当前位置:文档之家› 盾构隧道管片渗漏原因分析及防治技术总结78

盾构隧道管片渗漏原因分析及防治技术总结78

盾构隧道管片渗漏原因分析及防治技术总结78
盾构隧道管片渗漏原因分析及防治技术总结78

盾构隧道管片渗漏原因分析及防治技术总结

摘要:地铁盾构隧道不可避免地要经过含水量较高的地层,因此隧道会受到地下水的严重侵害,如果隧道防水体系得不到保证,没有可靠的防水、堵漏措施,地下水就会侵入隧道,影响其内部结构与附属管线,缩短隧道使用寿命,甚至危害地铁的运营。目前,国内外已建成大量地铁隧道,结构设计计算理论与工程实践体系已较为成熟,但是在地下工程的防水方面则相对落后,很多难题仍然得不到很好的解决。以下结合广佛线某盾构区间土建工程的实际案例,总结了造成盾构隧道管片渗漏的各种原因以及防治的措施。

1 工程概述

珠江三角洲城际快速轨道交通广州至佛山段项目【鹤洞站~沙涌站盾构区间】土建工程地处广州市中心区的西南,荔湾区白鹤洞路至芳村大道之间。本区间采用“V”字坡型,最大纵坡26‰,最小2‰。

本工程采用复合型土压平衡式盾构机进行隧道掘进。盾构隧道的结构形式采用混凝土管片衬砌,管片外直径6000mm,壁厚300mm,抗渗等级C50、S12,区间隧道防水等级为二级。区间洞身地层主要以<7>强风化泥质粉砂岩、<8>中风化泥质粉砂岩、<9>微风化泥质粉砂岩为主,局部地段为<5-2>粉质粘土和<6>全风化泥质粉砂岩。

2 本项目盾构隧道渗漏水情况及治理方法

2.1本项目盾构隧道渗漏水情况原因分析

根据项目施工现场情况,管片渗漏水主要集中在350环~500环区段,渗漏位置主要集中管片的纵缝环缝、吊装孔部位,水源为洞身围岩基岩裂隙水,管片纵缝环缝、管片蹦块渗漏水共有112处,吊装孔部位渗漏水共有88处,管片渗漏情况较严重。

针对盾构管片渗漏水的情况,对导致管片渗漏的各方面原因进行了逐一的排查,本项目管片渗漏主要有以下几方面原因造成的:

(1)管片止水槽部位未清理干净便直接粘贴止水条,或胶水涂抹不均,导致止水条粘贴不牢靠,使管片拼装时极易脱槽而造成管片拼装缝漏水。

(2)管片拼装过程中止水条未冲洗干净或出碴时掉碴未冲洗,导致拼缝间止水条夹泥形成空隙而漏水。

(3)管片壁后没有采用盾构机盾尾注浆系统进行同步注浆,而是采用打开脱出盾尾管片的吊装孔进行单点注浆,浆液难以形成有效的闭合,一定程度上影响了隧道防水效果。

(4)管片的纵缝、环缝渗漏水主要集中在<8>、<9>地层,地层裂隙水相对较大,而且盾构在下坡段推进(坡度约25‰),盾尾容易形成积水,此时仅采用管片壁后单点注浆,注浆效果更难以得到保证。

(5)在注浆和补压浆结束后,吊装孔没有及时清理干净并采取有效措施封堵,使较多吊装孔渗水。

(7)在该硬岩段掘进过程中盾构操作手经验不足,在不断的姿态调整过程中,左右千斤顶推进速率不一致使管片偏心受力,易造成管片边角破损、止水条移位,最终影响防水。

2.2治理方法

(1)混凝土结构裂缝渗漏治理

混凝土结构裂缝渗漏治理采用压力注浆法,灌注改性环氧树脂补强浆液堵漏补强及建造环氧树胶泥混凝土处封闭处理。对于裂缝宽度0.2mm以下采用改性环氧涂膜封闭法处理;裂缝宽度0.2mm以上采用改性环氧灌浆嵌缝封堵处理。

(2)混凝土结构麻面、蜂窝点渗漏处理

采用压力注浆法,灌注改性环氧树脂补强浆液混凝土内堵漏补强及建造环氧树胶泥混凝土处封闭处理。

(3)管片拼装缝渗漏处理

采用压力注浆法,灌注改性环氧树脂补强浆液及建造环氧树胶泥混凝土处封闭处理。

(4)注浆孔堵漏:

