当前位置:文档之家› 射影几何与解析几何

射影几何与解析几何

射影几何与解析几何
射影几何与解析几何

第十章:射影几何与解析几何

第一节射影几何

一、历史背景

1566年,科曼迪诺(F.Commandino,1509—1575)把阿波罗尼奥斯(Apollonius)的《圆锥曲线论》(Conics)前四卷译成拉丁文,引起了人们对几何的兴趣,几何上的创造活动开始复兴.在短短几十年的时间里,便突破传统几何的局限,产生了一门崭新的学科——射影几何.由于新学科把无穷远点及图形连续变动的思想引入数学,它实际上已迈入高等数学的门槛.射影几何直接起源于透视法,而透视法是与绘画艺术分不开的.在中世纪,画家的主要任务是颂扬上帝和为圣经插图.但到了文艺复兴时期,描绘现实世界逐渐成为绘画的目标了.为了在画布上忠实地再现大自然,就需要解决一个数学问题:如何把三维的现实世界反映到二维的画布上.意大利的建筑师兼数学家阿尔贝蒂(L.B.Alberti,1404—1472)认真考虑了这一问题.他在1435年写成的《论绘画》(Dellapittura,1511年出版)一书中阐述了这样的思想:在眼睛和景物之间插进一张直立的玻璃板,并设想光线从眼睛出发射到景物的每一个点上,这些线叫投影线.他设想每根线与玻璃板交于一点,这些点的集合叫做截景.显然,截景给眼睛的印象和景物本身一样,所以作画逼真的问题就是在玻璃板(实际是画布)上作出一个真正的截景.

例如,人眼在O处观察水平面上的矩形ABCD、(图10.1)时,从O到矩形各点的连线形成一投影棱锥,其中OA,OB,OC,OD是四根典型的投影线.若在人眼和矩形间插入一平面,并连结四条线与平面的交点A′,B′,C′,D′,则四边形A′B′C′D′为矩形ABCD的截景.由于截景对人眼产生的视觉印象和原矩形一样,它们必然有相同之处.但从直观上看,截景和原形既不全等又不相似,也不会有相同的面积,截景甚至并非矩形.那么,截景与原形究竟有什么共性呢?这正是阿尔贝蒂苦苦思索而未找到答案的

问题.

阿尔贝蒂还考虑到:如果在眼睛和景物之间插进两张玻璃板,它们上面的截景将是不同的;如果从两个不同位置来观察景物,截景也将是不同的.但所有截景都反映同一景物,它们之间必存在某种关系.于是他进一步提出问题:同一景物的任意两个截景间有什么数学关系,或者说有什么共同的数学性质?他留给后人的这些问题成为射影几何的出发点.

二、德扎格的工作

射影几何的创始人是法国的建筑师德扎格(G.Desargues,1591—1661).1639年,他发表了一本重要著作《试论圆锥与平面相交结果》(Brouillon projet dune atteinte aux événements des rencontres du cone avec un plan).这部书推动了19世纪射影几何的蓬勃发展,被公认为这一学科的经典.但它在发表之初,却没有受到数学家们的重视.德扎格把书印了50份,分送给他的朋友,不久便全部散失了.直到1845年,沙勒(M.Chasles,1793—1880)才偶然发现了一个手抄本,由波德(N.G.Poudra)加以复制,使德扎格的射影几何成果复明于世,1950年左右,这部书的一个原版本终于在巴黎被发现,并复制发行.

为什么德扎格的书在当时被忽略呢?主要有两个原因.一是它被差不多同时出现的解析几何掩盖了.从思想的深刻来讲,德扎格是可以和笛卡儿媲美的.但笛卡儿的解析几何是用代数方法研究几何问题,可以迅速得到数量结果,而射影几何主要是对几何的定性研究.当时的技术发展更需要解析几何这样的有力工具.第二个原因是,德扎格的写作形式比较古怪,他引进了70个新术语,其中多是从植物学借用的.例如,他用棕(Palm)、干、树来表示三种不同性质的直线.这类语句及不易理解的思想,使他的书难于阅读.除了笛卡儿、帕斯卡、费马等几位大数学家外,很少有人欣赏他的著作.德扎格数学思想的出色之处,首先在于他引进了无穷远点和无穷远线.阿尔贝蒂曾指出,画面上的平行线应画成交于一点,除非它们平行于玻璃板(图10.1).例如,图10.1中的B′C′和A′D′便相交于某点O′,这一点不和BC或AD上任何普通的点对应,所以叫没影点,而除O′外的直线B′C′或A′D′上的任何点,都对应着BC或AD上某个确定的点.为了使B′C′与BC上的点以及A′D′与AD上的点有完全的对应关系,德扎格在AD及BC上引入一个新的点,叫做无穷远点,把它看作两平行线的公共点.所有平行于BC的直线都交于这一点,方向不同于BC的另外一组平行线则有另外一个公共的无穷远点.由于平行线组的数目是无穷的,德扎格实际是在平面上引入了无穷多的新点.他假定所有这些点都在同一直线上,而这直线则对应于截景上的水平线或没影线(即图10.1中的OO′).以这种新规定为前提,我们就可以断言“平面上任意两直线必交于一点”了,因为不平行线交于普通点而平行线交于无穷远点.

引入了无穷远点和无穷远线后,德扎格研究了这样的问题:设有点O(图10.2)及三角形ABC,则OB,OC,OA可看作三条投影线,ABC的一个截景为A′B′C′,其中A与A′对应,B与B′对应,C与C′对应.显然,AA′,BB′和CC′交于一点O,设AB与A′B′交于Q,AC与A′C′交于P,BC与B′C′交于R,德扎格证明了:Q,P,R必在一条直线上.这就是著名的德扎格定理:若两个三角形对应顶点连线共点,则对应边交点共线.不管两个三角形是否在同一平面,定理都是成立的,逆定理也同样成立.德扎格在书中对二维和三维情况的正、逆定理都作了证明.

在深入研究投影性质的基础上,德扎格终于回答了阿尔贝蒂早就提出的问题:同一实物的两个截景间有什么数学关系?这实质是一个投影下的不变性问题.德扎格发现:交比在投影下是不

变的.所谓交比,是指直线上依次排列的四点A,B,C,D所形成的

德扎格的理论,若OA,OB,OC,OD是四条投影线,l

1和l

2

是l

德扎格在书中还引入对合的概念:若一条直线上的三对点B,H;D,F;C,G具有如下关系

则称这三对点是对合的;当D=F且C=G时,上式变成

这就给出两对点(B,H;D,C)对合的定义,它可以看作三对点对合的特殊情况.至于三对点以上的对合,完全是以三对点对合为依据来定义的.例如,当B,H;D,F;C,G;M,N具有如下关系

时,则称这四对点是对合的,依此类推.德扎格发现了一个重要事实:对合关系也是投影下的不变量.他证明了许多有关对合的定理,下面一个是十分著名的.为了介绍这个定理,我们先介绍完全四边形的概念.设B,C,D,E是平面上任意四点,其中没有三点共线.EB与DC交于F,BC与ED交于N,则EN,BN,EF,DF,EC,BD六条线形成完全四边形的各边,其中EN 和BN是对边,EF和DF是对边,BD和EC也是对边.德扎格的定理为:若B,C,D,E在一圆上,直线PM交完全四边形各组对边于P,Q;I,K;以及G,H,交圆于L,M,那么这四组点是对合的(图10.4)①.

