当前位置:文档之家› 万有引力与天体运动专题复习

万有引力与天体运动专题复习

万有引力与天体运动专题复习
万有引力与天体运动专题复习

万有引力与天体运动专题复习

一、天体运动问题的处理方法

处理天体的运动问题时,一般来说建立这样的物理模型:中心天体不动,环绕天体以中心天体的球心为圆心做匀速圆周运动;环绕天体只受到的中心天体的万有引力提供环绕天体做匀速圆周运动的向心力,结合牛顿第二定律与圆周运动规律进行分析,一般来说有两个思路:一是环绕天体绕中心天体在较高轨道上做匀速圆周运动,所需要的向心力由万有引力提供,即

222r

v m r Mm G ==m ω2

r=m 2

24T πr=ma n ,二是物体绕中心天体在中心天体表面附近作近地运动,物体受到的重力近

似等于万有引力,2

R Mm

G

mg =(R 为中心天体的半径)。 例题:(2011天津)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的 A .线速度 B .角速度 C .运行周期

.向心加速度

解析:万有引力提供卫星做圆周运动的向心力,222,,R

MG

a R GM v ma R v m

R Mm G ==== 航天器在接近月球表面的轨道上飞行,R T

m R m R Mm G mg 222

24π?===代入相关公式即可,正确答案为AC 。

针对练习1:(2011浙江)为了探测X 星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1。随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2 的圆轨道上运动,此时登陆舱的质量为m 2则

A. X 星球的质量为

B. X 星球表面的重力加速度为

C. 登陆舱在与轨道上运动是的速度大小之比为

D. 登陆舱在半径为轨道上做圆周运动的周期为

解析:根据、,可得、,故A 、D 正确;登陆舱在半径为的圆轨道上运动的向心加速度,此加速度与X 星球表面的重力加速度并不相等,故C

错误;根据,得,则,故C 错误。 点评:天体作圆周运动时向心力由万有引力提供,即222r

v m r Mm G ==m ω2

r=m 2

24T πr=ma n 。式中的r 为两天

v =

ω=2T =2GM a R =2

1124GT r M π=

2

1

124T r g X π=

1r 2r 1

22

121r m r m v v =

2r 3

1

321

2r r T T =2

11121

12M ???? ??=T

r m r m G

π

2

2

222222M ???? ??=T r m r m G π211

24GT r M π=31

3

212r r T T =1r 2

1

122

114T r r a πω=

=r v m r

m 2

2

GM =r GM

v =1

221r r v v =

体中心之间的距离,V 为环绕线速度,T 为环绕周期。

由22

2r

v m r Mm G =可得:r

GM v =

r 越大,V 越小;由r m r Mm G 2

2ω=可得:3r GM =ω r 越大,ω越

小;由r T m r Mm G 2

22??

? ??=π可得:GM r

T 3

2π= r 越大,T 越大。由向ma r Mm G

=2可得:2

r GM

a =向 r 越大,a 向越小。由此可见,卫星运行轨道半径r 与该轨道上的线速度v 、角速度ω、周期T 、向心加速度a 存在着一一对应的

关系,若r 、v 、ω、T 、a 中有一个确定,则其余皆确定,与卫星的质量无关。

针对练习2:(湖南省2012年十二校联考)我国和欧盟合作正式启动伽利略卫星导航定位系统计划,这将结束美国全球卫

星定位系统(GPS) —统天下的局面.据悉,“伽利略”卫星定位系统将由30颗轨道卫星组成,卫星的轨道高度为2.4X104

km ,倾角为56°,分布在3个轨道面上,每个轨道面部署9颗工作卫星和1颗在轨备份卫星,当某颗工作卫星出现故障时可及时顶替工作.若某颗替补卫星处在略低于工作卫星的轨道上,则这颗卫星的周期和速度与工作卫星相比较,以下说法中正确的是(C)

A 、替补卫星的周期大于工作卫星的周期,速度大于工作卫星的速度

B 、替补卫星的周期大于工作卫星的周期,速度小于工作卫星的速度

C 、 替补卫星的周期小于工作卫星的周期,速度大于工作卫星的速度

D 、替补卫星的周期小于工作卫星的周期,速度小于工作卫星的速度

二、中心天体质量和密度的估算

天体作圆周运动时向心力由万有引力提供,即222r

v m r Mm G ==m ω2

r=m 224T πr=ma n 。由上式知,若能测出行星绕

中心天体运动的某些物理量,则可求出中心天体的质量,一般情况下是通过观天体卫星运动的周期T 和轨道半径r 或

天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。当卫星沿中心天体表面绕天体运行时,中心天体的密度为:ρ=

2

3GT

π

。 例题:(06北京卷)一飞船在某行星表面附近沿圆轨道绕该行星飞行。认为行星是密度均匀的球体,要确定该行星的密度,只需要测量

A.飞船的轨道半径

B.飞船的运行速度

C.飞船的运行周期

D.行星的质量 解析:本题涉及万有引力定律的应用,主要考查灵活选用公式解决物理问题的能力。万有引力提供向心力,则

2224T

r

m r Mm G π=,由于飞行器在行星表面附近飞行,其运行半径r 近似等于行星半径,所以满足M =ρπ43?

3r ,联立得:ρ=2

3GT

π

。 针对练习1:(2005年广东物理)已知万有引力常量为G ,地球半径为R ,月球与地球之间的距离为r ,同步卫星

距离地面高度h,月球绕地球运动的周期T 1,地球自转周期T 2,地球表面的重力加速度g ,某学生根据以上条件,提出

一种估算地球质量的方法:同步卫星绕地心作圆周运动,由2h Mm G =m 222

4T πh 得M=2

2

32GT h 4π (1)请判断上面的结果是否正确,并说明理由。如不正确,请给出正确的解法与结果。

(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。

解析:(1)上面的结果是错误的。地球的半径在计算中不能忽略。 正确的解法与结果是:()

2

R h Mm

G

+ = ()h R T m

+2

2

24π M=

()2

2

3

2GT R h 4+π)

(2)方法一:对月球绕地球作圆周运动由2r Mm G =2

124T r π,M=2132GT r 4π 方法二:在地面重力近似等于万有引力,由2R

Mm

G =mg ,M=G gR 2

针对练习2:(10安徽卷)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T 。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。仅利用以上数据,可以计算出

A .火星的密度和火星表面的重力加速度

B .火星的质量和火星对“萤火一号”的引力

C .火星的半径和“萤火一号”的质量

D .火星表面的重力加速度和火星对“萤火一号”的引力

解析:由于万有引力提供探测器做圆周运动的向心力,则有

2

12112()()Mm

G m R h R h T π??=+ ?+??

;2

22222()

()Mm

G m R h R h T π??=+ ?+??

