当前位置:文档之家› 2020高考物理二轮复习 万有引力与天体运动专题复习教案

2020高考物理二轮复习 万有引力与天体运动专题复习教案

2020高考物理二轮复习 万有引力与天体运动专题复习教案
2020高考物理二轮复习 万有引力与天体运动专题复习教案

万有引力与天体运动专题复习

近几年来,随着我国载人航天的成功、探月计划的实施、空间站实验的推进及宇宙探索的进一步深入,以此为题材的试题也成了高考中的热点内容,试题注重把万有引力定律和圆周运动结合起来进行综合考查,要求考生有较强的运算推理、信息提取能力和应用物理知识解决实际问题的能力。 一、天体运动问题的处理方法

处理天体的运动问题时,一般来说建立这样的物理模型:中心天体不动,环绕天体以中心天体的球心为圆心做匀速圆周运动;环绕天体只受到的中心天体的万有引力提供环绕天体做匀速圆周运动的向心力,结合牛顿第二定律与圆周运动规律进行分析,一般来说有两个思路:一是环绕天体绕中心天体在较高轨道上做匀速圆周运动,所需要的向心力由万有引力提供,即

222r v m r Mm G ==m ω2

r=m 224T

πr=ma n ,二是物体绕中心天体在中心天体表面附近作近地运动,物体受到的重力近似等于万有引力,2

R Mm

G

mg =(R 为中心天体的半径)。 例题:(2020天津)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的

A .线速度v =

B .角速度ω

C .运行周期2T =.向心加

速度2GM

a R =

解析:万有引力提供卫星做圆周运动的向心力,

222,,R

MG

a R GM v ma R v m R Mm G ==== 航天器在接近月球表面的轨道上飞行,R T

m R m R Mm G mg 222

24π?===代入相关公式

即可,正确答案为AC 。

针对练习1:(2020浙江)为了探测X 星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1。随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2 的圆轨道上运动,此时登陆舱的质量为m 2则 A. X 星球的质量为2

1124GT r M π=

B. X 星球表面的重力加速度为2

1

124T r g X π=

C. 登陆舱在1r 与2r 轨道上运动是的速度大小之比为

1

22

121

r m r m v v = D. 登陆舱在半径为2r 轨道上做圆周运动的周期为3

1

321

2r r T T =

解析:根据2

1112

1

12M ???? ??=T

r m r m G

π、2

2

222222M ???

? ??=T r m r m G π,可得211

24GT r M π=、3

1

3212r r T T =,故A 、D 正确;登陆舱在半径为1r 的圆轨道上运动的向心加速度

2

1

122

114T r r a πω=

=,此加速度与X 星球表面的重力加速度并不相等,故C 错误;根据

r v m r m 22

G M =,得r GM

v =,则1

2

21r r v v =,故C 错误。 点评:天体作圆周运动时向心力由万有引力提供,即22

2r

v m r Mm G ==m ω

2

r=m 22

4T

πr=ma n 。式中的r 为两天体中心之间的距离,V 为环绕线速度,T 为环绕周期。

由222r v m r Mm G =可得:r

GM v = r 越大,V 越小;由r m r Mm G 22ω=可得:

3r GM =ω r 越大,ω越小;由r T m r Mm G 2

22???

??=π可得:GM r T 3

2π= r

越大,T 越大。由向ma r Mm G

=2可得:2r

GM

a =向 r 越大,a 向越小。由此可见,卫星

运行轨道半径r 与该轨道上的线速度v 、角速度ω、周期T 、向心加速度a 存在着一一对应的关系,若r 、v 、ω、T 、a 中有一个确定,则其余皆确定,与卫星的质量无关。

针对练习2:(湖南省2020年十二校联考)我国和欧盟合作正式启动伽利略卫星导航定位系统计划,这将结束美国全球卫星定位系统(GPS) —统天下的局面.据悉,“伽利略”卫星定位系统将由30颗轨道卫星组成,卫星的轨道高度为2.4X104km ,倾角为56°,分布在3个轨道面上,每个轨道面部署9颗工作卫星和1颗在轨备份卫星,当某颗工作卫星出现故障时可及时顶替工作.若某颗替补卫星处在略低于工作卫星的轨道上,则这颗卫星的周期和速度与工作卫星相比较,以下说法中正确的是(C) A 、替补卫星的周期大于工作卫星的周期,速度大于工作卫星的速度 B 、替补卫星的周期大于工作卫星的周期,速度小于工作卫星的速度 C 、 替补卫星的周期小于工作卫星的周期,速度大于工作卫星的速度 D 、替补卫星的周期小于工作卫星的周期,速度小于工作卫星的速度 二、中心天体质量和密度的估算

天体作圆周运动时向心力由万有引力提供,即22

2r

v m r Mm G ==m ω

2

r=m 22

4T

πr=ma n 。由上式知,若能测出行星绕中心天体运动的某些物理量,则可求出

中心天体的质量,一般情况下是通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。当卫星沿中心天体表面绕天体运行时,中心天体的密度为:ρ=

2

3GT

π

。 例题:(06北京卷)一飞船在某行星表面附近沿圆轨道绕该行星飞行。认为行星是密度均匀的球体,要确定该行星的密度,只需要测量

A.飞船的轨道半径

B.飞船的运行速度

C.飞船的运行周期

D.行星的质量

解析:本题涉及万有引力定律的应用,主要考查灵活选用公式解决物理问题的能力。

万有引力提供向心力,则2224T

r

m r Mm G π=,由于飞行器在行星表面附近

飞行,其运行半径r 近似等于行星半径,所以满足M =ρπ4

3

?3r ,联立

得:ρ=2

3GT

π

。 针对练习1:(2020年广东物理)已知万有引力常量为G ,地球半径为R ,月球与地球之间的距离为r ,同步卫星距离地面高度h,月球绕地球运动的周期T 1,地球自转周期T 2,地球表面的重力加速度g ,某学生根据以上条件,提出一种估算地球质量

的方法:同步卫星绕地心作圆周运动,由2h Mm G =m 2224T πh 得M=2

2

32GT h 4π (1)请判断上面的结果是否正确,并说明理由。如不正确,请给出正确的解法与结果。

(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。 解析:(1)上面的结果是错误的。地球的半径在计算中不能忽略。 正确的解法与结果是:()

2

R h Mm

G

+ = ()h R T m

+2

2

24π M=

()2

2

3

2GT R h 4+π)

(2)方法一:对月球绕地球作圆周运动由2r Mm G =2124T r

π,M=2

132GT r 4π 方法二:在地面重力近似等于万有引力,由2R Mm G =mg ,M=G

gR 2

点评:此题注重了天体运动基础知识的考查,试题具有开放性,真正考查了学生的能力。

针对练习2:(10安徽卷)为了对火星及其周围的空间环境进行探测,我国预计于2020年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T 。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。仅利用以上数据,可以计算出

A .火星的密度和火星表面的重力加速度

B .火星的质量和火星对“萤火一号”的引力

C .火星的半径和“萤火一号”的质量

D .火星表面的重力加速度和火星对“萤火一号”的引力

解析:由于万有引力提供探测器做圆周运动的向心力,则有

2

12112()()Mm G m R h R h T π??=+ ?+??;2

22

222()()Mm

G m R h R h T π??=+ ?+??