德扎格把他的射影几何思想用于圆锥曲线,得到许多新颖的结果:直线

可以看作具有无限长半径的圆的一部分;焦点相合的椭圆退化为圆;焦点之一在无穷远的椭圆是一抛物线,等等.他不再把圆锥曲线看作圆锥与平面的交线,而是理解为圆的截景.圆不仅可以变换为椭圆,而且可以变换为开口的抛物线或双曲线,这时的曲线仍看作封闭的,只不过是一个点在无穷远而已.德扎格力图用投射、截景等射影几何概念统一处理各种圆锥曲线,从而为圆锥曲线的研究开辟了广阔的前景.例如上面介绍过的关于对合的定理,德扎格便通过投影法推广到一般圆锥曲线,因为圆的截景可以是任意的圆锥曲线,而对合关系在投影后是不变的.从而揭示了圆锥曲线的一个重要性质.

三、帕斯卡的工作

帕斯卡(B.Pasca l,1623—1662) 是德扎格的学生,仅仅活了39岁.他是一位了不起的天才,在微积分、概率、代数、射影几何等方面都作出了引人注目的贡献,他是手摇计算机的发明者,还是法国著名的文学家,物理方面的成就也不少.这里着重谈他的射影几何方面的工作.

帕斯卡从12岁起就对几何发生了兴趣,并发现了一些初等几何的定理.14岁时参加了巴黎数学家的每周聚会,他在这里得到德扎格的指导,逐渐熟悉了德扎格的射影几何思想.德扎格建议他用射影法研究二次曲线,他接受了这个建议.16岁那年(1639),帕斯卡写成一本约八页的小册子《略论圆锥曲线》(Essay pour l es coniques).大数学家笛卡儿看过以后,觉得如此出色,竟然不相信它是一个这样年轻的人写的.遗憾的是这本书不久便失传了,直到1779年才被重新发现.

帕斯卡的书中最著名的结果是下述定理:若一个六边形内接于一圆锥曲线,则每两条对边相交而得的三点在同一直线上.如图10.5,P,Q及R在同一直线上.若六边形的对边两两平行,则P,Q,R在无穷远线上.该定理被后人称为帕斯卡定理,在射影几何里是十分重要的.

帕斯卡首先证明了该定理对圆成立.然后用投影法转到一般圆锥曲线.他说由于对圆成立,所以通过取截景后,必对所有圆锥曲线都成立.实际上,若从上图平面外的一点作它的投射锥并取一截景,则截景必含一圆锥曲线及内接六边形,六边形的对边仍将交于一条直线上的三点.这条直线与PQR相对应.该定理确定了圆锥曲线上六个点的射影相关性.如果已知六个点中的五个,就能确定一条圆锥曲线.这个定理是射影几何中内容最丰富的定理之一,由它出发可以导出大量推论.例如:(1)如果一个三角形内接于一圆锥曲线,则其顶点上的切线与对边交于三个共线点.(2)若五边形ABCDE 内接于一圆锥曲线,则AB,DE;BC,EA;CD与A点上的切线交于三个共线点.(3)内接于一圆锥曲线的四边形的两对对边,连同对着的顶点的两对切线,交于四个共线点.

帕斯卡定理的逆定理(若一个六边形的三对对边的三个交点共线,则六边形顶点在一圆锥曲线上)也是成立的,但帕斯卡没有考虑.

四、射影几何中的新思想

伴随着射影几何的诞生,一些崭新的数学思想出现了.首先是数学对象从—种形状连续变到另一形状的思想.实际上,最早注意这一问题的是开普勒(J.Kep l er),他在1604年出版的《天文学的光学部分》(Astronomiae Pars Optica)中,设想椭圆的一个焦点固定而让另一个焦点在它们的连线上移动,若动点移向无穷远,椭圆成为抛物线;若这个动焦点又出现在定焦点的另一方,抛物线就变成双曲线;当两焦点合而为一,椭圆变成圆.而双曲线的两焦点合在一起时,双曲线便退化为两直线.德扎格则采用更为有效的方法——投射取截法来实现二次曲线的连续变化.只要改变截景平面的位置,就可使圆的截景从圆连续变为椭圆、抛物线和双曲线.因此,对于圆成立的许多性质,都可通过取截景的方法来证明它们对其他二次曲线也成立.这就提供了一种相当一般的简便方法.

从射影几何中产生的另一个新思想是变换和不变性.从某点向一图形作投影线,然后取截景,这就是把原图形变成了新的图形.而原图形中值得研究的性质是那些变换后保持不变的性质.这种变换思想不仅导致了另一门新学科——仿射几何的诞生,而且当人们用变换与不变性的观点来重新研究欧氏几何时,发现了三种几何的本质联系及从属关系.实际上,射影几何包含了仿射几何,而仿射几何包含了欧氏几何.不过,射影几何的创始人并未认识到这一点.后来,当群论产生后,变换群的概念应运而生,成为现代数学的理论基础之一.

虽然射影几何方面的工作最初是为了给画家提供方便,但它的意义远不止于此.在当时,它由于解析几何的发展而略显失色,甚至一度被人们遗忘.但到19世纪被人重新发现时,德扎格和帕斯卡等人的杰出思想终于大放异彩.射影几何作为一个着重研究图形位置和相交方面的性质的学科,终于成熟了.

第二节解析几何

一、历史背景

解析几何是17世纪最伟大的数学成果之一,它的产生有着深刻的原因.首先,生产力的发展对数学提出了新的要求,常量数学的局限性越来越

明显了.例如,航海业的发展,向数学提出了如何精确测定经纬度的问题;造船业则要求描绘船体各部位的曲线,计算不同形状船体的面积和体积;显微镜与望远镜的发明,提出了研究透镜镜面形状的问题;随着火器的发展,抛射体运动的性质显得越来越重要了,它要求正确描述抛射体运动的轨迹,计算炮弹的射程,特别是开普勒发现行星沿椭圆轨道绕太阳运行,要求用数学方法确定行星位置.所有这些问题都难以在常量数学的范围内解决.实践要求人们研究变动的量.解析几何便是在这样的社会背景下产生的.其次,解析几何的产生也是数学发展的大势所趋,因为当时的几何与代数都相当完善了.实际上,几何学早就得到比较充分的发展,《几何原本》建立起完整的演绎体系,阿波罗尼奥斯的《圆锥曲线论》则对各种圆锥曲线的性质作了详尽的研究.但几何学仍存在两个弱点,一是缺乏定量研究,二是缺乏证题的一般方法.而当时的代数则是一门注重定量研究、注重计算的学科.到16世纪末,韦达(F.Vieta,1540—1603)在代数中有系统地使用字母,从而使这门学科具有了一般性.它在提供广泛的方法论方面,显然高出希腊人的几何方法.于是,从代数中寻求解决几何问题的一般方法,进行定量研究,便成为数学发展的趋势.实际上,韦达的《分析术引论》(In artem ana l yticem isagoge)等著作中的一些代数问题,便是为解几何题而列出的.第三,形数结合的思想及变量观念是解析几何产生的直接原因.南斯拉夫的盖塔尔迪(M.Gheta l di,1566—1626)已初步具有形数结合的思想,他于1607年注释阿波罗尼奥斯的著作时,便对几何问题的代数解法作了系统研究.1631年出版的英国哈里奥特(T.Harriot,1560—1621)所著《实用分析技术》(ArtisAna l yticae Praxis),进一步发挥了盖塔尔迪的思想,使几何与代数的结合更加系统化.变量观念则是在数学的应用中产生的.开普勒把数学应用于天文学,伽利略(Ga l i l eo Ga l i l ei,1564—1642)把数学应用于力学,而在天文学和力学中都离不开物体的运动,于是,数学中的变量观念便应运而生了.在这种情况下,一些杰出数学家们把几何、代数同一般变量结合起来,从而创立了解析几何.费马和笛卡儿几乎是同时独立地创立这一学科的,这个事实充分说明在条件成熟时产生一个新学科的必然性.