,可求得火星的质量

2323

1222

124()4()R h R h M GT GT ππ++==

和火星的半径R =,根据密度公式得:333443

M M M

V R R ρππ=

==

。在火星表面的物体有2Mm G

mg R =,可得火星表面的重力加速度2GM

g R

=,故选项A 正确。 三、宇宙速度与同步卫星

人造卫星有三种宇宙速度:第一宇宙速度(环绕速度):是发射地球卫星的最小速度,也是卫星围绕地球做圆周运

动的最大运行速度,大小为7.9 km/s 。第二宇宙速度(逃逸速度):是人造卫星挣脱地球束缚而成为一颗太阳的人造小行星的最小发射速度,大小为11.2 km/s 。第三宇宙速度(脱离速度):是人造卫星挣脱太阳的束缚而成为一颗绕银河系中心运行的小恒星的最小发射速度,大小为16.7 km/s 。三个宇宙速度的大小都是以地球中心为参考系的,人造卫星的理论发射速度在7.9 km/s 到11.2 km/s 之间,在此发射速度范围内,卫星绕地球作椭圆运动,其他星球上都有各自的宇宙速度,计算方法与地球相同。

例题1:关于第一宇宙速度,下列说法正确的是( AC )

A 、它是人造地球卫星绕地球作匀速圆周运动的最大速度。

B 、它是人造地球卫星在圆形轨道上的最小运行速度。

C 、它是能使卫星绕地球运行的最小发射速度。

D 、它是人造卫星绕地球作椭圆轨道运行时在近地点的速度。 例题2:(2011北京)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的(A )

A .质量可以不同

B .轨道半径可以不同

C .轨道平面可以不同

D .速率可以不同 点评:地球轨道同步卫星有四个特点:(1)同步卫星位于赤道正上方,轨道平面与赤道平面共面;

(2)同步卫星的轨道半径一定,距离地球表面的高度一定,约36000 km ;(3)同步卫星的运行周期和地球的自转周期相同,T =24 h ,且转动方向相同;(4)所有地球轨道同步卫星的半径、线速度大小、角速度大小及周期都相同,故A 正确。

针对练习1:(2011广东)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G 。有关同步卫星,下列表述正确的是( )

A.卫星距离地面的高度为

卫星的运行速度小于第一宇宙速度

C.卫星运行时受到的向心力大小为2

Mm

G

R D.卫星运行的向心加速度小于地球表面的重力加速度 解析:根据)()2()(2

2H R T m H R Mm G +=+π,A 错,由H R v m H R Mm G +=+22

)(,B 正确,由mg H R Mm G =+2)(,C 错D 对。选BD

针对练习2:同步卫星离地球球心的距离为r ,运行速率为v 1,加速度大小为a 1,地球赤道上的物体随地球自转的

向心加速度大小为a 2,第一宇宙速度为v 2,地球半径为R 。则( B ) ① a 1:a 2=r :R

② a 1:a 2=R 2

:r 2

③ v 1:v 2=R 2

:r 2

④ r R v v 21::=

A 、①③

B 、①④

C 、②③

D 、②④

解析:此题涉及三个物体,一是同步卫星,对应物理量a 1 v 1 r ;二是近地卫星,即第一宇宙速度对应的卫星,对应物理量v 2 R ;三是地面上的物体,对应物理量a 2 R 。同步卫星和近地卫星都只受万有引力,对同步卫星有,

222r v m r Mm G =,11r GM v =

,对近地卫星有,222R v m R Mm G =R GM v =2所以,r

R

v v

=2

1故④正确。对同步卫星和地面上的物体,它们的角速度相同,由a =ω2r 知,a 1

:a 2

=r :R ,故①正确。此题易错之处是把a 2

,v 2

看成是

同一个物体所对的物理量。

四、天体运动中的变轨问题

天体运动的变轨问题涉及变轨过程和变轨前后天体的稳定运动,主要讨论天体在不同轨道上运动过程中的速度、加速度、周期等相关物理的分析与比较,解题时应注意两个关键,一是变轨过程中两轨道相切点的特点,二是天体从低轨道变轨运动到高轨道时天体的机械能增加。

例题1:(10江苏卷)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有

(A )在轨道Ⅱ上经过A 的速度小于经过B 的速度

(B )在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能 (C )在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期

(D )在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度

解析:A 为轨道Ⅱ与轨道Ⅰ的相切点,距离地心的距离相等,故卫星在A 点处所受的万有引力大小相等,都为

2r Mm G

F =,由

ma r Mm

G F ==2

知卫星从轨道Ⅱ和轨道Ⅰ上通过A 点时的加速相同故,D 错误。B 为轨道Ⅱ的近地点,A 为远地点,由开普勒定律知,在轨道Ⅱ上经过A 的速度小于经过B 的速度,故A 正确。 卫星由I 轨道变到II

轨道要减速,所以B 正确。

由的速度小于经过B 的速度。根据开普勒定律,c T

R =23

,12R R <,所以12T T <。C 正确。故正确答案为ABC 。

例题2:(10天津卷)探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比

A.轨道半径变小

B.向心加速度变小

C.线速度变小

D.角速度变小 解析:探测器变轨后在周期较小的轨道上运动,则可知探测器的轨道半径减小,A 对。

根据得,可知变轨后飞船的线速度变大,C 错;由向ma T

r m r m r V m r mM G ====222

224πωr GM v =

3

r GM

=ω,角速度变大,D 错,由2r

GM

a =

向,向心加速度增大,B 错。本题答案A 。 针对练习1:2011年11月3日凌晨,中国自行研制的神舟八号飞船与天宫一号目标飞行器在距地球343公里的轨道实现自动对接,为建设空间站迈出关键一步。神舟八号飞船与天宫一号目标飞行器在同轨道上运动,若神舟八号飞船与天宫一号目标飞行器对接,为了追上天宫一号目标飞行器,飞船可采取的办法有( B ) A.飞船加速直到追上空间站完成对接 B.飞船从原轨道减速至一个较低轨道,再加速追上空间站对接 C.飞船从原轨道加速至一个较低轨道,再减速追上空间站对接 D.无论飞船采取什么措施,均不能与空间站对接

针对练习2:(09年山东卷)2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。下列判断正确的是

A .飞船变轨前后的机械能相等

B .飞船在圆轨道上时航天员出舱前后都处于失重状态

C .飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度

D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度

解析:飞船点火变轨,前后的机械能不守恒, A 不正确。飞船在圆轨道上时万有引力来提供向心力,航天员出舱前后都处于失重状态,B 正确。飞船在此圆轨道上运动的周期90分钟小于同步卫星运动的周期24小时,根据可知,飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度,C 正确。飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,D 不正确。答案为BC 。