采用普通水泥掺用外加剂及微膨胀剂进行防水堵漏。

隧道渗漏水原因及处理措施

隧道渗漏水原因及应急处理方案 一、渗漏水原因分析 从渗水部位分析及现场调查,总结得出渗漏水大致有以下几个原因产生: 1、地质原因:隧道渗漏水地段地质情况为节理裂隙发育,地下水发育,渗漏水为基岩裂隙水,局部分布裂隙节理发育带,地下水往裂隙处渗出,在喷射混凝土前,没有对裂隙水进行处理,渗漏水较为严重。 2、光面爆破效果不好,造成隧道开挖轮廓凹凸不平,部分区域喷射混凝土厚度及密实度达不到规范要求出现渗漏水现象。 3、安装引流盲管时,渗水位置排查不清,或盲管未固定好,喷射混凝土时发生偏移,不能达到很好的引流效果。 4、隧道周围裂隙水中钙物资较多,造成隧道防排水系统,特别是引水盲管的堵塞。 二、渗漏水处理方案 隧道渗漏水的治理,应根据漏水的水源、类型、部位以及漏水量,确定治理方案和选择材料。根据现场调查成果,确定隧道渗漏水治理原则为:以排为主,局部水量大的区域堵排结合。 1、凿槽引排:此方法主要适用于拱墙单点、股流、射水等水量较大的渗漏处。根据现场实际渗漏位置确定引排位置。施工步骤如下: (1)渗水点查找:把渗水周围的混凝土面清理干净,找到缝隙的位置及水源,特别是可能一处水源有多个渗漏点; (2)确定引流路径:找到渗水点后,确定方便排水的路径,为凿槽做准备; (3)凿槽:根据引流管大小人工凿出深度为5cm的槽,一般凿成内大外小的倒梯形槽,保证外敷水泥砂浆有2~3cm厚; (4)埋管:在槽底埋设Φ40弹簧半管直至拱墙底部,用锌铁皮或铁丝固定;

(5)封填:用防水砂浆进行封填,若凿缝后缝隙出现渗水,先用遇水膨胀橡胶止水条嵌缝,然后再封填防水砂浆; 防水砂浆配合比:425#普通硅酸盐水泥:BR增强型防水剂:BR-2专用粉:砂:水=1:0.14:0.03:1:0.35。 2、注浆:此方法主要适用于拱墙单点或缝隙等水流量较小处。 根据实际情况,注浆主要选用径向小导管注浆,材料主要选用超细水泥—水玻璃双液浆,也可根据渗漏点进行钻孔、埋设注浆针头、注环氧树脂进行注浆封堵。封堵完成后刷1:2普通砂浆抹面。 3、铺设防水板:此方法主要适用于拱墙多点区域性渗漏处。 隧道开挖完成后,在水流较大的区域可先对渗漏点进行封堵处理,若封堵效果不佳,且引流盲管不能达到很好的引流效果,可铺设防水板进行引流。若喷射混凝土前未发现较大水流,初期支护完成后出现多处渗漏点,可在初期支护混凝土上铺设防水板进行引流。 三、预防漏水措施 1、确保爆破开挖面平顺。光面爆破是确保后续初期支护、防排水板施工质量的关键。光面爆破中,特别要控制周边眼间距,保证周边眼间距在40~50cm以内,这样才能改善边墙平整度,起到关键的作用。 2、富水段先进行注浆加固。需要进行注浆加固的止水地段,特别是富水地段、破碎围岩地段,应先进行注浆封堵,贯彻“以防为主,防排结合,综合治理”的原则,确保注浆防水的质量达到止水效果,基本实现注浆段无线流,初步形成初期支护外的止水环,为安全开挖创造条件,为隧道防水创造条件。 3、严把引水盲管埋设关。引水盲管应根据洞内渗、漏水的实际情况按设计要求进行布置,富水段应等间距沿纵向设置形成暗埋、永久式排水通道系统,在无渗漏地段有必要时,每隔一定间距,在其喷层表面上、下打设排水孔,安装排水半管或线形排水板,防止雨季渗漏水。安装完引水盲管后,应确保洞身无较大渗水点方可进行混凝土喷射。