二、费马的工作

费马(P.de Fermat,1601—1665)是一位多才多艺的学者.他上大学时专攻法律,毕业后以当律师为生,并长期担任法国图卢兹(Tou l ouse,费马出生地)议会的顾问.实际上,他在30岁以后才开始进行数学研究.他不愧是一位数学天才,尽管数学工作仅占据了他的一部分时间,他那丰硕的成果却令人目不暇接.17世纪的数论几乎是费马的天下,费马大定理的魅力至今仍不减当年;在牛顿(I.Newton)和莱布尼茨(G.W.Leib-niz)之前,他为微积分的创立作了大量的准备工作,取得十分出色的成果;他和帕斯卡一起,分享了创立概率论的荣誉;在解析几何上,他也是一位名副其实的发明者.费马的《平面与立体轨迹引论》(Introduction aux Li-eux P l anes et So l ides)是他在解析几何方面的代表作.这本书是1630年写成的,但一直到1679年才

出版,那时费马已经死了14年.费马的著作表明,他的研究工作是以古希腊阿波罗尼奥斯的《圆锥曲线论》为出发点的.他在书的开头写道:“毫无疑问,古人对于轨迹写得非常多…….可是,如果我没有想错的话,他们对于轨迹的研究并非是那么容易的.原因只有一个:他们对轨迹没有给予充分而又一般的表示.”费马认为给轨迹一般表示只能靠代数.他很熟悉韦达的代数工作,又受到前人用代数解决几何问题的启发,所以他着手解决轨迹的一般表示的问题时,就毫不犹豫地求助于代数.他不仅使代数与几何结为伴侣,更重要的是他把变量思想用于数学研究,这正是他比哈里奥特等人高明的地方,也是他创立解析几何的主要思想基础.

费马的一般方法就是坐标法.坐标概念古已有之,以坐标系为参考来确定点的位置,这是古希腊人已经熟悉的.但费马凭借他的变量观念和形数结合的思想,在这块数学园地里培育出新的成果.他把坐标平面上的点和一对未知数联系起来,然后在点运动成线的思想下,把曲线用方程表示出来.这种以代数方程表示几何曲线的方法,无疑是解析几何的精髓.

费马的具体做法是:考虑任意曲线和它上面的任意点J(图10.6),J的位置用A,E两字母表出,其中A是从点O沿底线到点Z的距离,E是从Z到J的距离.他所用的坐标就是我们所说的斜坐标,A,E相当于x,y.费马说:“只要在最后的方程里出现两个未知量,我们就得到一个轨迹,这两个量之一的末端描绘出一条直线或曲线.”如图10.6,对于不同位置的E,其末端J,J′,J″…就把线描出.当然,在这里联系A和E的方程是不确定的,图10.6仅仅是一个示意图.费马以这种思想为指导,研究了各种类型的曲线,他实际采用的坐标多是直角坐标.

费马充分注意到方程次数与曲线形状的关系,他说一个联系着A和E的方程如果是一次的,就代表直线轨迹;如果是二次的,就代表圆锥曲线.例如,DA=BE就表示一个一次方程.换成现代记号,相当于ax

10.7),费马还研究了更一般的方程ax+by=c2,它对应着直线MI,

坐标的名词,他的坐标轴也没有标明方向.实际上,横、纵坐标的名词是莱布尼茨起的,牛顿首次采用了现代形式的坐标系.

费马的研究重点是圆锥曲线,他通过自己的实践揭示了圆锥曲线的方程特征——含有二个未知数的二次方程.例如,他以椭圆的长轴PP′所在直线为x轴,以椭圆在P点的切线为y轴,并设PP′=d,通径(即正焦弦)为p(图10.8),推得椭圆方程为

另一方面,他还通过坐标轴的平移和旋转来化简方程,从而求得比较复杂的二次方程的曲线.例如,他通过平移坐标轴,把方程

xy+a2=bx+cy

化成xy=k2

的形式,这显然是双曲线;又通过坐标轴的旋转,化方程

a2-2x2=2xy+y2

为b2-x2=ky2,

从而证明这是一个椭圆.他还证明了方程

x2+y2+2dx+2ry=b2

是一个圆.在此基础上,费马自豪地宣称,他能用他的新方法重新推出阿波罗尼奥斯《圆锥曲线论》的所有结论.不过,他并没有给出坐标变换的一般法则.

费马在总结自己的工作时说:“直线是简单唯一的;曲线的数目则是无限的,包括圆、抛物线,椭圆等等.”他把二次以内的曲线分为平面轨迹和立体轨迹两类,说:“每当构成轨迹的未知数的顶端所描出的是直线或圆时,这轨迹就称为平面轨迹;当它描出的是抛物线、双曲线或椭圆时,它就称为立体轨迹.”①至于其他曲线,他一律称为线性轨迹.他重点研究了直角坐标系下的曲线方程,说:“若令两个未知量构成一给定的角,通常假定它为直角,并且未知量之一的位置和顶端是确定的,则此方程是很容易想象的.如果这两个未知量的幂都不超过二次,则由后面所述便能明白,其轨迹是平面轨迹或立体轨迹.”②他在书中确定了各种轨迹的方程,其基本形式为(以现代记法表示):

(3)圆的方程a2-x2=y2;

(4)椭圆方程a2-x2=ky2;

(5)双曲线方程a2+x2=ky2;

(6)双曲线方程xy=k2;

(7)抛物线方程x2=ay.

费马对高次曲线的研究也是卓有成效的.他提出许多以代数方程定

整数),它们分别被后人称为费马抛物线、费马双曲线和费马螺线.另外,费马还与一位叫阿格内西(M.G.Agnesi,1718—1799)的意大利女数学家在通信中讨论了一种新曲线,即

b3=x2y+b2y.

这种曲线问世后,被称作阿格内西箕舌线.

费马在研究轨迹的过程中,不仅考虑到一维和二维的情形,还进一步探讨了三维空间的轨迹问题.他正确指出:一元方程确定一个点,二元方程确定一条曲线(包括直线),而三元方程则确定一个曲面.这类曲面包括平面、球面、椭球面、抛物面和双曲面.不过,他没有用解析方法对这些曲面进行具体研究.

由于时代的局限,费马在研究轨迹时不考虑负坐标,他的曲线一般只画在第一象限,尽管他知道这些曲线是在其他象限延续的.这就使他的工作缺乏完整性.例如,他认为任何齐二次方程都表示直线,因为x2=y2可化成

x=y.另外,从指导思想来看,他并不想打破希腊数学传统,把自己的思想看作希腊数学思想的继续,认为解析几何不过是阿波罗尼奥斯著作的一种新的表现形式.这种认识对于他的解析思想的发挥无疑具有阻碍作用.例如,他虽然在坐标系内讨论了阿波罗尼奥斯的各种圆锥曲线,但从未考虑过两条曲线在同一坐标系内的相交问题,更不知道交点的代数意义.相比之下,笛卡儿的解析思想更为深刻,他创立的解析几何也更为成熟.

三、笛卡儿的工作

1.笛卡儿传略

笛卡儿(R.Descartes,1596—1650)是17世纪的天才.他是杰出的哲学家和数学家,是近代生物学的奠基人之一,在物理学方面也作了许多有价值的研究.当然,本书所关心的主要是他在数学方面的贡献.