五、天体运动中的星系问题

天体运动中的星系问题主要有“双星”系与“多星”系。“双星”系是两颗星相距较近,它们绕着连线上的共同“中心”以相同的周期做匀速圆周运动,它们之间的万有引力提供提供做圆周运动的向心力。分析“双星”问题时,一是要确定双星运动的中心,依据卫星做圆周运动的轨道平面,求出轨道半径;二是求出卫星做圆周运动的向心力,同时要注意双星运动的特点,即双星的运动周期相等,向心力大小相等。“多星”系有指“三星”或“四星”等几种情况,其特点是星系中某个卫星在其他星球的引力共同作用下绕中心作圆周运动,同一系统中各天体间的距离不变,各星受到的向心力不一定相等,但其运动周期一定相同。在星系问题中要注意区分两个半径,即由万有引力规律求向心力时的引力半径与卫星绕中心天体做圆周运动的轨道半径。

例题:(10全国卷1)如右图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速周运动,星球A 和B 两者中心之间距离为L 。已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。引力常数为G 。

1、求两星球做圆周运动的周期。

2、在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行为的周期记为T 1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T 2。已知地球和月球

的质量分别为5.98×1024kg 和 7.35 ×1022

kg 。求T 2与T 1两者平方之比。(结果保留3位小数)

解析:⑴A 和B 绕O 做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 的向心力相等。且A 和B 和O 始终共线,说明A 和B 有相同的角速度和周期。因此有

R M r m 22ωω=,L R r =+,连立解得L M m m R +=

,L M

m M

r +=

对A 根据牛顿第二定律和万有引力定律得L m M M T m L GMm +=22

)2(π 化简得 )

(23m M G L T +=π 2T π

ω

=

⑵将地月看成双星,由⑴得)

(23

1m M G L T +=π

将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得

L T m L GMm 2

2

)2(π=

化简得 GM L T 3

22π= 所以两种周期的平方比值为01.11098.51035.71098.5)(24

2224212=??+?=+=M M m T T

例题2:(06广东物理卷)宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽

略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为m 。 (1)试求第一种形式下,星体运动的线速度和周期。

(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?

解析:(1)第一种形式下,以某个运动星体为研究对象,由万有引力定律和牛顿第二定律,得:

F 1=

G 22R m F 2=G 2

2

)

2(R m F 1+F 2=m R v 2

运动星体的线速度:v =

周期为T

,则有:24R T v ππ=

= (2)第二种形式星体之间的距离为r ,则三个星体作圆周运动的半径为R /

为 R /

?

30cos 2

r

由于星体作圆周运动所需的向心力靠两个星体的万有引力的合力提供,由万有引力定律和牛顿第二定律,得:

F 合=222r Gm cos30° F 向=m /

224R T

π

2

22cos30m G

l °=2cos30r m 22()T π 所以星体之间的距离为:

r =六、卫星运动中的超失重问题

卫星的运动经常涉及卫星的发射、运行和回收三个过程,这三个过程中由于重力在不同的阶段起着不同的作用,卫星或其内部的物体会发生不同程度的超失重现象.卫星通过火箭发射升空过程中向上加速,出现超重现象;进入轨道运行后,万有引力全部用于提供向心力,出现完全失重现象;卫星在回收进入地面,减速下降,出现超重现象,在超失重现象中卫星所受重力不变。

例题1:关于“神舟七号”飞船的运动,下列说法中正确的是( )

A .点火后飞船开始做直线运动时,如果认为火箭所受的空气阻力不随速度变化,同时认为推力F(向后喷气获得)

不变,则火箭做匀加速直线运动

B .入轨后,飞船内的航天员处于平衡状态

C .入轨后,飞船内的航天员仍受到地球的引力用,但该引力小于航天员在地面时受到的地球对他的引力

D .返回地面将要着陆时,返回舱会开启反推火箭,这个阶段航天员处于失重状态

解析:火箭上升过程中,离地越来越高,万有引力减小.根据牛顿第二定律F-f=ma ,加速度将改变,因此不是匀加速.入轨后,航天员与飞船一起绕地球做圆周运动,所以不是平衡状态而是完全失重状态.返回时,减速下降,超重.所以正确答案为C 。. 例题2:(06上海理综)一艘宇宙飞船在预定轨道上做匀速圆周运动,在该飞船的密封舱内,下列实验能够进行的是

解析:飞船在预定轨道上做匀速圆周运动,飞船内的一切物体都处于完全失重状态,与重力有关的现象现象都消失,故正确选项为C 。

七、天体运动中的能量问题

天体运动中的能量问题主要涉及到天体的动能、所在轨道处引力势能及机械能,它们均与轨道半径有关。分析这类问题时要注意,当轨道半径大时,动能反而小,把卫星发射到高轨道过程中,克服引力做功多,所需的机械能也大,卫星在高轨道上的机械能比低轨道上机械能大,而卫星在同一轨道上运动时机械能认为是守恒的。

例题1:(2011全国卷1)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比,

A .卫星动能增大,引力势能减小

B .卫星动能增大,引力势能增大

C .卫星动能减小,引力势能减小

D .卫星动能减小,引力势能增大

解析:周期变长,表明轨道半径变大,速度减小,动能减小,引力做负功故引力势能增大选D 针对练习1、(07北京卷)不久前欧洲天文学就发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”。该行星的质量是地球的5倍,直径是地球的1.5倍。设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为k1E ,在地球表面附近绕地球沿圆轨道运行的形同质量的人造卫星的动能为k2E ,则

k1

k2

E E 为( C ) A 、0.13 B 、0.3 C 、3.33 D 、7.5

解析:由万有引力提供向心力知,222R

v m R Mm G = 则动能R GMm

mv E k 2212==,若地球质量为M,半径为R,则“格

利斯581 c ”行星的质量M 1=5M,半径R 1=1.5R,代入数值得:33.35

.1521==k k E E

针对练习2:(07全国卷Ⅱ)假定地球、月亮都是静止不动,用火箭从地球沿地月连线向月球发射一探测器。假

定探测器在地球表面附近脱离火箭。用W 表示探测器从脱离火箭处飞到月球过程中克服地球引力做的功,用k E 表示探测器脱离火箭时的动能,若不计空气阻力,则( BD )

A 、k E 必须大于或等于W ,探测器才能到达月球

B 、k E 小于W ,探测器也可能到达月球

C 、k E =12W ,探测器一定能到达月球

D 、k

E =1

2

W ,探测器一定不能到达月球 解析:设月球引力对探测器做的功为W 1,根据动能定理可得:-W +W 1=0-E k ,根据221r m

m G F =可知,F 地>F 月,

W >W 1,故BD 选项正确。此题易错点之处,学生不能用动能定理列出方程,不能根据221r

m

m G F =和W =Fscos α准确

判断出W >W 1。

八、天体运动中的综合信息问题

宇宙是一片广袤的天地,随着科学家们对宇宙空间探索与研究深入,以宇宙探索为信息题材的试题也应运而生,此类试题以万有引力定律和天体运动为基石,要求考生能从题材中提取有效信息,建立合理的物理模型,注重考查了学生的知识迁移能力和信息处理的能力。

例题1:在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀学说”,宇宙是由一个大爆炸的火球开始形成的,大爆炸后各星球即以不同的速度向外运动。这种学说认为万有引力常量G 在缓慢地减小,根据这一理论,在很久很久以前,太阳系中地球的公转情况与现在相比( )