盾构隧道渗漏水原因分析及处理措施参考Word

盾构隧道渗漏水分析及处理措施 王峰蔡珍 (广州轨道交通建设监理有限公司无锡地铁2号线13标驻地监理部邮编:214000)摘要:基于无锡地铁2号线1期工程,探讨盾构隧道渗漏水分析及处理措施,同时综合国内其他城市地铁盾构法隧道施工特点,总结出一定的经验和认识,以供类似工程施工借鉴。 关键词:盾构;渗漏水;堵漏 盾构隧道渗漏水是一种盾构隧道施工过程中常见的施工质量问题。无锡地铁2号线是无锡首次穿越地裂缝的轨道交通线,影响工程施工的地下水主要是潜水、微承压水及第Ⅰ承压水。 无锡地铁2号线土建工程13标包含两站两区间:张巷站、大王基站、张巷站~河埒口站区间、河埒口站~大王基站区间,本文以张巷站~河埒口站右线盾构区间为例。 1 张巷站~河埒口站盾构区间工程简介 本区间设计范围:张巷站~河埒口站区间左线起终点里程为ZSK3+385.985~ZSK4+217.6814,左线短链1.214m,左线长830.4824m;右线起终点里程为YSK3+385.985~YSK4+217.6814,长链0.280m,右线长831.9764),左右线全长1662.4588单线米,包含盾构区间隧道主体部分、联络通道兼泵房。 本区间呈东西走向,隧道出张巷站后沿梁溪路前行进入河埒口站,区间右线存在两处R=600m平面曲线。 区间纵断面为V字型节能坡,右线分别以2‰、24‰和4.98‰坡度下坡至区间隧道中间最低点,然后分别以20‰、2‰坡度上坡至张巷站。区间埋深9.67~16.04m。设一处联络通道兼废水泵房,中心里程为YSK4+882.454(ZSK4+877.756)。 盾构管片环外径6.2m,内径5.5m,壁厚0.35m,环宽1.2m,管片共计694环,混凝土强度等级C50,抗渗等级P10。 张巷站~河埒口站区间盾构隧道穿越土层全部是6-1粘土层,其主要特征:灰黄色,硬塑,含铁锰结核。切面有光泽,干强度及韧性高,无摇震反应。 本工程区间为盾构法施工,区间内无地表水,影响工程施工的地下水主要是潜水、微承压水及第Ⅰ承压水。 道路两侧填土层有少量潜水,主要接受大气降水的入渗补给。勘察期间,潜水稳定水位埋深1.00m,相应标高 2.45~ 2.60m,年变幅 2.0m左右。

隧道衬砌后渗漏水处理方案

隧道衬砌后渗漏水处理方案 隧道大部分渗漏水位于矮边墙施工缝处,个别隧道边墙壁、拱腰、拱顶施工缝处渗水、综合接地预埋钢筋位置,拱顶基本上没有漏水。从渗漏水部位分析,总结得出渗漏水大致有以下几个原因产生: 地质原因:隧道渗漏水地段地质情况一般为节理裂隙发育,地下水发育,或地质受构造影响,局部分布裂隙节理发育带,局部渗漏较严重,地下水为基岩裂隙水发育。 光面爆破效果不好,造成隧道开挖轮廓凹凸不平,有棱角。初期支护,喷射混凝土没有把凹凸面补平,平整度达不到规范要求,容易把防水板刺破,出现渗漏水现象。 节理裂隙发育,地下水往裂隙处渗出,在初期支护喷射混凝土前,没有对裂隙水进行处理,造成二次衬砌部分地方,铺设防水板及浇筑混凝土不到位,出现渗漏水现象。 安装纵向盲管时,特别是矮边墙部分,纵向盲管没有用防水卷材半裹,造成部分地下水发育地段,矮边墙出现渗漏水现象。 水平施工缝和环向施工缝,现场随意凿槽,安装止水条,造成施工缝处出现渗漏水现象。防水板热熔焊接不到位,也是造成渗漏水现象。 初期支护,锚杆钢筋头处理不到位,进行喷射混凝土,很容易刺破防水板,造成渗漏水现象。隧道周围裂隙水中钙物质较多,造成了隧道排水系统,特别是导水盲管的堵塞。 漏水处理方案 隧道渗漏水的治理,应根据漏水的水源、类型、部位以及漏水量,确定治理方案和选择材料。根据现场调查成果,确定隧道渗漏水治理原则为:拱部堵排结合,综合治理;边墙以排为主,局部水量大的区域堵排结合;先拱后墙,先堵后排,循序进行。 二次衬砌后注浆 二次衬砌后有渗漏水时应采用二次衬砌内注浆,注浆应根据二次衬砌渗漏水情况布置,孔深为二次衬砌厚度的1/3~2/3之间。二次衬砌内注浆可采用电冲击锤成孔,专用注浆泵注浆,注浆材料选用可灌性好、粘结立强、流动性好、稳定性好、结石率高、快凝早强、凝结时间可调的水泥-水玻璃浆液。配合比:425#普通硅酸盐水泥:水玻璃:水=1:0.5:0.8;注浆压力控制在0.5MPa范围内。注浆原则:由下部孔眼向上部孔眼压注,以确保地下水被封堵在二次衬砌背后;由无水地段向有水地段压注,由水少地段向水多地段压注,以使水流汇集,便于引排。 凿槽引排 此方法主要使用于拱、墙单点线流、股流、射水等水量较大的渗漏处。根据雷达检测提供的裂缝状况确定引排位置。施工步骤如下: 表面清洗:把裂缝左右约10cm的衬砌混凝土表面清洗干净,找到缝隙的位置及水源; 割缝或钻孔:在渗水缝隙左右各3cm处用切割机割深为6~8cm的缝,或用冲击钻每隔2cm 钻孔,为凿槽做准备; 凿槽:人工凿出深度为8cm(施工缝)或6 cm(衬砌裂缝)的槽,一般凿成内大(6cm)外小(4cm)的倒梯形槽,保证外敷防水层有2~3 cm厚; 埋管:在槽底埋设φ50弹簧半管直至边墙底部,用锌铁皮固定,边墙底部至纵向排水沟用φ50PVC圆管连接; 封填:分两种情况:针对于施工缝,先用遇水膨胀橡胶止水条嵌缝,然后再封填防水砂浆;针对于衬砌裂缝,直接封填防水砂浆; 刷浆找平:等防水砂浆达到一定强度后,喷湿修复区域,刷1:2普通砂浆找平,建议厚度0.5~0.8cm;