1596年3月31日,笛卡尔出生在法国土伦(Tournine)的一个律师之家,早年丧母,八岁时被父亲送到当地的一所耶酥教会学校.由于他身(R.Descartes1596—1650)体较弱,父亲与校方商定,允许他每天早晨多睡些时间.于是,笛卡儿养成了晚起的习惯.长大以后,他经常在早晨躺在床上思考问题,据说他的大部分成果出自早上那段适宜思考的时间.笛卡儿成年后的生活,可以1628年为界分成两个阶段.他16岁时离开家乡,去外地求学,20岁(1616年)时毕业于普瓦捷(Poitiers)大学,在巴黎当了律师.他在那里结识了数学家梅森(M.Mersenne)和迈多治(C.Mydorge),经常和他们一起讨论数学问题.笛卡儿于1617年到荷兰,参加了奥兰治(Orange)公爵的军队,后来又到其他军队服务.他参军的目的主要是弥补学校教育的不足,并无明显的宗教或政治倾向.1621年以后,他先后到德国、丹麦、荷兰、瑞士和意大利旅行.在当兵和旅行的日子里,他的数学研究一直没有中断,他把解决数学问题当作自己的乐趣.在荷兰布雷达(Breda)地方的招贴牌上,笛卡儿发现一个挑战性的问题,很快就解决了,这使他自信有

数学才能,从而更认真地研究数学.1625年回到巴黎后,他为望远镜的威力所激动,开始钻研光学理论,同时参加了德扎格等数学家的讨论,并继续他的哲学探索.1628年,他写成第一部哲学著作《思想的指导法则》(Regu l ae ad DirectionemIngenii).在这个阶段的生活中,他实际上已为他后来创立唯理论的认识论奠定了基础,为发明解析几何创造了条件.

由于笛卡儿对《圣经》持批评态度,受到国内封建教会的排斥.1628年,笛卡儿移居荷兰,开始了第二阶段的生活.他的主要学术著作,都是在那里的20年中完成的,包括《宇宙论》(LeMonde,1633年写成,1664年出版)、《方法论》(Discours de l a Méthode,1637)、《形而上学的沉思》(Meditationes dePrima Phi l osophia,1640)、《哲学原理》

(PhincipiaePhi l osophiae,1644)、《激情论》(Traitédes Passions de l ame,1649).《方法论》一书有三个附录——《折光》(La Di-optrique)、《气象》(Les Météores)和《几何》(La Géo-métrie).其中第三个附录便是笛卡儿创立解析几何的标志.很明显,笛卡儿最关心的是哲学问题.实际上,他的解析几何只是他的哲学思想在数学中的体现,所以著名数学史家克莱因(M.K l ine)说,笛卡儿“只偶然地是个数学家.”①

1649年,笛卡儿接受瑞典女王克利斯蒂娜(Christina)的邀请,去斯德哥尔摩担任了女王的宫廷教师,不幸在那里染上肺炎,于1650年2月11日病逝.2.笛卡儿的数学思想

笛卡儿是以哲学家的身分来研究数学的.他认为自己在教会学校里没学到多少可靠的知识,所以从青年起就认真思考这样的问题:人类应该怎样取得知识?他勇敢地批评了当时流行的经院哲学,提倡理性哲学.他说圣经不是科学知识的来源,并且说人们应该只承认他所能了解的东西.尽管笛卡儿从未否认过上帝存在,他的这些话还是惹恼了教会,以至在他的葬礼上不准为他致悼词.

笛卡儿认为逻辑不能提供基本的真理,他说:“谈到逻辑,它的三段论和其他观念的大部分,与其说是用来探索未知的东西,不如说是用来交流已知的东西.”②那么,什么地方提供真理呢?这就是客观世界,而数学正是客观存在的事物,所以数学里必然包含许多有待发现的真理.他认识到严格的数学方法是无懈可击的,不能为任何权威所左右,他说数学“是一个知识工具,比任何其他由于人的作用而得来的知识工具更为有力,因而是所有其他知识工具的源泉.”③

笛卡儿从他的数学研究中得出一些获得正确知识的原则:不要承认任何事物是真的,除非对它的认识清楚到毫无疑问的程度;要把困难分成一些小的难点;要由简到繁,依次进行;最后,要列举并审查推理步骤,要做得彻底,使无遗漏.对于数学本身,他相信他有清楚的概念,这些数学概念都是客观存在的,并不依赖于人是否想着它们.笛卡儿强调要把科学成果付之应用,要为人类的幸福而掌握自然规律.

笛卡儿数学研究的目标是建立一种把形和数结合起来的科学,吸取代数与几何的优点,而抛弃它们的缺点.他对逻辑学、欧氏几何及代数都很熟悉,尤其强调代数的价值.他批评希腊人的几何过多地依赖于图形,主张把代数

用到几何中去.他认为代数在提供广泛的方法论方面,高出希腊人的几何方法.他强调代数的一般性和程序性,认为代数的这些特点可以减小解题的工作量.他证明了几何问题可以归结为代数问题,因此在求解时可以运用代数的全部方法.由于代数语言比几何语言更有启发性,所以在问题改变形式以后,只要进行一些代数变换,就可以发现许多新的性质.显然,在笛卡儿的数学研究中,代数是居于主导地位的.这种数学思想具有重要意义,因为它终于使代数摆脱了几何思维的束缚,而在文艺复兴之前,这种束缚是长期存在的.例如,x,x2,x3通常被看作长度、面积和体积,方程次数不能高于三次,因为高于三次的方程就难于找到几何解释了.卡尔达诺(G.Cardano)、费拉里(L.Ferrari)等对高次方程的研究,使代数有了独立于几何的倾向,而笛卡儿的工作则使代数完全摆脱了几何的束缚,又反过来用代数方法研究几何问题.他在研究中引入了变量思想,认为曲线是这样生成的:在坐标系内,随着一个坐标的变化,另一个坐标也相应变化,每对坐标决定一个点,这无穷多个点便组成曲线.他用方程表示曲线,把曲线上的每一个点看作方程的一组解,从而把代数与几何在变量观念下统一起来,这是他创立解析几何的基础,我们从他的著作中可以看得很清楚.

3.笛卡儿的《几何》

《几何》分三卷.第一卷的前半部分是解析几何的预备知识,通过典型例题说明如何把代数用于几何,解决尺、规作图问题;后半部分则包含笛卡儿解析几何的基本理论.第二卷讨论曲线方程的推导及曲线性质,提出按方程次数对曲线进行分类的方法.第三卷讨论如何用圆锥曲线解高次方程,以及高次方程的性质.

在第一卷,笛卡儿明确指出用代数方法解决几何作图题的实质在于“定出所求线段的长度”.他首先定义了单位线段,在此基础上又定义了线段的加、减、乘、除和开方.例如,假定取AB为单位,笛卡儿说:“我只需要连接点A和C,然后引DE平行于CA,那么BE就等于BD和BC的积”,“如果要求用BD来除BE,我就连接E和D,再引AC平行于DE,那么BC是除的结果.”(图10.9)“如果要求CH的平方根,我沿同一直线加上FC,FC等于单位,然后在K点将FH二等分.我以K为中心画圆FIH,再从C引垂线到I,那么CI就是所要求的根.”(图10.10)虽然对线段的运算古已有之,单位线段却是笛卡儿首次引入的.它的意义在于突破了几何对代数的束缚——齐次原则.根据这一原则,不同量纲的几何量不能相加,方程ax2+bx+c=0是没有几何意义的,因为ax2表体积,bx表面积而c表长度,属于不同的量纲.而笛卡儿引入单位概念之后,使所有几何量都通过单位而变成统一的关于数的表示.于是图形中各种量的关系就转化成数的关系,这是把代数与几何统一起来的关键.