(A )公转半径r 较大 (B )公转周期T 较小 (C )公转速率v 较大 (D )公转角速度w 较小

解析:由于G 变小,万有引力变小,向心力不足,地球做离心运动,万有引力做负功,地球动能减少,因而速度减小,半径增大,A 对,C 错;根据开普乐定律可知,周期的平方与半径三次方之比还是常数,因而周期增大,B 错;由角速度与线速度、半径的关系,可知公转角速度减,D 对。 正确答案为AD 。

例题2:已知物体从地球上的逃逸速度(第二宇宙速度)E

E R GM v 22=

,其中E E R M G 、、分别是引力常量、地球

的质量和半径。已知,kg /m N 10

67.62211

??=-G

s /m 109979.28?=c ,求下列问题:

(1)逃逸速度大于真空中光速的天体叫做黑洞。设某黑洞的质量等于太阳的质量M=1.98×1030

kg ,求它的可能最大半径(这个半径叫Schwarzchild 半径)。

(2)在目前天文观察范围内,物质的平均密度为10-27

kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c ,因此任何物质都不能脱离宇宙,问宇宙的半径至少多大?

解析:(1)由题目提供的信息可知,任何天体均存在其所对应的逃逸速度

R GM v 22=

其中M 、R 为天体的质量和半径。对于黑洞模型来说,其逃逸速度大于真空中的光速,即v 2>c ,

所以,R <m 1094.2m )109979.2(1098.11067.6223

2

830112?≈?????=-c GM ,

即质量为1.98×1030

kg 的黑洞的最大半径约为2.94×103

m 。

(2)把宇宙视为一普通天体,则其质量为3

34

R V M πρρ?==

其中R 为宇宙的半径,ρ为宇宙的平均密度,则宇宙所对应的逃逸速度为R GM

v 22=

由于宇宙密度使得其逃逸速度大于光速c ,即v 2>c 。 则由以上三式可得

R >

m 1001.4m 10

67.61014.38)109979.2(3832611

272

82?≈??????=--G c πρ,合 4.24×1010

光年,即宇宙的半径至少为4.24×1010

光年。

2020届高考物理专题复习检测专题一:万有引力与航天(含解析)

第4讲万有引力与航天 (建议用时:40分钟满分:100分) 一、选择题(本大题共8小题,每小题8分,共64分.第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求) 1.许多科学家在经典物理学发展中作出了重要贡献,下列叙述中符合史实的是( D ) A.哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律 B.开普勒在前人研究的基础上,提出了万有引力定律 C.牛顿提出了万有引力定律,并通过实验测出了万有引力常量 D.卡文迪许通过扭秤实验测出了引力常量 解析:哥白尼提出了日心说,而开普勒发现了行星沿椭圆轨道运行的 规律,故A错误;牛顿在前人研究的基础上,提出了万有引力定律,故B 错误;卡文迪许通过扭秤实验测出了引力常量,故C错误,D正确. 2.(2019·山东济南三模)2019年1月3日10时26分,“嫦娥四号”探测器成功在月球背面着陆,标志着我国探月航天工程达到了一个新 高度.“嫦娥四号”绕月球做匀速圆周运动时的轨道半径为r,运行周期为T,已知万有引力常量为G,根据以上信息可以求出( C ) A.月球的平均密度 B.月球的第一宇宙速度 C.月球的质量 D.月球表面的重力加速度

解析:根据万有引力提供向心力可得=m r得,月球的质量M月=,月球的体积V=πR3,由于月球半径不知道,无法求解月球的密度,故A 错误,C正确;月球的第一宇宙速度v1==,由于月球半径不知道,月球的第一字宙速度无法求解,故B错误;根据g=可知,月球半径不知道,无法求解月球表面的重力加速度,故D错误. 3.(2019·江苏泰州模拟)通常情况下中子星的自转速度是非常快的,因此任何的微小凸起都将造成时空的扭曲并产生连续的引力波信号,这种引力辐射过程会带走一部分能量并使中子星的自转速度逐渐下 降.现有一中子星(可视为均匀球体),它的自转周期为T0时恰能维持 该星体的稳定(不因自转而瓦解),则当中子星的自转周期增为2T0时,某物体在该中子星“两极”所受重力与在“赤道”所受重力的比值为( D ) A. B.2 C. D. 解析:自转周期为T0时恰能维持星体的稳定,有=m R;当中子星的自转周期增为2T0时,在两极有=mg,在赤道有-mg′=m R,联立解得=,故D正确. 4.(2019·河南郑州三模)地球和某行星在同一轨道平面内同向绕太 阳做匀速圆周运动,地球和太阳中心的连线与地球和行星的连线所成

2018高考物理总复习专题天体运动的三大难点破解1深度剖析卫星的变轨讲义

拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 二、重难点提示: 重点:1. 卫星变轨原理; 2. 不同轨道上速度和加速度的大小关系。 难点:理解变轨前后的能量变化。 一、变轨原理 卫星在运动过程中,受到的合外力为万有引力,F 引=2 R Mm G 。卫星在运动过程中所需要的向心力为:F 向= R m v 2 。当: (1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引

运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。 2. 回收变轨 在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。 三、卫星变轨中的能量问题 1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。 2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。 注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。 3. 卫星变轨中的切点问题 【误区点拨】 近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

万有引力高考复习专题

1.一航天探测器在完成对火星的探测任务后,在离开火星的过程中,由静止开始沿着与火星表面切线的直线飞行, 先做加速度大小为a 的匀加速运动,经过时间t 0后再做匀速运动,至2t 0时再将轨道改成其它的运动轨道。已知火星表面的重力加速度为g 0,火星的半径为R 0,探测器的质量为m ,探测器通过喷气而获得推动力,并在0—2t 0的一段时间内,可以不考虑因气体喷出而发生质量改变。 (1)求出探测器在起飞时的推力大小 (2)分析说明探测器在飞行过程中喷出气体的方向应做什么样的调整(要求定性说明) (3)写出探测器做匀速运动后探测器喷气推力与时间t(t<2t 0)关系式(除时间t 外其它的量要求用题中给出的量表 示) 2.一组太空人乘坐穿梭机,前往修理位于离地球表面6.0×105m 的圆形轨道上的哈勃太空望远镜 H 。机组人员使穿梭机S 进入与H 相同的轨道并关闭推动火箭,而望远镜H 则在穿梭机前方数公里 处,如图所示。设G 为引力常数,而M 为地球质量。已知:地球半径R=6.4×106m 。g=10m/s 2 (1):在穿梭机内,一质量为70kg 的太空人的视重是多少? (2):计算穿梭机在轨道上的速率。 (3):证明穿梭机总机械能跟r 1- 成正比,r 为它的轨道半径.(注:若力F 与位移r 之间有如下的关系:2r K F =,K 为常数,则当r 由∞处变为零,F 做功的大小可用以下规律进行计算:r K W =,设∞处的势能为零。) (4):穿梭机须首先螺旋进入半径较小的轨道,才有较大的角速率以超前望远镜H 。用上面的结果判断穿梭机要进入较低轨道时应增加还是减少其原有速率,解释你的答案。 3.宇航员乘太空穿梭机,去修理位于离地球表面6.0×105 m 的圆形轨道上的哈勃太空望远镜H.机组人员使穿梭机S 进入与H 相同的轨道并关闭推动火箭,而望远镜则在穿梭机前方数千米处,如上题图,设G 为引力常量,M E 为地球质 量.(已知地球半径为6.4×106 m ) (1)在穿梭机内,一质量为70 kg 的太空人的视重是多少? (2)①计算轨道上的重力加速度的值;②计算穿梭机在轨道上的速率和周期; (3)穿梭机须首先螺旋进入半径较小的轨道,才有较大的角速度以赶上望远镜.用上题的结果判断穿梭机要进入较低轨道时应增大还是减小其原有速率,解释你的答案. 4.一架飞机在赤道正上方10Km 的某处飞行,机上乘客正好看到太阳升起,则飞机正下方观察者还要经过约 __________min 可以看到太阳升起,(地球半径为6400km,不考虑大气对光的折射的影响)