,可求得火星的质量2323

1222

12

4()4()R h R h M GT GT ππ++==

和火星的半径R =,根据密度公式

得:333443M M M

V R R ρππ=

==。在火星表面的物体有2

Mm G mg R =,可得火星表面的重力加速度2GM

g R

=,故选项A 正确。

三、宇宙速度与同步卫星

人造卫星有三种宇宙速度:第一宇宙速度(环绕速度):是发射地球卫星的最小速度,也是卫星围绕地球做圆周运动的最大运行速度,大小为7.9 km/s 。第二宇宙速度(逃逸速度):是人造卫星挣脱地球束缚而成为一颗太阳的人造小行星的最小发射速度,大小为11.2 km/s 。第三宇宙速度(脱离速度):是人造卫星挣脱太阳的束缚而成为一颗绕银河系中心运行的小恒星的最小发射速度,大小为16.7 km/s 。三个宇宙速度的大小都是以地球中心为参考系的,人造卫星的理论发射速度在7.9 km/s 到11.2 km/s 之间,在此发射速度范围内,卫星绕地球作椭圆运动,其他星球上都有各自的宇宙速度,计算方法与地球相同。

例题1:关于第一宇宙速度,下列说法正确的是( AC ) A 、它是人造地球卫星绕地球作匀速圆周运动的最大速度。 B 、它是人造地球卫星在圆形轨道上的最小运行速度。 C 、它是能使卫星绕地球运行的最小发射速度。

D 、它是人造卫星绕地球作椭圆轨道运行时在近地点的速度。

例题2:(2020北京)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的(A )

A .质量可以不同

B .轨道半径可以不同

C .轨道平面可以不同

D .速率可以不同

点评:地球轨道同步卫星有四个特点:(1)同步卫星位于赤道正上方,轨道平面与赤道平面共面;

(2)同步卫星的轨道半径一定,距离地球表面的高度一定,约36000 km ;(3)同步卫星的运行周期和地球的自转周期相同,T =24 h ,且转动方向相同;(4)所有地球轨道同步卫星的半径、线速度大小、角速度大小及周期都相同,故A 正确。 针对练习1:(2020广东)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G 。有关同步卫星,下列表述正确的是( )

A.卫星距离地面的高度为

B.卫星的运行速度小于第一宇宙速度

C.卫星运行时受到的向心力大小为2Mm

G

R

D.卫星运行的向心加速度小于地球表面的重力加速度

解析:根据)()2()(22H R T m H R Mm G +=+π,A 错,由H R v m

H R Mm G +=+2

2

)(,B 正确,由mg H R Mm

G

=+2

)(,C 错D 对。选BD

针对练习2:同步卫星离地球球心的距离为r ,运行速率为v 1,加速度大小为a 1,地球赤道上的物体随地球自转的向心加速度大小为a 2,第一宇宙速度为v 2,地球半径为R 。则( B ) ① a 1:a 2=r :R

② a 1:a 2=R 2:r 2 ③ v 1:v 2=R 2:r 2

④ r R v v 21::=

A 、①③

B 、①④

C 、②③

D 、②④

解析:此题涉及三个物体,一是同步卫星,对应物理量a 1 v 1 r ;二是近地卫星,即第一宇宙速度对应的卫星,对应物理量v 2 R ;三是地面上的物体,对应物理量a 2 R 。

同步卫星和近地卫星都只受万有引力,对同步卫星有,22

2r v m r Mm G =,1

1r GM v =,

对近地卫星有,222R v m R Mm G =R GM

v =2所以,r R v v =21故④正确。对同步卫星和

地面上的物体,它们的角速度相同,由a=ω2r 知,a 1:a 2=r :R ,故①正确。此题易错之处是把a 2 ,v 2看成是同一个物体所对的物理量。 四、天体运动中的变轨问题

天体运动的变轨问题涉及变轨过程和变轨前后天体的稳定运动,主要讨论天体在不同轨道上运动过程中的速度、加速度、周期等相关物理的分析与比较,解题时应注意两个关键,一是变轨过程中两轨道相切点的特点,二是天体从低轨道变轨运动到高轨道时天体的机械能增加。

例题1:(10江苏卷)2020年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有

(A )在轨道Ⅱ上经过A 的速度小于经过B 的速度

(B )在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能 (C )在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 (D )在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度

解析:A 为轨道Ⅱ与轨道Ⅰ的相切点,距离地心的距离相等,故卫星在A 点处所受的万有引力大小相等,都为2r Mm G

F =,由ma r

Mm

G F ==2

知卫星从轨道Ⅱ和轨道Ⅰ上通过A 点时的加速相同故,D 错误。B 为轨道Ⅱ的近地点,A 为远地点,由开普勒定律知,在轨道Ⅱ上经过A 的速度小于经过B 的速度,故A 正确。 卫星由I 轨道变到II 轨道要减速,所以B 正确。

由的速度小于经过B 的速度。根据开普勒定律,c T

R =23

,12R R <,所以12T T <。C

正确。故正确答案为ABC 。

例题2:(10天津卷)探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比

A.轨道半径变小

B.向心加速度变小

C.线速度变小

D.角速度变小

解析:探测器变轨后在周期较小的轨道上运动,则可知探测器的轨道半径减小,A 对。

根据向ma T r m r m r V m r mM G ====222

224πω得r

GM v =,可知变轨后飞船的线速度变大,C 错;由3

r

GM =ω,角速度变大,D 错,由2

r GM

a =

向,向心加速度增大,B 错。本题答案A 。

针对练习1:2020年11月3日凌晨,中国自行研制的神舟八号飞船与天宫一号目标飞行器在距地球343公里的轨道实现自动对接,为建设空间站迈出关键一步。神舟八号飞船与天宫一号目标飞行器在同轨道上运动,若神舟八号飞船与天宫一号目标飞行器对接,为了追上天宫一号目标飞行器,飞船可采取的办法有( B ) A.飞船加速直到追上空间站完成对接

B.飞船从原轨道减速至一个较低轨道,再加速追上空间站对接

C.飞船从原轨道加速至一个较低轨道,再减速追上空间站对接

D.无论飞船采取什么措施,均不能与空间站对接

针对练习2:(09年山东卷)2020年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。下列判断正确的是

