此式两边的散度都等于零,因而理论上就不再有矛盾。
由电荷守恒定律.0=∂∂+⋅∇tJ ρ电荷密度ρ与电场散度有关系式 .0ερ=⋅∇E 两式合起来得:.00=⎪⎭⎫ ⎝⎛∂∂+⋅∇t E J ε与()*式比较可得D J 的一个可能表示式.0tEJ D ∂∂=ε 位移电流与传导电流有何区别:位移电流本质上并不是电荷的流动,而是电场的变化。
它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。
而传导电流实际上是电荷的流动而产生的。
知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。
一
1.静电场的基本方程
#微分形式:
积分形式:
物理意义:反映电荷激发电场及电场内部联系的规律性 物理图像:电荷是电场的源,静电场是有源无旋场
2.静磁场的基本方程
#微分形式 积分形式
反映静磁场为无源有旋场,磁力线总闭合。
它的激发源仍然是运动的电荷。
注意:静电场可单独存在,稳恒电流磁场不能单独存在(永磁体磁场可以单独存在,且没有宏观静电场)。
#电荷守恒实验定律:
#稳恒电流: ,
*#3.真空中的麦克斯韦方程组
0,
E E ρ
ε∇⨯=∇⋅=
()0
1
0L
S
V
Q
E dl E dS x dV ρεε''
⋅=⋅=
=
⎰
⎰⎰ , 0J t
ρ
∂∇⋅+=∂00
L
S
B dl I B d S μ⋅=⋅=⎰
⎰, 00
B J B μ∇⨯=∇⋅=,0
J ∇⋅=21(-)0
n J J ⋅=
揭示了电磁场内部的矛盾和运动,即电荷激发电场,时变电磁场相互激发。
微分形式反映点与点之间场的联系,积分方程反映场的局域特性。
*真空中位移电流
,实质上是电场的变化率
*#4.介质中的麦克斯韦方程组
1)介质中普适的电磁场基本方程,可用于任意介质,当
,回到真空情况。
2)12个未知量,6个独立方程,求解必须给出 与 , 与 的关系。
#5.1)边值关系一般表达式 2)理想介质边值关系表达式
6.电磁场能量守恒公式
t D J t D ρ∂B E =-
∂∂H =+∂=∇⋅B =0==P M
H B E D
)
(00M H B P E D
+=+=με()()⎪⎪⎩⎪⎪
⎨
⎧=-⨯=-⨯=-⋅=-⋅α
σ
12121212ˆ0ˆ0)(ˆ)(ˆH H n
E E n
B B n
D D n ()()⎪⎪⎩⎪⎪
⎨
⎧=-⨯=-⨯=-⋅=-⋅0
ˆ0ˆ0) (ˆ0
)(ˆ12121212H H n
E E n
B B n
D D n
D
E J t
ε
∂=∂
二
1.
静电场的标势
#静电势:
电势差:
#2. 电势满足的方程
泊松方程(适用于均匀介质):
拉普拉斯方程(适用于无自由电荷分布的均匀介质):
3. 静电势的边值关系
#1) 两介质分界面
2)导体表面上的边值关系
*4. 静电场的能量
1)一般方程:
能量密度:
2)只适合于静电场情况。
(能量不仅分布在电荷区,而且存在于整个场中)
不是能量密度
dV
D E W ⎰∞
⋅=
211
2V
W dV ρφ=
⎰E φ
=-∇2
ρφε
∇=-
20
ϕ∇=Q
Q P P
E dl φ
φ
-=-
⋅⎰
12
w E D =⋅1
2
ρφ
5. 唯一性定理
1)均匀单一介质
区域 分布已知, 满足 。
若V 边界 已知,或V 边界上 已知,则 V
内场( 静电场)唯一确定。
2)介质分区均匀(不包含导体)
V 内 已知, 成立,给定区域 或 。
在分界面上,
或 。
区域V 内电场唯一确定。
3)均匀单一介质中有导体
导体中
,求 内的电势。
当
或 已知, 、 (或 Q 1、Q 2 )为已知,则区域 V 内电场唯一确定。
(
) 唯一性定理的意义:
1)给出了确定静电场的条件,为求电场强度指明了方向。
2)具有十分重要的实用价值。
无论采用什么方法得到解,只要该解满足泊松方程和给定边界条件,则该解就是唯一的正确解。
6.镜像法:
用假想点电荷来等效地代替导体边界面上的面电荷分布,然后用空间点电荷和等效点电荷迭加给出空间电势分布。
适用情况:
a) 所求区域有少许几个点电荷,它产生的感应电荷一般可以用假想点电荷代替。
b) 导体边界面形状比较规则,具有一定对称性。