万有引力与航天专题复习

万有引力与航天专题 复习 Revised on November 25, 2020

万有引力与航天 一、行星的运动 1、 开普勒行星运动三大定律 ①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 ②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 推论:近日点速度比较快,远日点速度比较慢。 ③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等。 即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。 推广:对围绕同一中心天体运动的行星或卫星,上式均成立。K 取决于中心天体的质量 例1. 据报道,美国计划从2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球沿椭圆轨道运行时,在近地点A 的速率 (填“大于”“小于”或“等于”)在远地点B 的速率。 例2、宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( ) 年 年 年 年 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正 比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 例3.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为(式中G 为万有引力恒量) (2)计算重力加速度 3 2a k T =2Mm F G r =1122 6.6710/G N m kg -=??12 2m m F G r =2R Mm G mg =

高三一轮专题复习:天体运动知识点归类解析

天体运动知识点归类解析 【问题一】行星运动简史 1、两种学说 (1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。支持者托勒密。 (2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。(3).两种学说的局限性 都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。 2、开普勒三大定律 开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。1600年,到布拉格成为第谷的助手。次年第谷去世,开普勒成为第谷事业的继承人。 第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。并将老师第谷的数据结果归纳出三条著名定律。 第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫 过的面积相等。 如图某行星沿椭圆轨道运行,远日点离太阳的距离为a,近日

点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v 由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ?,则有: t bv t av b a ?=?2 1 21① 所以 b a v v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。②式也当之无愧的作为第二定律的数学表达式。 第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。 用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23 ,k 与中心天体的质量有 关即k 是中心天体质量的函数)(23 M k T a =①。不同中心天体k 不同。今天我们可以由万有 引力定律证明:r T m r Mm G 2234π=得2234πGM T r =②即2 4)(π GM M k =可见k 正比与中心天体的质量M 。 ①式)(23 M k T a =是普遍意义下的开普勒第三定律多用于求解椭圆轨道问题。 ②式2 234πGM T r =是站在圆轨道角度下得出多用于解决圆轨道问题。为了方便记忆与区分我 们不妨把①式称为官方版开三,②式成为家庭版开三。 【问题二】:天体的自转模型 1、重力与万有引力的区别

高考物理万有引力专题复习讲义

高考物理万有引力专题辅导讲义 太阳处 不同行星绕太阳运动的椭圆轨道是不同 它与太阳的连线在相等 行星在近日点的速率大于在远日点的速 值只与中心天体有

特别提醒 (1)开普勒行星运动定律不仅适用于行星绕太阳的运动,也适用于其他天体的运动。对于不同的中心天体,比例式a 3 T 2=k 中的k 值是不同的。 (2)应用开普勒第三定律进行计算时,一般将天体的椭圆运动近似为匀速圆周运动,在这种情况下,若用R 代表轨道半径,T 代表公转周期,开普勒第三定律用公式可以表示为R 3 T 2=k 。 对万有引力定律的理解 1.对万有引力定律表达式F =G m 1m 2 r 2的说明 (1)引力常量G :G =6.67×10-11 N·m 2/kg 2;其物理意义为:两个质量都是1 kg 的质点相距1 m 时,相互吸 引力为6.67×10 -11 N 。 (2)距离r :公式中的r 是两个质点间的距离,对于质量均匀分布的球体,就是两球心间的距离。 2.F =G m 1m 2 r 2的适用条件 (1)万有引力定律的公式适用于计算质点间的相互作用,当两个物体间的距离比物体本身大得多时,可用此公式近似计算两物体间的万有引力。 (2)质量分布均匀的球体间的相互作用,可用此公式计算,式中r 是两个球体球心间的距离。 (3)一个均匀球体与球外一个质点的万有引力也可用此公式计算,式中的r 是球体球心到质点的距离。 3.万有引力的四个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力。 (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足大小相等,方向相反,作用在两个物体上。 (3)宏观性:地面上的一般物体之间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用。 (4)特殊性:两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,而与它们所在空间的性

2020高考物理总复习 专题 天体运动的三大难点破解1 深度剖析卫星的变轨讲义

深度剖析卫星的变轨 一、考点突破: 知识点 考纲要求题型说明 卫星的变 轨的动力 学本质 1.掌握卫星变轨原理; 2. 会分析不同轨道上速度和 加速度的大小关系; 3. 理解变轨前后的能量变化。 选择题、 计算题 属于高频考点,重点考查卫星 变轨中的供需关系、速度关系、 能量关系及轨道的变化,是最 近几年的高考热点。 二、重难点提示: 重点:1. 卫星变轨原理; 2. 不同轨道上速度和加速度的大小关系。 难点:理解变轨前后的能量变化。 一、变轨原理 卫星在运动过程中,受到的合外力为万有引力,F引= 2 R Mm G。卫星在运动过程中所需 要的向心力为:F向= R mv2 。当: (1)F引= F向时,卫星做圆周运动; (2)F引> F向时,卫星做近心运动; (3)F引

运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。 2. 回收变轨 在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。 三、卫星变轨中的能量问题 1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。 2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。 注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。 3. 卫星变轨中的切点问题 【误区点拨】 近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。