A .飞船变轨前后的机械能相等

B .飞船在圆轨道上时航天员出舱前后都处于失重状态

C.飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度

D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度

解析:飞船点火变轨,前后的机械能不守恒,所以A不正确。飞船在圆轨道上时万有引力来提供向心力,航天员出舱前后都处于失重状态,B正确。飞船在此圆

轨道上运动的周期90分钟小于同步卫星运动的周期24小时,根据

2

T

π

ω

=可知,飞

船在此圆轨道上运动的角度速度大于同步卫星运动的角速度,C正确。飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,D不正确。答案为BC。

五、天体运动中的星系问题

天体运动中的星系问题主要有“双星”系与“多星”系。“双星”系是两颗星相距较近,它们绕着连线上的共同“中心”以相同的周期做匀速圆周运动,它们之间的万有引力提供提供做圆周运动的向心力。分析“双星”问题时,一是要确定双星运动的中心,依据卫星做圆周运动的轨道平面,求出轨道半径;二是求出卫星做圆周运动的向心力,同时要注意双星运动的特点,即双星的运动周期相等,向心力大小相等。“多星”系有指“三星”或“四星”等几种情况,其特点是星系中某个卫星在其他星球的引力共同作用下绕中心作圆周运动,同一系统中各天体间的距离不变,各星受到的向心力不一定相等,但其运动周期一定相同。在星系问题中要注意区分两个半径,即由万有引力规律求向心力时的引力半径与卫星绕中心天体做圆周运动的轨道半径。

例题:(10全国卷1)如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。

已知A、B的中心和O三点始终共线,A和B分别在O的两侧。

引力常数为G。

1、求两星球做圆周运动的周期。

2、在地月系统中,若忽略其它星球的影响,可以将月球和地球

看成上述星球A和B,月球绕其轨道中心运行为的周期记为T

1

。但在近似处理问题

时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T 2。已知地球和月球的质量分别为5.98×1024kg 和 7.35 ×1022kg 。求T 2与T 1两者平方之比。(结果保留3位小数)

解析:⑴A 和B 绕O 做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 的向心力相等。且A 和B 和O 始终共线,说明A 和B 有相同的角速度和周期。因此有

R M r m 22ωω=,L R r =+,连立解得L M m m R +=

,L M m M

r += 对A 根据牛顿第二定律和万有引力定律得L m M M

T m L GMm +=22)2(π

化简得 )

(23

m M G L T +=π

⑵将地月看成双星,由⑴得)

(23

1m M G L T +=π

将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得

L T m L GMm 2

2

)2(π=

化简得 GM

L T 3

22π=

所以两种周期的平方比值为01.11098.51035.71098.5)(24

22

24212=??+?=+=M M m T T 例题2:(06广东物理卷)宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为m 。 (1)试求第一种形式下,星体运动的线速度和周期。

(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?

解析:(1)第一种形式下,以某个运动星体为研究对象,由万有引力定律和牛

顿第二定律,得:

F 1=

G 22R m F 2=G 2

2)

2(R m F 1+F 2=m R v 2

运动星体的线速度:v =

周期为T

,则有:24R T v ππ=

= (2)第二种形式星体之间的距离为r ,则三个星体作圆周运动的半径为R /为

R /=

?

30cos 2

r

由于星体作圆周运动所需的向心力靠两个星体的万有引力的合力提供,由万有引力定律和牛顿第二定律,得:

F 合=222

r

Gm cos30°

F 向=m /22

4R T

π

222cos30m G l °=2cos30r m o

22()T

π 所以星体之间的距离为:

r =六、卫星运动中的超失重问题

卫星的运动经常涉及卫星的发射、运行和回收三个过程,这三个过程中由于重力在不同的阶段起着不同的作用,卫星或其内部的物体会发生不同程度的超失重现象.卫星通过火箭发射升空过程中向上加速,出现超重现象;进入轨道运行后,万有引力全部用于提供向心力,出现完全失重现象;卫星在回收进入地面,减速下降,出现超重现象,在超失重现象中卫星所受重力不变。

例题1:关于“神舟七号”飞船的运动,下列说法中正确的是( )

A .点火后飞船开始做直线运动时,如果认为火箭所受的空气阻力不随速度变化,同时认为推力F(向后喷气获得)不变,则火箭做匀加速直线运动

B .入轨后,飞船内的航天员处于平衡状态

C .入轨后,飞船内的航天员仍受到地球的引力用,但该引力小于航天员在地面时受到的地球对他的引力

D .返回地面将要着陆时,返回舱会开启反推火箭,这个阶段航天员处于失重状态 解析:火箭上升过程中,离地越来越高,万有引力减小.根据牛顿第二定律F-f=ma ,加速度将改变,因此不是匀加速.入轨后,航天员与飞船一起绕地球做圆周运动,所以不是平衡状态而是完全失重状态.返回时,减速下降,超重.所以正确答案为C 。.

例题2:(06上海理综)一艘宇宙飞船在预定轨道上做匀速圆周运动,在该飞船的密封舱内,下列实验能够进行的是

解析:飞船在预定轨道上做匀速圆周运动,飞船内的一切物体都处于完全失重状态,与重力有关的现象现象都消失,故正确选项为C 。

点评:卫星处于完全失重状态时与重力有关的现象现象都消失,卫星或卫星上的物体所受地球引力全部作为环绕地球运动的向心力,因而不会产生与其他物体挤压、拉伸等形变效果。因此,卫星所携仪器凡工作原理与重力作用效果有关的,在卫星上均无法使用,其相关物理实验也不能完成,如天平称物体的质量,用弹簧秤测物体的重量,用打点计时器验证机械能守恒定律,用水银气压计测飞船上密闭仓内的气体压强等。

七、天体运动中的能量问题

天体运动中的能量问题主要涉及到天体的动能、所在轨道处引力势能及机械能,它们均与轨道半径有关。分析这类问题时要注意,当轨道半径大时,动能反而小,把卫星发射到高轨道过程中,克服引力做功多,所需的机械能也大,卫星在高轨道上的机械能比低轨道上机械能大,而卫星在同一轨道上运动时机械能认为是守恒的。 例题1:(2020全国卷1)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比, A .卫星动能增大,引力势能减小 B .卫星动能增大,引力势能增大 C .卫星动能减小,引力势能减小 D .卫星动能减小,引力势能增大

解析:周期变长,表明轨道半径变大,速度减小,动能减小,引力做负功故引力势能增大选D

针对练习1、(07北京卷)不久前欧洲天文学就发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”。该行星的质量是地球的5倍,直径是地球的1.5倍。设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为k1E ,在地球表面附近绕地球沿圆轨道运行的形同质量的人造卫星的动能为k2E ,则

k1

k2

E E 为( C ) A 、0.13 B 、0.3 C 、3.33 D 、7.5

解析:由万有引力提供向心力知,222R v m R Mm G = 则动能R

GMm

mv E k 2212==,若

地球质量为M,半径为R,则“格利斯581 c ”行星的质量M 1=5M,半径R 1=1.5R,代入数值得:33.35

.152

1==k k E E

针对练习2:(07全国卷Ⅱ)假定地球、月亮都是静止不动,用火箭从地球沿地月连线向月球发射一探测器。假定探测器在地球表面附近脱离火箭。用W 表示探测

器从脱离火箭处飞到月球过程中克服地球引力做的功,用k E 表示探测器脱离火箭时的动能,若不计空气阻力,则( BD )