笛卡儿在把代数方法用于几何时,首先是用未知数去表示特定的线

段.例如某几何问题归结到求一个未知长度x,而x满足方程x2=ax+

作出x,笛卡儿先作直角三角形NLM(图10.11),其中LM=b,

地,若x满足方程x2=-ax+b2,则x为MP.

解析几何的精髓是用代数方程表示几何曲线,笛卡儿通过帕波斯问题引入了这一崭新的方法.该问题是:设AB,AD,EF和GH是四条给定直线,从某点C引直线CB,CD,CF,CH各与一条给定直线构成已知角CBA,CDA,CFE,CHG,要求满足CB·CF=CD·CH的点的轨迹.

笛卡儿的解法是①:首先假定已得到轨迹上的C点,然后以AB和CB为主线,考虑其他直线与主线的关系.笛卡儿记AB为x,BC为y,这相当于设了两个相交的坐标轴,当然与现在直角坐标系中的x轴和y轴还有所区别.这样,线段CB,CD,CF和CH的长度便可由x和y确定了.由于三角形ARB的所有角已给定,所以AB与BR之比一定,设AB∶BR=z∶b,因AB=

因为AB,AD,EF是三条给定直线,所以AE长度是确定的,设AE=k,则EB=k+x(或k-x,或-k+x,依E,A,B三点的根对

通过类似的方法,可得

这样,CB,CD,CF,CH便都表示成关于x和y的一次式了.把这四个一次式代入CB·CF=CD·CH,可知两边关于x,y的次数都不会高于二次,即满足帕波斯问题的C点的轨迹方程为

y2=Ay+Bxy+Cx+Dx2,

其中A,B,C,D是由已知量组成的代数式.

笛卡儿接着指出:“如果我们逐次给线段y以无限多个不同的值,对于线段x也可找到无限个值.这样被表示出来的C点就可以有无限多个,因此

可把所求的曲线表示出来.”这就在变量思想指导下,把数与形统一起来了.这是数学史上一项划时代的变革,从此开拓了变量数学的新领域.在《几何》的第二卷中,笛卡儿详细讨论了曲线方程的推导及各种曲线的性质.我们从下面的例子可以领会他的思路.

设直线l

1⊥l

2

于A,G是l

1

上的定点,射线m(笛卡儿说是直尺)绕端点G旋

转,交l

2与L,射线n的端点K沿l

2

滑动,LK为定长.笛卡儿试图导出m与n的

交点的轨迹方程.他设C为轨迹上任一点,过C作CB∥BA,交l

2

于B,过L

作LN∥GA,交n于N,他以A为原点建立坐标系,并设BC=y,AB=x,设GA,LK和NL三个已知量为a,b,c(图10.13)

这显然是双曲线的方程.

笛卡儿以方程次数为标准,对曲线进行了系统的分类.他认为:几何曲线是那些可用一个唯一的含x和y的有限次代数方程来表出的曲线,所以方程次数决定了曲线的种类.他研究了各种圆锥曲线,指出圆锥曲线都是二次的;另一方面,二次方程(指二元二次方程)的曲线也都是圆锥曲线.他把方程次数强调到这种程度,以至认为像x3+y3-3axy=0(图10.14,即笛卡儿叶线)这样复杂的曲线,比曲线y=x4还要简单.笛卡儿坚持曲线与方程相对应,对任何一条曲线,只要可以找到适合于它的方程,他立即当作几何曲线来研究.这就突破了欧氏几何只用圆规、直尺作图的局限,以前一向为几何学家所回避的许多曲线,便有了和常见曲线相同的地位.至于不能用代数方程表示的曲线,如螺线和割圆曲线等,笛卡儿一律称之为机械曲线.

第三卷侧重于代数.笛卡儿在解几何作图题时,首先把问题用代数表示,然后解所得出的代数方程,并按解的要求来作图.他还提出利用圆锥曲线来解三次和四次方程的方法,即用同一坐标系内两条圆锥曲线的交点来表示方程的解.这是数学史上的一项革新,它提供了解方程的一个有力工具.笛卡儿用这种方法求出了形如z3=±pz±q和z4=±pz2±qz±r的方程的实根.例如,他解方程z3=pz+q的方法如下:以A为顶点、AN为轴作

则圆与抛物线在轴左边的交点F给出方程的正根,笛卡儿称为“真正的根”;

另一边的交点G和H则表示方程的负根,①笛卡儿称为“假根”,因为他不承认方程的负根.实际上,笛卡儿是把圆和抛物线放在以A为原点的同一坐标系内来考虑的.若用现代符号表示,则抛物线方程

为x2=y,(1)

圆的方程为

化简得x2+y2=qx+(1+p)y.(2)

把方程(1)和(2)联立,所得解的x值即圆与抛物线的交点的横坐标,也就是方程z3=pz+q的解.在这里,笛卡儿把方程的解、方程组的解,以及代表方程的曲线的交点都统一在坐标系内,这种思想是相当出色的.

在第三卷中,还有一部分内容是专门讨论方程的,具有独立的代数意义.著名的笛卡儿符号法则就是在这里提出的.

纵观笛卡儿的《几何》,虽然篇幅不过百页,却已奠定了解析几何的基础.笛卡儿把曲线与方程相联系的观点,不仅是曲线理论而且是整个数学思想的重大突破.他还进一步认识到,如果两条曲线以同一个坐标系为参考,则其交点由它们的方程之解来确定.这种思想远远高出了他的同时代人,正如数学史家芬克(Kar l Fink)所说:“从来都没有谁作过任何尝试,企图把不同次数的几条曲线同时表示在一个坐标系中……甚至连费马也没有尝试过.笛卡儿所系统完成的恰恰是这件事.”①

但是,笛卡儿同费马一样不考虑负坐标,这就不可避免地给他的研究工作带来局限性.另外,他对几何作图题的强调掩盖了解析几何的主要思想——用代数方程表示并研究曲线.许多和他同时代的人认为解析几何主要是为了解决作图问题.当然,笛卡儿本人是清楚这门学科的意义远不止于此的.他在《几何》的引言中说:“我在第二卷中所作的关于曲线性质的讨论,以及考查这些性质的方法,据我看,远远超出了普通几何的论述.”

笛卡儿的《几何》还有一个特点,即很少证明.实际上,笛卡儿不仅熟悉欧氏几何的证明方法,也完全会用代数方法证明几何问题.他有意删去定理的证明,大概是为了使文章简短和利于自学.他在一封信里把自己比做建筑师,说自己的工作是指明应该做什么,而把手工操作留给木工和瓦工.他还说:“我没有做过任何不精心的删节.”他在《几何》中明确表示:他不愿夺去读者们自己进行加工的乐趣.他说之所以删去大多数定理的证明,是因为如果读者系统考查他的题目,则证明就成为显然的了,而且这样学习会更为有益.不过,由于笛卡儿的《几何》过于难懂,还是影响了解析几何的传播速度.后来有人给此书写了许多评注,使它易于理解.