【选择题专练】2015高考物理大一轮复习专题系列卷 万有引力定律 天体运动

选择题专练卷(四) 万有引力定律 天体运动 一、单项选择题 1.(2014·潍坊模拟)截止到2011年9月,欧洲天文学家已在太阳系外发现50余颗新行星,其中有一颗行星,其半径是地球半径的1.2倍,其平均密度是地球0.8倍。经观测发现:该行星有两颗卫星a 和b ,它们绕该行星的轨道近似为圆周,周期分别为9天5小时和15天12小时,则下列判断正确的是( ) A .该行星表面的重力加速度大于9.8 m/s 2 B .该行星的第一宇宙速度大于7.9 km/s C .卫星a 的线速度小于卫星b 的线速度 D .卫星a 的向心加速度小于卫星b 的向心加速度 2.一位同学为了测算卫星在月球表面附近做匀速圆周运动的环绕速度,提出了如下实验方案:在月球表面以初速度v 0竖直上抛一个物体,测出物体上升的最大高度h ,已知月球的半径为R ,便可测算出绕月卫星的环绕速度。按这位同学的方案,绕月卫星的环绕速度为 ( ) A .v 0 2h R B .v 0h 2R C .v 02R h D .v 0 R 2h 3.(2014·皖南八校联考)2012年6月24日,航天员刘旺手动控制“神舟九号”飞船完成与“天宫一号”的交会对接,形成组合体绕地球圆周运动,速率为v 0,轨道高度为340 km 。“神舟九号”飞船连同三位宇航员的总质量为m ,而测控通信由两颗在地球同步轨道运行的“天链一号”中继卫星、陆基测控站、测量船,以及北京飞控中心完成。下列描述错误的是 ( ) A .组合体圆周运动的周期约1.5 h B .组合体圆周运动的线速度约7.8 km/s C .组合体圆周运动的角速度比“天链一号”中继卫星的角速度大 D .发射“神舟九号”飞船所需能量是12m v 20 4.“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成。地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是( ) A .静止轨道卫星的周期约为中轨道卫星的2倍 B .静止轨道卫星的线速度大小约为中轨道卫星的2倍 C .静止轨道卫星的角速度大小约为中轨道卫星的1/7

高考物理万有引力定律专题复习(整理)

考点 1 周期T 、线速度v 、加速度a 与轨道半径r 关系 ①由=2r Mm G r v m 2得=v _____________,所以r 越大,v _______ ②由=2r Mm G r m 2ω 得ω=_______,所以r 越大,ω_______ ③ 越大所以得由 r 22r Mm G a ma r Mm == ④由=2r Mm G r T m 2 )2(π得T=_____,所以r 越大,T _______ 例1.我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T 。若以R 表示月球的半径,则 A .卫星运行时的向心加速度为2 2π4T R B 。卫星运行时的线速度为 T R π2 C .物体在月球表面自由下落的加速度为22π4T R D .月球的第一宇宙速 度为TR h R R 3 )π2+( 考点2 求中心天体的质量M 与密度 (1) 天体质量M 密度ρ的估算

测出卫星绕中心天体做匀速圆周运动的半径r 和周期T ,由 =2r Mm G r T m 2 )2(π得2324GT r M π= ; =ρ303 4R M V M π==3023 3R GT r π(0R 为中心天体的半径)。 例2.一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .12 4π3G ρ?? ??? B .12 34πG ρ?? ? ?? C .12 πG ρ?? ??? D .1 2 3π G ρ?? ??? 考点3 三大宇宙速度 1.第一宇宙速度:约为s ,是人造卫星在地面附近绕地球做匀速圆周运动所必须具有的速度.(又称环绕速度或最小发射速度) 2.第二宇宙速度:约为s ,当物体的速度等于或大于s 时,卫星就会脱离地球吸引,不再绕地球运动.(又称脱离速度) 3.第三宇宙速度:约为s ,当物体的速度等于或大于s 时,就会脱离太阳的束缚,飞到太阳系以外的宇宙空间去.(逃逸速度) 补充:第一宇宙速度的理解和推导 1.由于在人造卫星的发射过程中,火箭要克服地球的引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越

天体运动总复习绝对

龙文教育个性化辅导授课案 教师:学生:日期:星期:时段: 一.考点梳理 1.考纲要求:万有引力定律的应用、人造地球卫星的运动(限于圆轨道)、动量知识和机械能知识的应用(包括碰撞、反冲、火箭)都是Ⅱ类要求;航天技术的发展和宇宙航行、宇宙速度属Ⅰ类要求。 2.命题趋势:本章内容高考年年必考,题型主要有选择题:如2004年江苏物理卷第4题、2004上海卷第3题、2005年安徽卷第16题、2005年全国卷第3题、2005年北京物理卷第20题、2005年江苏物理卷第5题;计算题:如2001年全国卷第31题、2003年第24题、2004年全国卷第23题、2004年广西物理卷第16题、2005年江苏物理卷第18题、2005年广东卷第15题等。飞船、卫星运行问题与物理知识(如万有引力定律、匀速圆周运动、牛顿运动定律等)及地理知识有十分密切的相关性,以此为背景的高考命题立意高、情景新、综合性强,对考生的理解能力、综合分析能力、信息提炼处理能力及空间想象能力提出了极高的要求,是新高考突出学科内及跨学科间综合创新能力考查的命题热点,亦是考生备考应试的难点.特别是今年10月神州六号飞船再次实现载人航天飞行试验以来,明年高考有很大可能考查与“神六”相关的天体运动问题。 3.思路及方法: (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2).估算天体的质量和密度 由G 2r Mm =mr T 224π得:M=2324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以 计算出中心天体的质量.

万有引力定律的应用专题复习(含答案)

第七讲 万有引力定律 (二) 1.18世纪,人们发现太阳系的第七个行星——天王星的运动轨道有些古怪:根据 ________________计算出的轨道与实际观测的结果总有一些偏差.据此,人们推测,在 天王星轨道的外面还有一颗未发现的行星,它对天王星的________使其轨道发生了偏离. 2.若不考虑地球自转的影响,地面上质量为m 的物体所受的重力mg 等于________对物体的______,即mg =________,式中M 是地球的质量,R 是地球的半径,也就是物体到地心的距离.由此可得出地球的质量M =________. 3.将行星绕太阳的运动近似看成____________运动,行星做圆周运动的向心力由 ____________________提供,则有________________,式中M 是________的质量,m 是 ________的质量,r 是________________________,也就是行星和太阳中心的距离,T 。 是________________________.由此可得出太阳的质量为:________________. 4.同样的道理,如果已知卫星绕行星运动的________和卫星与行星之间的________,也可以计算出行星的质量. ________________和____________________确立了万有引力定律的地位. 5.应用万有引力定律解决天体运动问题的两条思路是:(1)把天体(行星或卫星)的运动近似看成是____________运动,向心力由它们之间的____________提供,即F 万=F 向,可以用来计算天体的质量,讨论行星(或卫星)的线速度、角速度、周期等问题.基本公式:________ =m v 2r =mrω2=mr 4π2T 2. (2)地面及其附近物体的重力近似等于物体与地球间的__________,即F 万=mg ,主要用于计算涉及重力加速度的问题.基本公式:mg =______(m 在M 的表面上),即GM =gR 2. 6.下列说法正确的是( ) A .海王星是人们直接应用万有引力定律计算的轨道而发现的 B .天王星是人们依据万有引力定律计算的轨道而发现的 C .海王星是人们经过长期的太空观测而发现的 D .天王星的运行轨道与由万有引力定律计算的轨道存在偏差,其原因是天王星受到轨 — 道外的行星的引力作用,由此,人们发现了海王星 7.利用下列数据,可以计算出地球质量的是( ) A .已知地球的半径R 和地面的重力加速度g B .已知卫星绕地球做匀速圆周运动的半径r 和周期T C .已知卫星绕地球做匀速圆周运动的半径r 和线速度v D .已知卫星绕地球做匀速圆周运动的线速度v 和周期T 【考点演练】 考点一 发现未知天体 1.科学家们推测,太阳系的第九大行星就在地球的轨道上,从地球上看,它永远在太阳 . 的背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信 息我们可以推知( ) A .这颗行星的公转周期与地球相等 B .这颗行星的自转周期与地球相等 C .这颗行星的质量与地球相等 D .这颗行星的密度与地球相等 考点二 计算天体的质量 .解决天体圆周运动问题的两条思路 (1)在地面附近万有引力近似等于物体的重力,F 引=mg ,即G =mg ,整理