A 、k E 必须大于或等于W ,探测器才能到达月球

B 、k E 小于W ,探测器也可能到达月球

C 、k E =

12W ,探测器一定能到达月球 D 、k E =1

2

W ,探测器一定不能到达月球

解析:设月球引力对探测器做的功为W 1,根据动能定理可得:-W +W 1=0-E k ,根据

22

1r

m m G

F =可知,F 地>F 月,W >W 1,故BD 选项正确。此题易错点之处,学生不能用动能定理列出方程,不能根据221r m

m G F =和W =Fscos α准确判断出W >W 1。

八、天体运动中的综合信息问题

宇宙是一片广袤的天地,随着科学家们对宇宙空间探索与研究深入,以宇宙探索为信息题材的试题也应运而生,此类试题以万有引力定律和天体运动为基石,要求考生能从题材中提取有效信息,建立合理的物理模型,注重考查了学生的知识迁移能力和信息处理的能力。

例题1:在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀学说”,宇宙是由一个大爆炸的火球开始形成的,大爆炸后各星球即以不同的速度向外运动。这种学说认为万有引力常量G 在缓慢地减小,根据这一理论,在很久很久以前,太阳系中地球的公转情况与现在相比( )

(A )公转半径r 较大 (B )公转周期T 较小 (C )公转速率v 较大 (D )公转角速度w 较小

解析:由于G 变小,万有引力变小,向心力不足,地球做离心运动,万有引力做负功,地球动能减少,因而速度减小,半径增大,A 对,C 错;根据开普乐定律可知,周期的平方与半径三次方之比还是常数,因而周期增大,B 错;由角速度与线速度、半径的关系,可知公转角速度减,D 对。正确答案为AD 。

例题2:已知物体从地球上的逃逸速度(第二宇宙速度)E

E

R GM v 22=

,其中

E E R M G 、、分别是引力常量、地球的质量和半径。已知

,kg /m N 1067.62

211??=-G s /m 109979.28?=c ,求下列问题:

(1)逃逸速度大于真空中光速的天体叫做黑洞。设某黑洞的质量等于太阳的质量M=1.98×1030kg ,求它的可能最大半径(这个半径叫Schwarzchild 半径)。 (2)在目前天文观察范围内,物质的平均密度为10-27kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c ,因此任何物质都不能脱离宇宙,问宇宙的半径至少多大?

解析:(1)由题目提供的信息可知,任何天体均存在其所对应的逃逸速度

R GM

v 22=

其中M 、R 为天体的质量和半径。对于黑洞模型来说,其逃逸速度大于真空中的光速,即v 2>c ,

所以,R <m 1094.2m )109979.2(1098.11067.62232

830

112?≈?????=-c GM ,

即质量为1.98×1030kg 的黑洞的最大半径约为2.94×103m 。

(2)把宇宙视为一普通天体,则其质量为3

34

R V M πρρ?==

其中R 为宇宙的半径,ρ为宇宙的平均密度,则宇宙所对应的逃逸速度为R

GM

v 22=

由于宇宙密度使得其逃逸速度大于光速c ,即v 2>c 。 则由以上三式可得

R >m 1001.4m 1067.61014.38)109979.2(3832611

272

82?≈??????=--G c πρ,合4.24×1010光年,即宇宙

的半径至少为4.24×1010光年。

点评:黑洞是爱因斯坦的广义相对论中预言的一种特殊天体,它的密度极大,对周围的物质(包括光子)有极强的吸引力。分析黑洞问题,一定要抓住其本质,黑洞其实也是个星球,只不过它的密度极大,靠近它的物体都被它的引力所约束,即使是光子也逃不出它的引力约束,光子到黑洞表面时也将被吸入,最多恰能绕黑洞表面

做圆周运动。

高中万有引力教案.doc

高中万有引力教案【篇一:高中物理《万有引力定律的应用》教案(1)】 万有引力定律的应用 【教育目标】 一、知识目标 1.了解万有引力定律的重要应用。 2.会用万有引力定律计算天体的质量。 3.掌握综合运用万有引力定律和圆周运动等知识分析具体问题的基 本方法。 二、能力目标 通过求解太阳、地球的质量,培养学生理论联系实际的能力。 三、德育目标 利用万有引力定律可以发现未知天体,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。 【重点、难点】 一、教学重点 对天体运动的向心力是由万有引力提供的理解 二、教学难点 如何根据已有条件求中心天体的质量 【教具准备】 太阳系行星运动的挂图和flash 动画、ppt 课件等。 【教材分析】 这节课通过对一些天体运动的实例分析,使学生了解:通常物体之 间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体 的质量很大,万有引力将起决定性作用,对天文学的发展起了很大 的推动作用,其中一个重要的应用就是计算天体的质量。 在讲课时,应用万有引力定律有两条思路要交待清楚. 1.把天体(或卫星)的运动看成是匀速圆周运动,即 f 引=f 向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及 半径等问题. 2.在地面附近把万有引力看成物体的重力,即 f 引=mg. 主要用于计算涉及重力加速度的问题。这节内容是这一章的重点,这是万有引力定律在实际中的具体应用.主要知识点就是如何求中心体质量及其他应用,还是可发现未知天体的方法。

【教学思路设计】 本节教学是本章的重点教学章节,用万有引力定律计算中心天体的 质量,发现未知天体显示了该定律在天文研究上的重大意义。 本节内容有两大疑点:为什么行星运动的向心力等于恒星对它的万 有引力?卫星绕行星运动的向心力等于行星对它的万有引力?我的 设计思想是,先由运动和力的关系理论推理出行星(卫 星)做圆周运动的向心力来源于恒星(行星)对它的万有引力,然 后通过理论推导,让学生自行应用万有引力提供向心力这个特点来 得到求中心天体的质量和密度的方法,并知道在具体问题中主要考 虑哪些物体间的万有引力;最后引导阅读相关材料了解万有引力定 律在天文学上的实际用途。 本节课我采用了“置疑-启发—自主”式教学法。教学中运用设问、提问、多媒体教学等综合手段,体现教师在教学中的主导地位。同 时根据本节教材的特点,采用学生课前预习、查阅资料、课堂提问;师生共同讨论总结、数理推导、归纳概括等学习方法,为学生提供 大量参与教学活动的机会,积极思维,充分体现教学活动中学生的 主体地位。 【教学过程设计】 一、温故知新,引入新课 教师:1、物体做圆周运动的向心力公式是什么? 2、万有引力定律的内容是什么,如何用公式表示? 3、万有引力和重力的关系是什么?重力加速度的决定式是什么? 【引导学生观看太阳系行星运动挂图和flash 动画】 教师:根据前面我们所学习的知识,我们知道了所有物体之间都存 在着相互作用的万有引力,而且这种万有引力在天体这类质量很大 的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体 拉到一起呢? 【设疑过渡】 教师:由运动和力的关系来解释:因为天体都是运动的,比如恒星 附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不 受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力, 将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做 圆周运动的向心力由恒星对它的万有引力提供。 本节课我们就来学习万有引力在天文学上的应用。