四、解析几何的意义

解析几何是人类历史上首次出现的变量数学,它改变了数学的面貌,推动了整个数学的发展.虽然费马和笛卡儿一起分享了发明解析几何的荣誉,他们的观点(坐标观点)和方法(用方程表示曲线)是基本相同的,但从数学思想的先进来说,笛卡儿无疑是优胜者.他不像费马那样,把自己的工作看作阿波罗尼奥斯工作的代数翻板,而是以十分鲜明的态度批评了希腊数学的局限,并自觉地突破了这一局限.他用代数方法代替传统的几何方法,认为曲线是任何具有代数方程的轨迹.这种思想不仅扭转了代数对几何的从属地位,而且大大扩展了数学的领域.只要我们把现代数学研究的种类繁多的曲线同希腊人所承认的曲线种类相比较,就知道摆脱尺规作图的束缚是何等重要了.

解析几何通过形和数的结合,使数学成为一个双面的工具.一方面,几何概念可用代数表示,几何目标可通过代数方法达到;另一方面,又可给代数语言以几何的解释.使代数语言更直观、更形象地表达出来,这对于人们发现新结论具有重要的意义.正如拉格朗日(J.L.Lagrange)所说:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门学科结合成伴侣时,它们就互相吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”①近代数学的巨大发展,在很大程度上应该归功于解析几何.由于在解析几何中代数起主导作用,这就大大提高了代数的地位,对于促进代数的进步具有十分重要的意义.

从数学思想上来说,解析几何的最大突破是引入了变量思想,它成为发明微积分的思想基础.正如恩格斯所说:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学;有了变数,微分和积分也就立刻成为必要的了.”②

解析几何的意义不仅表现在数学本身,而且表现在对整个科学事业及社会经济的促进上,因为它提供了社会迫切需要的数量工具.研究物理世界是离不开几何的.物体具有不同的几何形状,而运动物体的路线则是几何曲线.笛卡儿认为全部物理可归结到几何,但传统几何对于运动的物体是无能为力的.在与变量有关的广阔天地里,解析几何却大有用武之地.无论是航海学,测地学和天文预测,还是抛射体运动及透镜设计、凸轮制造,都需要数量知识.而解析几何恰恰能把物体的形状和运行路线表为代数形式,从而导出数量关系.正因为它的应用广泛,才使得与它几乎同时产生的射影几何相形见绌.直到今天,解析几何仍然是科学研究及工业生产中不可缺少的数学工具.

平面向量在解析几何中的应用

平面向量在解析几何中的应用 -----高三专题复习课教学案例 福建省福州格致中学宋建辉 一、引言: 平面向量是高中数学的新增内容,也是新高考的一个亮点。正因为如此,在2004年3月25日在校教学公开周中开设了《平面向量在解析几何中的应用》高三专题复习公开课,以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识。 二、背景: 向量知识在许多国家的中学数学教材中,早就成了一个基本的教学内容。在我国全面实施新课程后,向量虽然已进入中学,但仍处于起步的阶段。向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。但实际情况是很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题,学生应用向量的意识不强。鉴于这种情况,结合我校开展的构建“探究-合作”型教学模式研究的课题,开设本节《平面向量在解析几何中的应用》高三专题复习公开课,通过问题的探究、合作解决,旨在进一步探索“探究-合作”型教学模式,使学生树立并增强应用向量的意识。 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。正因为如此,本节课这样设计: 1、教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中”。因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性。 2、通过例 3、例4两个问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 三、问题:

一、高等代数与解析几何之间的关系

利用几何直观理解高等代数中抽象的定义和定理 一、高等代数与解析几何的关系 代数为几何的发展提供了研究方法,几何为代数提供直观背景。 解析几何中的很多概念、方法都是应用线性代数的知识、定义来刻画、描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。 “如果代数与几何各自分开发展,那它的进步十分缓慢,而且应用范围也很有限,但若两者互相结合而共同发展,则就会相互加强,并以快速的步伐向着完善化的方向猛进。” --------拉格朗日 二、目前将高等代数与解析几何合并开课的大学 中国科大: 陈发来,陈效群,李思敏,线性代数与解析几何,高等教育出版社,北京:2011. 南开大学: 孟道骥,高等代数与解析几何(上下册)(第二版),科学出版社,北京:2007. 华东师大: 陈志杰,高等代数与解析几何 (上下册) (第2版),高等教育出版社,北京:2008. 华中师大: 樊恽,郑延履,线性代数与几何引论,科学出版社,北京:2004. 同济大学: 高等代数与解析几何同济大学应用数学系高等教育出版社 (2005-05出版) 兰州大学,广西大学,西南科技大学,成都理工大学 三、高等代数的特点 1、逻辑推理的严密性; 2、研究方法的公理性; 3、代数系统的结构性。 四、高等代数一些概念的引入 对于刚上大学的一年级新生, 大多数难以适应高等代数的抽象概念的引入、推导 和应用。通过一些实例,特别是几何实例,引入高等代数的相关概念,一方面可以让学生了解抽象概念的来龙去脉,另一方面可以让学生找到理解抽象概念的思维立足点。

高等数学空间解析几何与向量代数.docx

第七章空间解析几何与向量代数 第一节空间直角坐标系 教学目的:将学生的思维由平面引导到空间,使学生明确学习空 间解析几何的意义和目的。 教学重点: 1.空间直角坐标系的概念 2.空间两点间的距离公式 教学难点:空间思想的建立 教学内容: 一、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系 (三维)如图7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指 从正向x 轴以角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2 间直角坐标系共有八个卦限,各轴名称分别为:轴、y 轴、轴,坐标面分别为xoy 面、yoz面、zox 面。坐标面以及卦限的划分如图7-2 所示。图7-1 右手规则演示图 7-2 空间直角坐标系图图 7-3空间两点M1M 2的距离图3.空间点M ( x, y, z) 的坐标表示方法。通过坐标把空间的点与一个有序数组 一一对应起来。 注意:特殊点的表示 a)在原点、坐标轴、坐标面上的点; b) 关于坐标轴、坐标面、原点对称点的表示法。4.空间两点间的距离。若M 1 ( x1 , y1 , z1 ) 、 M 2 (x2 , y2 , z2 ) 为空间任意两点,则 M 1M 2的距离(见图7- 3),利用直角三角形勾股定理为: d 2 222 M1M 2M1NNM 2 222 M 1 p pNNM 2

而 M 1 P x 2 x 1 PN y 2 y 1 NM 2 z 2 z 1 所以 d M 1M 2 (x 2 x 1 ) 2 ( y 2 y 1 )2 (z 2 z 1 )2 特殊地:若两点分别为 M ( x, y, z) , o(0,0,0) d oM x 2 y 2 z 2 例 1:求证以 M 1(4,3,1) 、 M 2 (7,1,2) 、 M 3 (5,2,3) 三点为顶点的三角形是一个 等腰三角形。 2 ( 4 7) 2 (3 1) 2 (1 2) 2 14 证明 : M 1M 2 M 2M 3 2 7) 2 (2 1)2 (3 2)2 6 (5 2 4) 2 (2 3) 2 (3 1) 2 6 M 3M 1(5 由于 M 2M 3 M 3 M 1 ,原结论成立。 例 2:设 P 在 x 轴上,它到 P (0, 2 ,3) 的距离为到点 P 2 (0,1, 1) 的距离的两倍, 1 求点 P 的坐标。 解:因为 P 在 x 轴上,设 P 点坐标为 ( x,0,0) PP 1 x 2 2 PP 2 x 2 1 2 x 2 11 32 2 x 2 2 12 PP 1 2 PP 2 x 2 11 2 x 2 2 x 1

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2 222 =+y x 在空间解析几何中表示的图形为 [ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141:1+=+=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3 π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)