天体运动专题例题练习测试

精心整理 3.已知地球的同步卫星的轨道半径约为地球半径的6.0倍,根据你知道的常识,可以估算出地球到月球的距离,这个距离最接近() A .地球半径的40倍 B .地球半径的60倍 C .地球半径的80倍 D .地球半径的100倍 10据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是 A.运行速度大于7.9 km/s B.离地面高度一定,相对地面静止 C.绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等 4.宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部的最低点,静止一质量为m 的小球(可视为质点),如图所示,当给小球水平初速度υ0时,刚好能使小球在竖直平面内做完整的圆周运动。已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G 。若在月球表面上发射一颗环月卫星,所需最小发射速度为() A . Rr r 550 υ B . Rr r 52 0υ C . Rr r 50 υ D . Rr r 552 0υ 3.(6分)(2015?红河州模拟)“神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知飞船的质量为m ,地球半径为R ,地面处的重力加速度为g .则飞船在上述圆轨道上运行的动能E k ( ) A . 等于mg (R+h ) B . 小于mg (R+h ) C . 大于mg (R+h ) D . 等于mgh 7(2015沈阳质量检测).为了探测x 星球,总质量为1m 的探测飞船载着登陆舱在以该星球中心为圆心的圆轨道上运动,轨道半径为1r ,运动周期为1T 。随后质量为2m 的登陆舱脱离飞船,变轨到离星球更近的半径为2r 的圆轨道上运动,则 A .x 星球表面的重力加速度2 11214T r g π= B .x 星球的质量2 13 124GT r M π= C .登陆舱在1r 与2r 轨道上运动时的速度大小之比 1 22 121 r m r m v v = D .登陆舱在半径为2r 轨道上做圆周运动的周期131 3 22T r r T =

最新高考物理一轮复习-专题-万有引力与航天导学案

万有引力与航天 知识梳理 知识点一、万有引力定律及其应用 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比。 2.表达式:F =G m 1m 2 r 2 G 为引力常量:G =6.67×10-11 N·m 2/kg 2。 3.适用条件 (1)公式适用于质点间的相互作用。当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。 (2)质量分布均匀的球体可视为质点,r 是两球心间的距离。 知识点二、环绕速度 1.第一宇宙速度又叫环绕速度。 2.第一宇宙速度是人造地球卫星在地面附近绕地球做匀速圆周运动时具有的速度。 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度。 4.第一宇宙速度的计算方法 (1)由G Mm R 2=m v 2R 得v =GM R =7.9 km/s (2)由mg =m v 2 R 得v =gR =7.9 km/s 知识点三、第二宇宙速度和第三宇宙速度 名称 大小 挣脱 第二宇宙速度 (逃逸速度) 11.2 km/s 地球的引力束缚 第三宇宙速度 16.7 km/s 太阳的引力束缚 知识点四、经典时空观和相对论时空观 1.经典时空观 (1)在经典力学中,物体的质量是不随运动状态而改变的。 (2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。

2.相对论时空观 (1)在狭义相对论中,物体的质量是随物体运动速度的增大而增大的,用公式表示为m = m 0 1-v 2c 2 。 (2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。 3.狭义相对论的两条基本假设 (1)相对性原理:在不同的惯性参考系中,一切物理规律都是不同的。 (2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是不变的。 [思考判断] (1)两物体间的距离趋近于0时,万有引力趋近于无穷大。( ) (2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小。( ) (3)近地卫星距离地球最近,环绕速度最小。( ) (4)人造地球卫星绕地球运动,其轨道平面一定过地心。( ) (5)地球同步卫星根据需要可以定点在北方正上空。( ) (6)极地卫星通过地球两极,且始终和地球某一经线平面重合。( ) (7)发射火星探测器的速度必须大于11.2 km/s 。( ) (8)牛顿运动定律可以解决自然界中的所有问题。( ) (9)狭义相对论认为在不同惯性参考系中真空中的光速不变。( ) 答案 (1)× (2)√ (3)× (4)√ (5)× (6)× (7)√ (8)× (9)√ 考点精练 考点一 万有引力定律的理解及应用 1.万有引力与重力的关系 地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图1所示。

天体运动专题(一)

天体运动专题(一) 一、人类认识宇宙的过程 (1)模型及学说 1.地心说:代表:托勒密 内容:地球是世界的中心,并且静止不动,一切行星围绕地球做匀速圆周运动。 2.日心说:代表:哥白尼 内容; 太阳是世界的中心,并且静止不动,一切行星都围绕太阳做圆周运动 (2)探究方法 假设法; 假设火星的轨道是圆形+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→偏差较大→假设不成立→再一次运用假设法; 假设火星的轨道是椭圆+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→几乎密合→假设成立 定律内容图示 开普勒第一定律所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 开普勒第二定律对任意一个行星而言,它与太阳的连线在相等的时间内扫过相等的面积 开普勒第三定律所有行星轨道半长轴的三次方跟它的公转周期的二次方的比值都相等.32 / a T K 特别提示:(1)开普勒三定律虽然是根据行星绕太阳的运动总结出来的,但也适用于卫星绕行星的运动.(2)开普勒第三定律中的k是一个与运动天体无关的量,只与被环绕的中心天体有关. 专题训练一 1.2016(全国新课标III卷,14)关于行星运动的规律,下列说法符合史实的是( ) A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B.开普勒在天文观测数据的基础上,总结出了行星运动的规律 C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因 D.开普勒总结出了行星运动的规律,发现了万有引力定律 2、[2014·浙江卷] 长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于() A.15天B.25天C.35天D.45天 3、(2013江苏】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() (A)太阳位于木星运行轨道的中心(B)火星和木星绕太阳运行速度的大小始终相等 (C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 (D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 4.【2017?新课标Ⅱ卷】如图,海王星绕太阳沿椭圆轨道运动,P为近日 点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0。若只 考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中( ) A.从P到M所用的时间等于T0/4 B.从Q到N阶段,机械能逐渐变大 C.从P到Q阶段,速率逐渐变小 D.从M到N阶段,万有引力对它先做负功后做正功