2018高考物理总复习专题天体运动的三大难点破解1深度剖析卫星的变轨讲义

拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 二、重难点提示: 重点:1. 卫星变轨原理; 2. 不同轨道上速度和加速度的大小关系。 难点:理解变轨前后的能量变化。 一、变轨原理 卫星在运动过程中,受到的合外力为万有引力,F 引=2 R Mm G 。卫星在运动过程中所需要的向心力为:F 向= R m v 2 。当: (1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引

运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。 2. 回收变轨 在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。 三、卫星变轨中的能量问题 1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。 2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。 注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。 3. 卫星变轨中的切点问题 【误区点拨】 近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。

高一物理万有引力章节检测

高一物理 《万有引力》 班级:__________ 姓名: _______________ 学号:______ 1.下列说法符合史实的是( ) A .牛顿发现了行星的运动规律 B .开普勒发现了万有引力定律 C .卡文迪许第一次在实验室里测出了万有引力常量 D .牛顿发现了海王星和冥王星 2. 下列说法正确的是( ) A. 第一宇宙速度是人造卫星环绕地球运动的速度 B. 第一宇宙速度是人造卫星在地面附近绕地球做匀速圆周运动所必须具有的速度 C. 如果需要,地球同步通讯卫星可以定点在地球上空的任何一点 D. 地球同步通讯卫星的轨道可以是圆的也可以是椭圆的 3. 关于环绕地球运转的人造地球卫星,有如下几种说法,其中正确的是( ) A. 轨道半径越大,速度越小,周期越长 B. 轨道半径越大,速度越大,周期越短 C. 轨道半径越大,速度越大,周期越长 D. 轨道半径越小,速度越小,周期越长 4. 两颗质量之比4:1 :21=m m 的人造地球卫星,只在万有引力的作用之下,环绕地球运转。如果它们的轨道半径之比1: 2:21=r r ,那么它们的动能之比21:k k E E 为( ) A. 8:1 B. 1:8 C. 2:1 D. 1:2 5、科学家们推测,太阳系的第十颗行星就在地球的轨道上,从地球上看,它永远在太阳的背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息可以确定:( ) A.这颗行星的公转周期与地球相等 B .这颗行星的半径等于地球的半径 C.这颗行星的密度等于地球的密度 D .这颗行星上同样存在着生命 6.关于开普勒行星运动的公式23 T R =k ,以下理解正确的是( ) A.k 是一个与行星无关的常量 B.若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则2323月月地地 T R T R = C.T 表示行星运动的自转周期 D.T 表示行星运动的公转周期 7.若已知行星绕太阳公转的半径为r ,公转的周期为T ,万有引力恒量为G ,则由此可求出( )

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

2021届全国高三高考物理第二轮专题练习之万有引力(新人教)

万有引力与航天 1.某人造卫星运动的轨道可近似看作是以地心为中心的圆。由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用E k1、E k2分别表示卫星在这两个轨道上的动能,则() A.r1<r2,E k1<E k2B.r1>r2,E k1<E k2 C.r1>r2,E k1>E k2D.r1<r2,E k1>E k2 2.一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量() A.飞船的轨道半径 B.飞船的的运行速度 C.飞船的运行周期 D.行星的质量 3.已知引力常量G、月球中心到地球中心的距离R和月球绕地球运行的周期T。仅利用这三个数据,可以估算出的物理量有()A.月球的质量 B.地球的质量 C.地球的半径 D.月球绕地球运行速度的大小 4. 据报道,最近在太阳系外发现了首颗“宜居”行星,起质量约为地球质量的6。4倍一个在地球表面重量为600N的人在这个行星表面的

重量将变为960N ,由此可推知,该行星的半径与地球半径之比约为( ) A 0.5 B 2 C 3.2 D 4 5.根据观察,在土星外层有一个环,为了判断环是土星的连续物还是小卫星群。可测出环中各层的线速度V 与该层到土星中心的距离R 之间的关系。下列判断正确的是: A.若V 与R 成正比,则环为连续物; B.若V 2与R 成正比,则环为小卫星群; C.若V 与R 成反比,则环为连续物; D.若V 2与R 成反比,则环为小卫星群。 6.据报道,我国数据中继卫星“天链一号Ol 星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经770赤道上空的同步轨道。关于成功定点后的“天链一号01星”,下列说法正确的是 A. 运行速度大于 7.9 km /s B.离地面高度一定,相对地面静止 C. 绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等 7.火星的质量和半径分别约为地球的101和2 1 ,地球表面的重力加速度为g ,则火星表面的重力加速度约为 A .0.2g B .0.4g C .2.5g D .5g 8.图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次

高一物理万有引力定律测试题及答案

万有引力定律测试题 班级姓名学号 一、选择题(每小题中至少有一个选项是正确的,每小题5分,共40分) 1.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体() A.不受地球引力作用 B.所受引力全部用来产生向心加速度 C.加速度为零 D.物体可在飞行器悬浮 2.人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是() 不变,使线速度变为 v/2 不变,使轨道半径变为2R D.无法实现 3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以() A.地球表面各处具有相同大小的线速度 B.地球表面各处具有相同大小的角速度 C.地球表面各处具有相同大小的向心加速度 D.地球表面各处的向心加速度方向都指向地球球心 4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍 C.两人都在赤道上,两卫星到地球中心的距离一定相等 D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍 5.设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是 ( ) 6.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的() A:环绕半径 B:环绕速度 C:环绕周期 D:环绕角速度 7.假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[ ] q2 q

高中物理万有引力定律(教学设计)