c) 给定边界条件
ρφ2ρφε
∇=-S φS
n
φ∂∂ρ2i
ρφε∇=-S
φS
n
φ∂∂ij
ij
i j S S φφ=ij
ij
j i j
i
S S n
n
φφεε
∂∂=∂∂0E =V S φS n φ∂∂1S n φ∂∂2
S n φ
∂∂dS n Q s ⎰∂∂-=ϕε
三
#1. 稳恒电流磁场的矢势: (=0A ∇⋅
)
物理意义:(a ) 与 的关系
(b )磁通量只与曲面L 的边界有关,与曲面的具体形状无关 (c )物理意义:
沿任一闭合回路的环量代表通过由该回路为边界的任一曲面的磁通量,而每点A 无直接物理意义。
# 1) 满足的方程:
(1)稳恒电流磁场矢势满足(矢量)泊松方程
(2)与静电场中
形式相同 (3)无源有旋场
2)矢势的形式解:
3) 的解:
4) 的边值关系:
2.稳恒电流磁场的能量
已知均匀介质中总能量为 :
(1)稳恒场中: B A
=∇⨯A
L S A dl B dS
⋅=⋅⎰⎰J
A
μ-=∇2
A ε
ρ
ϕ-=∇2⎰
'
'=
V
r
V d x J A )(4
π
μB 3
()4V J x r
B dV r 'μ⨯'=π⎰A 12A A =⎰∞
⋅=dV H B W
21⎰∞
⋅=dV J A W 21
(2)电流分布在外磁场中的相互作用能:
*3.引入磁标势的条件:
引入区域为无自由电流分布的单连通域。
静磁场中可以引入磁标势:在电流为零区域引入磁标势可能非单值。
四
#1.自由空间电磁场的基本方程
2
(E 换)
#3.平面波解的形式:
(E
换)
横波特性(TEM 波):
B 与E 的关系:
#TEM 波:电场和磁场在垂直传播方向上振动的电磁波。
平面电磁波在无界空间中传播时就是典型的TEM 波。
*波导管传播超短波(微波)(一般把波长 的波,称为超短波,即微波。
)⎰⋅=dV J A e )(
i W ⎰⋅=dV J A e )( ⎰=⋅L
l d H 0
00
B
E t D
H t
D B ∂∇⨯=-
∂∂∇⨯=
∂∇⋅=∇⋅=()()t x k i e
E t x E ω-⋅= 0,0
01με=c 0=⋅=⋅B k E k
周期
ω
π21=
=f T 波长
k
π
λ2=
E
k B
⨯=ω
a 2≤λ
五
#1. 规范变换
规范:给定一组),(ϕA
称为一种规范;
规范变换:不同规范之间满足的变换关系称为规范变换。
两种规范变换关系:A A t
ψψϕϕ∂''=+∇=-
∂, #2. 规范不变性:在规范变换下物理规律满足的动力学方程保持不变的性质(在微观世
界是一条物理学基本原理)。
规范场:具有规范不变性的场称为规范场。
3. 库仑规范
*#规范条件:
ψ满足的方程: 4. 洛伦兹规范
*#规范条件:
ψ满足的方程: *A B ⨯∇=,t
A
E ∂∂--∇=
ϕ
#5. 洛伦兹规范下的达方程:
(1)反映了电磁场的波动性
(2)两个方程具有高度的对称性且相互独立
*#6. 连续电荷分布在空间产生的电势:
=⋅∇A 02
=∇
ψ0
12=∂∂+⋅∇t
c A ϕ
012
222
=∂∂-∇t
c ψ
ψ2222
022
22011A
A J c t
c t
ϕρμϕε∂∂∇-=-∇-=-
∂∂0(,)
(,)4V
r x t c x t dV r
ρϕπε'-'
=⎰
#7.推迟势:势函数在空间 点, 时刻的值依赖于 时刻的电荷、电流分布,
即空间势的建立与场源相比推迟了。
具有这样特性的势称为推迟势。
*物理意义:电磁相互作用需要时间 六
*#1. 狭义相对论的基本原理
(1)相对性原理:一切物理定律在所有的惯性系中都具有相同形式;一切惯性系都等价,不存在特殊的绝对的惯性系。
(2)光速不变原理:真空中光速相对任何惯性系沿任何一个方向大小恒为C ,且与光源运动速度无关。
*#2. 洛伦兹变换:
正变换:
逆变换:
#3. 同时的相对性:不同的惯性系时间不再统一,否定了绝对时空
x
t c r
t -c
r 2
2/1c v vt x x --=
'2
2
2/1'c
v c vx t t --=
y y ='y y ='z z ='z
z ='2
2
/1t''c
v v x x -+=
2
2
2/1x''c
v c v t t -+=。