天体运动总复习绝对经典汇总

一.考点梳理 1.考纲要求:万有引力定律的应用、人造地球卫星的运动(限于圆轨道)、动量知识和机械能知识的应用(包括碰撞、反冲、火箭)都是Ⅱ类要求;航天技术的发展和宇宙航行、宇宙速度属Ⅰ类要求。 2.命题趋势:本章内容高考年年必考,题型主要有选择题:如2004年江苏物理卷第4题、2004上海卷第3题、2005年安徽卷第16题、2005年全国卷第3题、2005年北京物理卷第20题、2005年江苏物理卷第5题;计算题:如2001年全国卷第31题、2003年第24题、2004年全国卷第23题、2004年广西物理卷第16题、2005年江苏物理卷第18题、2005年广东卷第15题等。飞船、卫星运行问题与物理知识(如万有引力定律、匀速圆周运动、牛顿运动定律等)及地理知识有十分密切的相关性,以此为背景的高考命题立意高、情景新、综合性强,对考生的理解能力、综合分析能力、信息提炼处理能力及空间想象能力提出了极高的要求,是新高考突出学科内及跨学科间综合创新能力考查的命题热点,亦是考生备考应试的难点. 特别是今年10月神州六号飞船再次实现载人航天飞行试验以来,明年高考有很大可能考查与“神六”相关的天体运动问题。 3.思路及方法: (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2). 由G 2r Mm =mr T 224π得:M=2 324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量. 由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题 表面重力加速度g 0,由02 GMm mg R = 得:02GM g R = 轨道重力加速度g ,由2()GMm mg R h =+ 得:2 20()()GM R g g R h R h ==++ (4) (1)由Gr v m r Mm 2 2=得:v=r GM (2)由G2r Mm =mω2 r得:ω=3r GM (3)由2 224Mm G m r r T π=得:3 2r T GM π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G2 224()Mm m R h T π=+(R+h) 2 3 2 4h R GMT π=-=3.6×104km=5.6R R

万有引力复习专题

万有引力复习专题 知识网络: 主要内容: 一、万有引力定律 1、定律内容: 任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。 2、表达式: ,其中G=6.67×10-11N·m2/kg2 3、几点理解和注意 (1) 万有引力定律适用于一切物体,而公式在中学阶段只能直接用于定律适用于可视为质点的两个物体间的相互引力的计算,r指两个质点间的距离。 若两物体是质量均匀分布的球体,r就是两个球心间的距离。 (2)天体的质量是巨大的,所以天体之间的万有引力很大,因而万有引力定律是研究天体运动的基本定律,一般物体质量较小,尤其微观粒子其质量更小,因而一般情况下万有引力都是忽略不计。 4、万有引力常数的测定 在牛顿发现万有引力定律一百多年以后,英国的卡文迪许巧妙地利用扭秤装置,第一次在实验室里比较准确地测出了万有引力常数的数值。 5、万有引力与重力: 万有引力可以分为两个分力:重力和跟随地球自转所需的向心力。重力的方向在赤道和两极处指向地心,在其它方向并不指向地心。 6、地球上物体重力变化的原因 (1)自转的影响 当物体位于纬度Φ处时,万有引力为F=G,向心力为F n=mω2RcosΦ,则重

力:mg=。 当物体位于赤道时,Φ=0°,mg=F-F n=G-mω2R; 当物体位于两极时,Φ=90°,mg=F=G。 可见,物体的重力产生于地球对物体的引力,但在一般情况下,重力不等于万有引力,方向不指向地心,由于地球自转的影响,从赤道到两极,物体的重力随纬度的增大而增大。 (2)地面到地心的距离R和地球密度ρ的影响 由于地球是椭球体,质量分布也不均匀,根据F=G=πGRmρ可知,随着 R和ρ的变化,重力也会发生变化。物体的重力从地面到高空随高度的增大而逐渐减小。 说明: 由于地球自转的影响,从赤道到两极,重力变化为千分之五;地面到地心的距离R每增加一千米,重力减少不到万分之三。所以,在近似计算中,mg≈F。 7、万有引力定律的应用 (1)计算地面上空h处的重力加速度 (2)计算中心天体的质量M和密度ρ 由,可得: 当r=R,即近地卫星绕中心天体运行时,。

专题十六:天体运动典型问题

专题十六:天体运动 基本方法:把天体运动看作是匀速圆周运动,F 万=F 向 往往还需要补充一个等式:在天体表面有——GMm/R2=mg 该式被称为黄金代换。 对卫星(行星)模型 卫星(行星)模型的特征是卫星(行星)绕中心天体做匀速圆周运动。 (1)卫星(行星)的动力学特征:中心天体对卫星(行星)的万有引力提供卫星(行星)做匀速圆周运动的向心力,即有: 。 (2)卫星(行星)轨道特征:由于卫星(行星)正常运行时只受中心天体的万有引力作用,所以卫星(行星)平面必定经过中心天体中心。 1)讨论卫星(行星)的向心加速度、绕行速度、角速度、周期与半径的 关系问题。 由得,故越大,越小。 由得,故越大,越小。 由得,故越大,越小。 得,故越大,越长。 2)求中心天体的质量或密度(设中心天体的半径) ①若已知卫星绕中心天体做匀速圆周运动的周期与半径 根据得,则 ②若已知卫星绕中心天体做匀速圆周运动的线速度与半径 由得,则

③若已知卫星绕中心天体做匀速圆周运动的线速度与周期 由和得,则 ④若已知中心天体表面的重力加速度及中心天体的球半径 由得,则 一、基本规律 1.关于地球的第一宇宙速度,下列说法中正确的是( ) A它是人造地球卫星环绕地球运转的最小速度 B它是近地圆行轨道上人造卫星运行的最大速度 C 它是能使卫星进入近地轨道最小发射速度 D它是能使卫星进入轨道的最大发射速度 2.地球公转的轨道半径为R 1,周期为T 1 ,月球绕地球运转的轨道半径为R 2 ,周期 为T 2 ,则太阳质量与地球质量之比为() 3.宇宙飞船与目标飞行器在近地圆轨道上成功进行了空间交会对接。对接轨道所处的空间存在极其稀薄的空气,下面说法正确的是() A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间 B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加 C.如不加干预,天宫一号的轨道高度将缓慢降低 D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 二、赤道上的物体、近地卫星和同步卫星的比较 (1)忽略地球(星球)自转影响,赤道上的物体,万有引力远大于随地球自转所需的向心力。 (2)在地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力。特别的,在星球表面附近对任意质量为m的物体有:

相关主题
文本预览
相关文档 最新文档