高中物理必修二第六章第三节 【教材分析】 万有引力定律是本章的核心,从内容性质与地位上看,本节内容是对上一节“太阳与行星间的引力”的进一步外推,即:从天体运动推广到地面上任何物体的运动;又是下一节掌握万有引力理论在天文学上应用的学习的基础。本节重点内容是理解万有引力定律的推导思路和过程,掌握万有引力定律的内容及表达公式,知道万有引力定律得出的意义,知道任何物体间都存在着万有引力,且遵循相同的规律。本节难点是物体间距离的理解。另外本节内容还注重是对学生“科学方法”教育和“情感态度与价值观”的教育:使学生认识科学研究过程中根据事实和分析推理进行猜想、假设和检验的重要性,培养学生的推理能力、概括能力和归纳总结能力;本节结合“月—地检验”,经历思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力;使学生学习科学家们坚持不懈、勇往直前和一丝不苟的工作精神,培养学生良好的学习习惯和善于探索的思维品质。 【学情分析】 上节内容中,学生用所学的“圆周运动”、“开普勒行星运动定律”和“牛顿运动定律”知识,经历了一系列科学探究过程,得出了太阳与行星间的引力特点,学生对天体运动的研究产生了极大的兴趣和求知欲。本节课教师再引导学生从太阳与行星间引力的规律出发,根据类比事实将“平方反比关系”的作用力进行猜想,假设和推广,从太阳对行星的引力到地球对月球的引力,再到任意物体间的吸引力都满足“平方反比的关系”。学生会带着好奇和探究意识以及必要的检验论证,一路探究下去,最终得出万有引力定律。使学生在理解掌握万有引力定律的基础上,培养了探究思维能力和良好的思维品质,为学生终身发展打下基础。 【教学流程】 【教学目标】 一、知识与技能 1.理解万有引力定律的推导思路和过程。

高三物理万有引力练习

高三物理磁场专项练习 姓名:___________班级:___________考号:___________ 一、解答题 1.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收。一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁 场中的运动半径R0=0.08m,若粒子重力不计、比荷q m =108C/kg、不计粒子间的相互作用力及电场的边缘效应。 sin53°=0.8,cos53°=0.6。 (1)求粒子的发射速度v的大小; (2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η。 2.如图,平面直角坐标系中,在,y>0及y<-3 2 L区域存在场强大小相同,方向相反均平行于y轴的匀强电 场,在-3 2 L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒 子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(3 2 L,0)进入 磁场。在磁场中的运转半径R=5 2 L(不计粒子重力),求: (1)粒子到达P2点时的速度大小和方向; (2)E B ; (3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期。3.如图所示,左侧正方形区域ABCD有竖直方向的匀强电场和垂直纸面方向的磁场,右侧正方形区域CEFG 有电场,一质量为m,带电量为+q的小球,从距A点正上方高为L的O点静止释放进入左侧正方形区域后做匀速圆周运动,从C点水平进入右侧正方形区域CEFG.已知正方形区域的边长均为L,重力加速度为g,求:(1)左侧正方形区域的电场强度E1和磁场的磁感应强度B; (2)若在右侧正方形区域内加竖直向下的匀强电场,能使小球恰好从F点飞出,求该电场场强E2的大小;(3)若在右侧正方形区域内加水平向左的匀强电场,场强大小为3 kmg E q (k为正整数),试求小球飞出该区域的位置到G点的距离. 4.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。现使一个电量大小为q、质量为m的带正电粒子从坐标(﹣2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。 (1)求粒子经过原点时的速度; (2)求磁感应强度B的所有可能取值 (3)求粒子从出发直至到达P点经历时间的所有可能取值。

高一物理万有引力计算题练习

M N 万有引力基础练习 1.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T 。求: (1) 该行星的质量。 (2) 测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加 速度有多大? 2、宇航员到达某行星表面后,用长为L 的细线拴一小球,让球在竖直面内做圆周运动。他测得当球通过最高点的速度为v 0时,绳中张力刚好为零。设行星的半径为R 、引力常量为G ,求: (1)该行星表面的重力加速度大小;(2)该行星的质量;(3)在该行星表面发射卫星所需要的最小速度。 3.一颗人造卫星的质量为m ,离地面的高度为h ,卫星做匀速圆周运动,已知地球半径为R ,地球表面重力加速度为g ,求: (1)卫星受到的向心力的大小 (2)卫星的速率 (3)卫星环绕地球运行的周期 4.2007年10月24日,中国首颗探月卫星“嫦娥一号”从西昌卫星发射中心发射升空,11月26日,中国第一幅月图完美亮相,中国首次月球探测工程取得圆满成功.我国将在2017年前后发射一颗返回式月球软着陆器,进行首次月球样品自动取样并安全返回地球。假设探月宇航员站在月球表面一斜坡上的M 点,并沿水平方向以初速度v 0抛出一个质量为m 的小球,测得小球经时间t 落到斜坡 上另一点N ,斜面的倾角为 ,已知月球半径为R ,月球的质量分布均匀,万有引力常量为G ,求: (1)月球表面的重力加速度/g ; (2)人造卫星绕月球做匀速圆周运动的最大速度.

5、我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行。设卫星距月球表面的高度为h ,做匀速圆周运动的周期为T 。已知月球半径为R ,引力常 量为G ,球的体积公式343 V R π=。求: (1)月球的质量M ; (2)月球表面的重力加速度g 月; (3)月球的密度ρ。 6、我国通信卫星的研制始于70年代331卫星通信工程的实施,到1984年4月,我国第一颗同步通信卫星发射成功并投入使用,标志着我国通信卫星从研制转入实用阶段.现正在逐步建立同步卫星与“伽利略计划”等中低轨道卫星等构成的卫星通信系统. (1)若已知地球的平均半径为R 0,自转周期为T 0,地表的重力加速度为g ,试求同步卫星的轨道半径R ; (2)有一颗与上述同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径R 的四分之一,试求该卫星的周期T 是多少? (计算结果只能用题中已知物理量的字母表示) 7、据中国月球探测计划的有关负责人披露,未来几年如果顺利实现把宇航员送入太空的目标,中国可望在2010年以前完成首次月球探测.一位勤于思考的同学为探月宇航员设计了如下实验:在距月球表面高h 处以初速度v0水平抛出一个物体,然后测量该平抛物体的水平位移为x ,通过查阅资料知道月球的半径为R,引力常量为G ,若物体只受月球引力的作用,请你求出: (1)月球表面的重力加速度; (2)月球的质量; (3)环绕月球表面运动的宇宙飞船的速率是多少?

人教版必修二《万有引力定律》教案

人教版必修二《万有引力定律》教案万有引 力定律》 教学设计

2012-03-09 万有引力定律 教学设计 【教材分析】 通过学习太阳与行星间的引力,探究地球与月球、地球与地面上的物体之间的作用力是否与太阳与行星间的作用力是同一性质的力,从而得出了万有引力定律。由万有引力定律得到的一系列科学发现,不仅验证了万有引力定律的正确性,而且表明了自然界和自然规律是可以被认识的。万有引力定律是所有有质量的物体之间普遍遵循的规律,引力常量的测定不仅验证了万有引力定律的正确性,而且使得万有引力定律能进行定量计算,显示出真正的实用价值。 教学过程中的关键是对万有引力定律公式的理解,知道公式的适用条件。教学中可灵活采用教学方法以便加深对知识的理解,比如讲授法、讨论法等。 教学重点万有引力定律的理解及应用. 教学难点万有引力定律的推导过程. 课时安排1课时 三维目标 知识与技能 1、了解万有引力定律得出的思路和过程. 2、理解万有引力定律的含义并掌握用万有引力定律计算引力的方法. 3、记住引力常量G并理解其内涵. 过程与方法 1、了解并体会科学研究方法对人们认识自然的重要作用. 2、认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法. 情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性。 【教学过程】 导入新课(故事导入) 1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一颗树下,开始埋头读他的书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如下图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律. 这节课我们将共同“推导”一下万有引力定律.

