第12章量子力学基础
- 格式:ppt
- 大小:2.09 MB
- 文档页数:133
2020高中物理竞赛江苏省苏州高级中学竞赛讲义第十二章量子物理第三次课:2学时1 题目:§12-5 波函数及统计解释§12-6 薛定谔方程2 目的:1.了解波函数及其统计解释。
2.了解薛定谔方程(选讲)。
一、引入课题:二、讲授新课:§12-5 波函数及统计解释历史上两种典型的看法,很容易把微观粒子看作是经典粒子和经典波的混合体。
“粒子是由波组成的”:把粒子看作是由很多波组成的波包,但波包在媒质中要扩散、消失(和粒子性矛盾)。
“波是由粒子组成的”:认为波是大量粒子组成的;但这和单个粒子就具有波动性相矛盾。
一、波函数和概率波统计性把波和粒两个截然不同的经典概念联系了起来1 概率波德布罗意提出的波的物理意义是什么?他并没有给出明确的回答,只是说它是虚拟的和非物质的。
对光辐射(电磁波),爱因斯坦1917年引入统计性概念;波动观点:光强∝ E 2粒子观点:光强∝某处光子数∝某处发现一个光子的概率∴ E 2 ∝ 某处发现一个光子的概率当前得到公认的关于德布罗意波的实质的解释是玻恩在1926年提出的概率波的概念。
玻恩发展了爱因斯坦的思想,保留了粒子的微粒性,认为物质波描述了粒子在各处被发现的概率。
德布罗意波是概率波。
2 波函数(wave function)为了定量地描述微观粒子的状态,量子力学中引入波函数,并用ψ ( r , t ) 或 ψ (x , y , z , t )表示。
薛定谔认为具有波粒二象性的微观粒子,也可以像机械波或电磁波那样用波函数来描述它的波动性。
我们从机械波的波函数出发,写出物质波的波函数。
平面机械波的波(方程)函数将其写成复数形式前式是后式的实数部分。
按照德布罗意的物质波假设,一个不受外力作用的自由粒子,它的能量和动量都不改变,与这样的粒子相关的德布罗意波就是一个单色平面波,则有将ν=E/h 和λ=h/P 代入上式则有称上式为德布罗意波的波函数,其中为波函数的振幅,又称概率幅。
量子力学基础教程答案【篇一:量子力学课后答案】class=txt>????? 第一章绪论第二章波函数和薛定谔方程第三章力学量的算符表示第四章态和力学量的表象第五章微扰理论第六章弹性散射第七章自旋和全同粒子?301.1.由黑体辐射公式导出维恩位移定律:?mt?b,b?2.9?10m?c。
证明:由普朗克黑体辐射公式:8?h?31 ??d??d?, h3c ekt?1c c及??、d???2d?得?? 8?hc1?? ?5,hc?e?kt?1 d?hc令x?,再由??0,得?.所满足的超越方程为 ?d? ktxex 5?x e?1 hc x?4.97,即得用图解法求得?4.97,将数据代入求得?mt?b,b?2.9?10?3m?0c ?mkt1.2.在0k附近,钠的价电子能量约为3ev,求de broglie波长.0hh?10解:? ???7.09?10m?7.09a p2me # 3e?kt,求t?1k时氦原子的de broglie波长。
1.3. 氦原子的动能为 2h0hh?10??12.63?10m?12.63a 解:? ??p2me3mkt ?23?1其中m?4.003?1.66?10?27kg,k?1.38?10j?k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
绪论第一章b?10t,玻尔磁子?b?0.923?10?23j?t?1,求动能的量子化间隔?e,并与t?4k及已知外磁场t?100k 的热运动能量相比较。
p21解:(1)方法1:谐振子的能量e????2q2 2?2p2q2可以化为??1 22 ?2e?2e? ????2???2e 的平面运动,轨道为椭圆,两半轴分别为a?2?e,b?,相空间面积为 2 ??2?eepdq??ab???nh,n?0,1,2,? ?? e?nh?,n?0,1,2,? 所以,能量方法2:一维谐振子的运动方程为q????2q?0,其解为q?asin??t??? 速度为 q??a?cos??t???,动量为p??q??a??cos??t???,则相积分为 2222tta??a??t222pdq? a??cos??t???dt?(1?cos??t???)dt??nh,n?0,1,2,? 002222a??nh e???nh?,n?0,1,2,? 2t 2?v?v evb?(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
量子力学一、量子力学的实验基础1.卢瑟福实验:a 粒子的质量远大于电子,两者的质心几乎就在a 粒子上。
虽然二体系统有内部的相互作用,但它们的质心是自由运动的,故电子对a 粒子的作用不影响a 粒子的运动。
a 粒子散射时,原子的正电荷部分受到反冲力,导致薄片晶格的振动。
2.原子光谱是原子内部电子运动情态的反映。
光谱项T。
氢原子光谱的频谱是离散的,且不是连续谱亦非由基频和倍频构成的频谱,这个性质直接来源于原子中电子运动具有能级的特性以及光具有粒子性。
3.光电效应实验中无法用经典物理学解释的现象:(1)反向遏止电压和入射光强无关;(2)反向遏止电压和入射光的频率呈线性关系;(3)电子逸出相对于光的照射而言几乎无时间延迟。
4.爱因斯坦方程:φω−=ℏT ,表示金属电子吸收一份光能量而获得T 的动能逸出金属,φ为脱出功,与材料有关。
5.光子:(1)博特实验(W.Bothe experiment)表明每份光能量是集中的;(2)贾诺希实验(L.Janossy experiment)表明每份光子落在何处是偶然事件,也就是说电磁波是光子的概率幅波。
(量子力学有整体性,光子的运动受到整个环境的影响。
)6.爱因斯坦关系:ωℏℏ==E k p ,。
P 和E 描写光子,k 和ω描写单色波。
【注意:说光有波粒二象性是沿用经典物理的语言。
光有波动性,是指光的运动没有轨道;光具有粒子性,是指光与电子相互作用时像粒子那样,而不像经典的波场那般。
】7.康普顿(pton)效应应用了“静电子模型”(靶原子的外层电子)。
康普顿波长:�ℏA mc0242621.02==Λπ。
计算过程中考虑了能量守恒(相对论力学)和动量守恒(矢量力学),2sin 22θλΛ=∆。
(1)对于原子内层的“束缚电子”,由于它们与原子核束缚的紧,应作为一个整体看待,“静电子模型”不成立。
光子撞不动整个原子,只是自己改变方向。
因此实验中出现了0=∆λ的成分。
(2)对于可见光,能量和动量小,靶原子的外层电子应作束缚电子看待,“静电子模型”不成立。