5.将xoz 坐标面上的抛物线x z 42 =绕z 轴旋转一 周,所得旋转曲面方程是[B ] A. ) (42y x z += B. 2 2 2 4y x z +±= C. x z y 422 =+ D. x z y 422 ±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 [B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程 222 22 x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知 a ?={0, 3, 4}, b ?={2, 1, -2},则 = b proj a ?ρ[ C ]

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、平行于向量)6,7,6(-=a 的单位向量为______________. 2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量. 3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为__ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、

向量代数与空间解析几何

第六章.向量代数与空间解析几何 本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。 向量。 向量可以说是几何的最为基本的概念。因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。 由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。 我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。基于向量的这种直观图象,可以定义向量的基本属性。 首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。 注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。 在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。 空间直角坐标系以及向量代数。 在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。 能够满足上面这两个基本要求的坐标系可以有很多的形式,我们经常使用的坐标系就是直角坐标系。 我们已经强调了一个向量的大小与方向是与它所处的空间位置没有关系的,换一个说法,就是一个向量在空间进行平移时,不影响它的大小与方向。那么在空间中,对任意一个向量的度量,都可以通过把这个向量平移到以坐标系的原点为起点的位置,再用它的终点的坐标来表征这个向量的大小与方向。显然,任意的一个向量,只要是通过平移而处于这种方式,就只会唯一的,而空间中的任意一点在一个这样的直角坐标系里的标度也是唯一的。因此这样决定的一个向量的坐标也就是唯一的。 本课程我们主要只考虑三维的情况,因此一个向量可以用一个唯一的坐标来表示,在直角坐标系里,也就是由三个实数组成的三元组:(a ,b ,c )。 基于上面对于唯一性的分析,可以得到坐标表示的向量的相等的含义,就是坐标三元组的分别相等。 进一步,为了更为方便地度量一般的向量,我们引入单位向量的概念,就是在坐标轴方向上具有单位 长度的向量,在直角坐标系当中,习惯的写法,就是 ,,,分别表示在X ,Y ,Z 轴上的单位向量。 按照坐标三元组的写法,就是 =(1,0,0); i r j r k r i r

平面向量及解析几何

六、平面向量 考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2、掌握向量的加法和减法。3、掌握实数与向量的积,理解两个向量共线的充要条件。4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。 1、已知向量与不共线,且0||||≠=,则下列结论中正确的是 A .向量-+与垂直 B .向量-与垂直 C .向量b a +与a 垂直 D .向量b a b a -+与共线 2.已知在△ABC 中,?=?=?,则O 为△ABC 的 A .内心 B .外心 C .重心 D .垂心 3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC = ,则AD 用b a ,表 示为 。 4、已知21,e e 是两个不共线的向量,而→→→ →→ → +=-+=2121232)2 51(e e b e k e k a 与是两个共线 向量,则实数k = . 5、设→ i 、→ j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且 →→+=j i 24,→ →+=j i 43,则△OAB 的面积等于 : A .15 B .10 C .7.5 D .5 6、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 , 将向量按逆时针方向旋转90°得到向量,则向量的坐标是 . 7、已知)3,2(),1,(==k ,则下列k 值中能使△ABC 是直角三角形的值是 A . 2 3 B .21- C .-5 D .31- 8、在锐角三角形ABC 中,已知ABC ?==,1||,4||的面积为3,则=∠BAC ,?的值为 . 9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量与的位置关系是 A. 平行 B. 垂直 C. 相交但不垂直 D. 无法判断 10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围

高等代数与解析几何之间的联系

高等代数与解析几何之间的关联性 数学0803班康若颖20081692 内容摘要:在我们的学习过程中,可以发现高等代数和解析几何中有很多相似之处。确切的说是高等代数中 的一些理论是从解析几何中发展和改进而来的。比如说通过解析几何中多元一次方程组的解法高等代数提出了行列式,使行列式有了几何意义,同时是行列式直观化。也是通过行列式,多元方程组的解答更便捷、快速。又比如说欧式空间的提出。我们都知道几何空间中的向量以及他的一些性质。在高等代数中先后提出来线性空间、欧式空间。线性空间将向量做了推广,使向量抽象化。欧式空间在线性空间的基础上提出内积,使几何空间中的向量的一些度量性质推广化,等等,这样的例子很多很多。总体来说高等代数与解析几何是相互联系、相互促进的。可以更确切一点的说是解析几何是高等代数的基石,而高等代数是解析几何的推广和并使之抽象化。 关键词:行列式、正交变换、向量、线性方程组、二次型和二次曲线、二次曲面、欧式空间 导言:从代数与几何的发展来看,高等代数与解析几何从来就是相互联系、相互促进的。它们的关系可以归 纳为“代数为几何提供研究方法,几何为代数提供直观背景”。通过对高等代数和解析几何的学习和研究中,我们可以看到解析几何和高等代数中有着紧密的联系。运用解析几何来分析高等代数更直观,同时,高等代数也是解析几何的一个发展、拓宽。比如说欧式空间。运用高等代数的解题方法来解答解析几何中的一些问题更加简便,快捷。比如说运用行列式的计算来解答多元方程组问题。 内容: 解析几何中以代数为工具,解析几何中的很多概念、方法都是应用线性代数的知识来定义来刻画、 描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。从概念的内涵的外延来看,两门课之间存在着特殊与一般的关系,解析几何的一、二、三维空间是线性代数n 维空间的特例,而线性空间的大量理论又是来源于一、二、三维几何空间的推广(抽象)。平面方程及平面间的位置关系与线性方程组的理论,二次曲线,二次曲面的化简与代数中的二次型理论,几何与代数中欧式空间的理论等等。 (一)线性代数中一些概念的几何直观解释: 1.关于行列式的几何背景 设α=(321,,a a a ),β=(321,,b b b ),γ=(321,,c c c );两个向量的向量积可以用行列式写为 321 32 1b b b a a a k j i =?βα 它在几何上表示的是与α,β向量都垂直且成右手系的向量。 三个向量的混合积可以用行列式表示为图1 平行六面体 (γβα,,)=(βα?)γ?=321 32 132 1c c c b b b a a a 此行列式的几何解释是它的绝对值等于以它们3个向量为相邻棱所作的平行六面体的体积(如图1)。特别地,当(α,β,γ)=0时,由于平行六面体的体积为零,所以共面。γβα,,0321321 321 ?=c c c b b b a a a 图1 平行六面体

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

向量代数与空间解析几何教案.doc

第八章向量代数与空间解析几何 第一节向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。教学重点: 1. 空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点: 1. 空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向 量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2.量的表示方法有: a 、i、F、 OM 等等。 3.向量相等a b :如果两个向量大小相等,方向相同,则说(即经过平移后能完全 重合的向量)。 4.量的模:向量的大小,记为 a 、OM。 模为 1 的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5.量平行a // b:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6.负向量:大小相等但方向相反的向量,记为 a 二、向量的线性运算 b c 1.加减法a b c:加法运算规律:平行四边形法则(有 时也称三角形法则),其满足的运算规律有交换率和结合率见图7 a -4