高考物理万有引力专题练习

万有引力专题训练 一、 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律 可知( ) A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行的速度大小始终相等 C.火星与木星公转周期之比的平方等于它们的轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 2.某行星沿椭圆轨道运动,近日点离太阳中心距离为a ,远日点离太阳 心距离为b ,该行星过近日点时的速率为a v ,则过远日点时速率b v 为( ) A. a bv a B.a v b a C.b av a D.a v a b 3.人造卫星A 、B 绕地球做匀速圆周运动,A 卫星的运行周期为3小时, A 的轨道半径为B 的轨道半径的1/4,则B 卫星运行的周期大约是( ) A.12小时 B.24小时 C.36小时 D.48小时 4.如图,0表示地球,P 表示一个绕地球沿椭圆轨道做逆时针方向运动的人造 卫星,AB 为长轴,CD 为短轴.在卫星绕地球运动一周的时间内,从A 到B 的时间为AB t ,同理,从B 到A 、从C 到D 、从D 到C 的时间分别为DC CD BA t t t 、、,下列关系式正确的是( ) A. AB t >BA t B.AB t DC t D. CD t

二、 1.关于万有引力定律的建立,下列说法中正确的是( ) A.卡文迪许仅根据牛顿第三定律推出了行星与太阳间引力大小跟行星与太阳间距离的平方成反比的关系 B.“月—地检验”表明物体在地球上受到地球对它的引力是它在月球上受到月球对它的引力的60倍 C.“月—地检验”表明地面物体所受地球的引力与月球所受地球的引力遵从同样的规律 D.引力常量G 的大小是牛顿根据大量实验数据得出的 2. 设地球自转周期为T,质量为M,引力常量为G.假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比 为( ) A.32224R GMT GMT π- B.32224R GMT GMT π+ C.23224GMT R GMT π- D.23224GMT R GMT π+ 3.关于万有引力定律公式2 21r m m G F =,以下说法中正确的是( ) A.公式只适用于星体之间的引力计算,不适用于质量较小的物体 B.当两物体间的距离趋近于零时,万有引力趋近于无穷大 C.两物体间的万有引力也符合牛顿第三定律 D.公式中引力常量G 的值是牛顿规定的 4.下列说法中符合物理史实的是( ) A.伽利略发现了行星的运动规律,开普勒发现了万有引力定律 B.哥白尼创立了“地心说”,“地心说”是错误的,“日心说”是正确的,太阳是宇宙的中心 C.牛顿首次在实验室里较准确地测出了引力常量 D.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律 5.(多选)宇宙中存在着由四颗星组成的孤立星系如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( ) A.每颗小星受到的万有引力为(2 3+9)F B.每颗小星受到的万有引力为(3+9)F C.母星的质量是每颗小星质量的3倍

高中物理《万有引力定律》知识点

高中物理《万有引力定律》知识点 万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。 两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=Gmm/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。 万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,

(太阳的质量m)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量m,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。 如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=Gmm/r^2 两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。 重力,就是由于地面附近的物体受到地球的万有引力而产生的。 任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称

第四节万有引力理论的成就备课备课教案

第三章第三节万有引力定律的应用教学设计 课标分析: 本节课是在学习了万有引力定律的基础上,应用万有引力定律求解天体的质量和发现新的天体等,让学生感受万有引力定律经受了实践的检验及其取得的巨大成功,进而理解万有引力理论的巨大作用和价值。 教材分析: 本节内容是这一章的重点,是万有引力定律在实际中的具体应用,利用万有引力定律除了可求出中心天体的质量外,还可发现未知天体。本节是“应用+检验”性的内容,着重讲清应用思路,通过本节课的学习,重点要使学生深刻体会科学定律对人类探索未知世界的作用,激起学生对科学探究的兴趣,培养学生热爱科学的情感。 学生分析: 学生要运用已有的概念和知识以及力和运动之间的关系,根据实际问题建立合理的物理模型,通过归纳总结、逻辑推理来解决问题。 教学目标: 知识与技能: 1、了解万有引力定律在天文学上的重要应用。 2、会用万有引力定律计算天体的质量。 过程与方法: 1、理解运用万有引力定律处理天体问题的思路、方法,体会科学定律的意义。 2、了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理问题的思路方法。 情感、态度与价值观: 1、通过测量天体的质量、预测未知天体的学习活动,体会科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用。 2、通过对天体运动规律的认识,了解科学发展的曲折性,感悟科学是人类进步的动力。 教学重难点: 重点:运用万有引力定律和圆周运动公式计算天体的质量。 难点:在具体的天体运动中应用万有引力定律解决问题。 教学安排:1课时 教学方法:问题驱动法、小组合作互动探究法 教学资源:多媒体课件、学生学习学案 教学过程:

高三一轮专题复习:天体运动知识点归类解析

天体运动知识点归类解析 【问题一】行星运动简史 1、两种学说 (1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。支持者托勒密。 (2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。(3).两种学说的局限性 都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。 2、开普勒三大定律 开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。1600年,到布拉格成为第谷的助手。次年第谷去世,开普勒成为第谷事业的继承人。 第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。并将老师第谷的数据结果归纳出三条著名定律。 第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫 过的面积相等。 如图某行星沿椭圆轨道运行,远日点离太阳的距离为a,近日

点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v 由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ?,则有: t bv t av b a ?=?2 1 21① 所以 b a v v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。②式也当之无愧的作为第二定律的数学表达式。 第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。 用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23 ,k 与中心天体的质量有 关即k 是中心天体质量的函数)(23 M k T a =①。不同中心天体k 不同。今天我们可以由万有 引力定律证明:r T m r Mm G 2234π=得2234πGM T r =②即2 4)(π GM M k =可见k 正比与中心天体的质量M 。 ①式)(23 M k T a =是普遍意义下的开普勒第三定律多用于求解椭圆轨道问题。 ②式2 234πGM T r =是站在圆轨道角度下得出多用于解决圆轨道问题。为了方便记忆与区分我 们不妨把①式称为官方版开三,②式成为家庭版开三。 【问题二】:天体的自转模型 1、重力与万有引力的区别