2.a b c 即 a ( b) c 3.向量与数的乘法 a :设是一个数,向量 a 与的乘积a规定为 (1) 0 时, a 与a 同向, | a | | a | (2) 0 时, a 0 (3) 0 时, a 与a反向,| a | | || a | 其满足的运算规律有:结合率、分配率。设 a 0表示与非零向量 a 同方向的单位向量,那么 a 0a a 定理 1:设向量,那么,向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ , a≠ 0 使b=a 例 1:在平行四边形ABCD中,设AB a ,AD b ,试用 a 和b表示向量 MA 、MB 、MC 和 MD ,这里M是平行四边形对角线的交点。(见图7-5)图 7- 4 解: a b AC 2 AM ,于是 MA 1 (a b) 2 由于 MC MA ,于是 MC 1 b) (a 2 1 (b a) 又由于 a b BD 2 MD ,于是 MD 1 (b 2 由于 MB MD ,于是 MB a) 2 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维) 如图 7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以角度 2 转向正向 y 轴时,大拇指的指向就是z 轴的正向。 2.间直角坐标系共有八个卦限,各轴名称分别为:x轴、y轴、z轴,坐标面分别 为 xoy 面、yoz面、zox面。坐标面以及卦限的划分如图7-2 所示。 图 图 7-1 右手规则演示 7- 2 空间直角坐标系图图7-3空间两点 M 1 M 2的距离图3.空间点M ( x, y, z)的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示

高考数学平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22 PA PB +的最大值和最小值。 分析:因为O 为AB 的中点,所以2,PA PB PO += 故可利用向量把问题转化为求向量OP 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=

高考数学解析几何和向量的结合专题

解析几何与向量的结合问题专题 1.教学目标 1.1熟练掌握平面向量的三角形与平行四边形法则、数量积的相关概念以及它与解析几何的结合应用 2.2通过对解析几何中,与向量的结合问题,渗透从特殊到一般的思想、数形结合思想、空间想象能力、逻辑思维能力、推理论证能力以及运算求解能力; 3.3提高学生分析问题、自主探究和解决问题的能力,提升学生数学的核心素养。 2.教学重点、难点 2.1重点:利用数学基础知识与基本技能探究解析几何问题,并培养学生分析问题以及解决问题的能力; 2.2难点:如何找到解决解析几何问题的知识与能力的平衡点,并探寻合理的解决方法,进而培养学生的逻辑思维能力。 3.教学过程 喜欢学习解析几何问题的学生很多,喜欢动脑,非常好的事。但遇到解析几何问题,得分率又不高,细化汇总来看,在一些问题上还有待提高,其中错误率较高的问题都反映在什么地方呢?今天我们就一起来探讨一下。 试卷上刚做过得一题: 例1:已知双曲线C :),0,0(12 2 >>=-n m n y m x 21,F F 是双曲线C 的左、右焦点,直线l 与 双曲线C 交于A,B 两点,E 是A 关于y 轴的对称点。若1,1m n ==,(1,0)A -,直线l 与坐 标轴不垂直,点M 为直线BE 与y 轴的交点,且满足3ME EB =u u u r u u u r ,求直线l 的斜率; 3.1学生分析题目 站在学生角度分析: (1)学生看到32 ME EB =u u u r u u u r ,两个动M B 和, 无法下手。 (2)学生看到32 ME EB =u u u r u u u r ,第一步表示出E 标,由(1,0)A -关于y 轴对称写出(1,0)E , B 第二步:再求出点坐标,如何求B 点坐标呢? 设AB: (1)y k x =+,(,)B B B x y 然后我把直线AB: (1)y k x =+和双曲线方程2 2 1x y -=联立,用韦达定理

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平 行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的表示方法有两种: → a 、→ AB 向量的模:向量的大小叫做向量的模. 向量→ a 、→ AB 的模分别记为||→ a 、||→ AB . 单位向量: 模等于1的向量叫做单位向量. 零向量: 模等于0的向量叫做零向量, 记作→0.规定:→ 0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量): 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行.记作a // b .规定: 零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法: 设有两个向量a 与b , 平移向量使b 的起点与a 的终点重合, 此时从a 的起点到b 的终点的向量c 称为向量a 与b 的和, 记作a +b , 即c =a +b . 当向量a 与b 不平行时, 平移向量使a 与b 的起点重合, 以a 、b 为邻边作一平行四边形, 从公共起点到对角的向量等于向量a 与b 的和a +b . 向量的减法: 设有两个向量a 与b , 平移向量使b 的起点与a 的起点重合, 此时连接两向量终点且指向被减数的向量就是差向量。 → → → → → A O O B OB O A AB -=+=, 2、向量与数的乘法 向量与数的乘法的定义: 向量a 与实数λ的乘积记作λa , 规定λa 是一个向量, 它的模|λa |=|λ||a |, 它的方向当λ>0时与a 相同, 当λ<0时与a 相反. (1)结合律 λ(μa )=μ(λa )=(λμ)a ; (2)分配律 (λ+μ)a =λa +μa ; λ(a +b )=λa +λb . 例1 在平行四边形ABCD 中, 设?→ ?AB =a , ?→ ?AD =b .

专题:平面向量常见题型与解题指导

平面向量常见题型与解题指导 一、考点回顾 1、本章框图 2、高考要求 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。 2、掌握向量的加法和减法的运算法则及运算律。 3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。 4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。 7、掌握正、余弦定理,并能初步运用它们解斜三角形。 8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。 3、热点分析 对本章内容的考查主要分以下三类: 1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题. 2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主. 3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质. 在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。 4、复习建议 由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。 在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。 在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。

高等代数与解析几何教学大纲

附件1 高等代数与解析几何教学大纲 课程编号: 课程英文名:Advanced Algebra and Analytic Geometry 课程性质:学科基础课 课程类别:必修课 先修课程:高中数学 学分:4+4 总学时数:72+72 周学时数:4+4 适用专业:统计学 适用学生类别:内招生 开课单位:信息科学技术学院数学系 一、教学目标及教学要求 1.本课程是统计学专业的一门重要基础课。它不仅是学习后继课程及在各个学科领域进行理论研究和实际应用的必要基础,同时还为培养学生的独立工作能力提供必要的训练。学生学好这门课程的基本内容和方法,对今后的提高和发展有着深远的影响。 2.通过本课程的学习,要使学生了解高等代数与解析几何的概貌、各部分内容的结构和知识的内在联系;学会代数与几何方法,培养学生抽象思维能力、逻辑推理能力、想象能力、运算能力和综合应用能力。 3.要求学生熟练掌握本课程的基本概念、基本理论、基本运算及方法。通过课堂教学及进行大量的习题训练等各个教学环节,使得学生做到概念清晰、推理严密、运算准确,并且学会应用这些基本理论及方法去处理实际问题。 二、本课程的重点和难点 (略。由课任教师自行掌握) 三、主要实践性教学环节及要求

精讲、细读、自学相结合方法,加强课内外训练为手段。 四、教材与主要参考文献 教材:《高等代数与解析几何》(上、下)(第二版),孟道骥编著,科学出版社,2004年。 参考书: 1.《高等代数与解析几何》,陈志杰编著,高等教育出版社, 2000年; 2.《数论基础》,张君达主编,北京科学技术出版社,2002年。 五、考核形式与成绩计算 考核形式:闭卷考试。 成绩计算:平时成绩(包括平时作业、小测验、考勤等)占30%, 期末考试占70%。 六、基本教学内容 第二学期 第一周—第二周:(8课时) 第一章:向量代数与解析几何基础 1.代数与几何发展概述。 2. 向量的线性运算及几何意义:定义与性质、向量的共线、共面与线 性关系 3. 坐标系:标架、向量和点的坐标、n维向量空间。 4. 向量的线性关系与线性方程组。 5. 三维空间中向量的乘积运算:内积、外积、混合积、三重外积。 6. 方程及几何意义: (1)二元方程及几何意义:平面曲线的表示(非参数式、极坐标、 参数式、向量式); (2)三元方程及几何意义:直线与平面方程、曲线与曲面方程(非 参数式、参数式、向量式)。 第三周—第五周:(12课时)

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

相关主题
文本预览
相关文档 最新文档