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

万有引力定律教案_物理_教学设计_人教版资料讲解

万有引力定律教案_物理_教学设计_人教版

万有引力定律教学设计 (张格丽宝鸡中学 721013) 【教材版本】 新课标人教版高中物理必修2第六章第3节 【设计理念】 1.本课设计中,力求为学生创造一个良好的学习探究场所,课堂中教师不再是一个主讲者,而是课堂教学的组织者和参与者,和学生一起去感受、认识、探索、分析、概括。 2.科学探究既是学生的学习目标,又是重要的教学方式之一。引导学生对问题的学习、探究,养成良好的评价习惯,在取得成功喜悦的同时,培养学生分析问题、发现不足、纠正错误的严谨的科学态度。让学生知道解决物理问题常采用这种方法,即提出问题,猜想和假设,实验、检验,得出结论。 【教材分析】 万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造性而又严谨的科学思维,是发展学生思维能力难得的好材料,本节课内容充分利用这些材料发展学生的科学思维能力。教科书在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础身于历史的背景下,经历一次“发现”万有引力的过程: 收集于网络,如有侵权请联系管理员删除

从上述物理学史进程中,可以看出《万有引力定律》这节内容是对上两节课教学内容的进一步推演,并与之构成本章的第一单元内容。同时,本节内容也是下节课 教学内容的基础,是本章 的教学重点,在高中物理中占有重要地位。 【学情分析】 1.原有认知发展分析 从知识结构来看,在学习万有引力定律前,学生已经对力、重力、向心力、太阳对行星的引力、加速度、重力加速度(即自由落体运动的加速度)、向心加速度等概念有了较好的理解,并且掌握了自由落体运动和圆周运动等运动规律,能熟练运 用牛顿运动定律解决动力学问题。已经 完全具备深入探究和学习万有引力定律的能力。 2.原有知识结构分析 从知识建构的历史进程来看,在上一节中学生经历了太阳与行星间引力的探究过程,其中向学生渗透了发现问题、提出问题、猜想假设、推理论证等方法思想,依照学生的认知心理特点,同时根据上节课“说一说”中的问题,很容易在他们脑中形成这样一个问题:太阳与行星间引力规律是否适用于我们与地球间的相互作用?从而为我们进一步演绎万有引力定律“发现之旅”, 确定了转接点,也引入本节新课内容。 3.非认知因素分析 收集于网络,如有侵权请联系管理员删除

(完整版)高中物理万有引力部分知识点总结

高中物理——万有引力与航天 知识点总结 一、开普勒行星运动定律 (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。 3.适用条件: 严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但

此时r应为两物体重心间的距离。对于均匀的球体,r是两球心间的距离。 三、万有引力定律的应用 1.解决天体(卫星)运动问题的基本思路 (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式: F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM. 2.天体质量和密度的估算 通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3). (1)若已知天体的半径R,则天体的密度 ρ=V(M)=πR3(4)=GT2R3(3πr3) (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π) 可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度. 3.人造卫星 (1)研究人造卫星的基本方法

天体运动专题例题练习测试

精心整理 3.已知地球的同步卫星的轨道半径约为地球半径的6.0倍,根据你知道的常识,可以估算出地球到月球的距离,这个距离最接近() A .地球半径的40倍 B .地球半径的60倍 C .地球半径的80倍 D .地球半径的100倍 10据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是 A.运行速度大于7.9 km/s B.离地面高度一定,相对地面静止 C.绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等 4.宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部的最低点,静止一质量为m 的小球(可视为质点),如图所示,当给小球水平初速度υ0时,刚好能使小球在竖直平面内做完整的圆周运动。已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G 。若在月球表面上发射一颗环月卫星,所需最小发射速度为() A . Rr r 550 υ B . Rr r 52 0υ C . Rr r 50 υ D . Rr r 552 0υ 3.(6分)(2015?红河州模拟)“神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知飞船的质量为m ,地球半径为R ,地面处的重力加速度为g .则飞船在上述圆轨道上运行的动能E k ( ) A . 等于mg (R+h ) B . 小于mg (R+h ) C . 大于mg (R+h ) D . 等于mgh 7(2015沈阳质量检测).为了探测x 星球,总质量为1m 的探测飞船载着登陆舱在以该星球中心为圆心的圆轨道上运动,轨道半径为1r ,运动周期为1T 。随后质量为2m 的登陆舱脱离飞船,变轨到离星球更近的半径为2r 的圆轨道上运动,则 A .x 星球表面的重力加速度2 11214T r g π= B .x 星球的质量2 13 124GT r M π= C .登陆舱在1r 与2r 轨道上运动时的速度大小之比 1 22 121 r m r m v v = D .登陆舱在半径为2r 轨道上做圆周运动的周期131 3 22T r r T =

《万有引力定律》教学设计【高中物理必修2(人教版)教案】

《6.3万有引力定律》教学设计 ● 教学模式介绍 “传递-接受”教学模式源于赫尔巴特的四段教学法,后来由前苏联凯洛夫等人进行改造传入我国。在我国广为流行,很多教师在教学中自觉不自觉地都用这种方法教学。该模式以传授系统知识、培养基本技能为目标。其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量。该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性。 “传递-接受”教学模式的课程环节: 复习旧课——激发学习动机——讲授新知识——巩固运用——检查评价——间隔性复习 ● 设计思路说明 一、新课程标准倡导学生自主学习,重视学生科学探究,在“科学探究”中学生自己不断发现问题、解决问题、体会科学方法、学会交流合作及通过集体的智慧解决问题。我将发现万有引力定律的过程设计为教师引导和学生探究先后结合的方法。“地球对月球的力、地球对地面上物体的力、太阳对行星的力,真是同一种力吗?”这个过程中所涉及到的逻辑思维和数学推导给学生带来的困难则由教师适时引导。当学生亲自动手,计算出月球轨道上物体运动的加速度就是地面物体下落加速度的2601 倍时,学生一定会由衷地感叹自然界的和 谐统一和科学的无穷魅力。 二、万有引力定律既是一个独立的科学定律,又是牛顿经典力学体系的重要组成部分。是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,是自然界的物体间的基本相互作用之一.对人类认识和探索未知世界有着重要的意义。教学中要让学生知道学习万有引力定律不只是用来做几道题,而是一个人科学素养的具体体现。 三、我让学生查找关于卡文迪许的资料、做成ppt 并让两到三组同学在课堂展示。增加学生的学习兴趣,同时锻炼学生的语言组织能力和表达能力。四、将不易测量的微小量转化为可测量的物理量的方法是物理学中重要且常用的研究方法。通过卡文迪许扭秤实验对学生进行的物理思想和科学方法的渗透。同时也能说明科学实验是发现科学真理的基础,也是检验科学真理的唯一标准。 ● 教材分析 万有引力定律是本章的重点知识,,本节内容是对上两节教学内容的进一步延伸,是下

相关主题
文本预览
相关文档 最新文档