如何进行盾构法施工隧道管片选型排版

进一步减小。通常我们以各组油缸行程的差值的大小来判断是否应该拼装转弯环,在两个相反的方向上的行程差值超过40mm时,就应该拼装转弯环进行纠偏,拼装一环转弯环对油缸行程的调整量见表1,也就是拼装1环10点左转弯环,可以使左、右两组的油缸行程差缩小38mm。 德国海瑞克公司的土压平衡式盾构机,如图3所示,10对推进油缸分为A、B、C、D四组,分别代表上、右、下、左四个方向。油缸行程可以通过位移传感器反映在显示屏上,通过计算各组油缸之间的差值,就能进行正确的管片选型。下面举例说明: 现有一组油缸行程的数据如下: B组(右):1980mm C组(下):1964mm D组(左):1934mm A组(上):1943mm 左右行程差为:D-B=1934-1980=-46mm 上下行程差为:A-C=1943-1964=-21mm 图油缸分区图 由上可以看出,盾构机的轴线相对于管片平面向左上方倾斜。在对这环管片进行选型的时候,就应选择一环左转弯环且还要有向上的偏移量。对照表1后得出,此环应选择左转弯环在1点拼装。拼装完管片后掘进之前油缸行程的初始数据理论为:A组(上):454mm B组(右):465mm C组(下):453m D组(左):450mm。这样左右与上下的油缸行程差值基本控制在20mm之内,有利于盾构掘进及保护管片不受破坏。(如果上述数据在左转弯曲线上,下一环管片仍安装一环左转弯环管片,那么盾构姿态基本调整过来)。 4、盾构间隙与油缸行程之间的关系 在进行管片选型的时候,既要考虑盾尾间隙,又要考虑油缸行程的差值。而油缸行程的差值更能反映盾构机与管片平面的空间关系,通常情况下应把油缸行程的差值作为管片选型的主要依据,只有在盾尾间隙接近于警戒值(25mm)时,才根据盾尾间隙进行管片选型。 3、影响管片选型的其他因素 3.1 铰接油缸行程的差值 目前地铁盾构工程中大多采用的是铰接式盾构机,即盾构机不是一个整体,而是在盾构机中体与盾尾之间采用铰接油缸进行连接,铰接油缸可以收放,这样就更加有利于盾构机在曲线段的掘进及盾构机的纠偏。铰接油缸利用位移传感器将上、下、左、右四个方向的行程显示在显示屏上,当铰接油缸的上下或左右的行程差值较大时,盾构机中体与盾尾之间产生一个角度,这将影响到油缸行程差的准确性。这时应当将上下或左右的行程差值减去上下或左右的铰接油缸行程的差值,最后的结果作为管片选型的依据。(海瑞克盾构铰接油缸有三种模式,锁、收和自由放开,当盾构在直线上,盾构姿态很好,可以使用锁定模式,当

盾构区间渗漏水分析及处理措施

. . .. .. 编号: 郑州市轨道交通5号线工程土建施工08标段经开第三大街站~商英街站区间 渗漏水分析及处理措施方案 编制: 复核: 批准: 中铁七局集团有限公司郑州轨道5号线土建08标项目经理部 2016年9月4日

目录 1工程概况 ---------------------------------------------------------------------------------------------------- 2 2工程地质条件概况 --------------------------------------------------------------------------------------- 2 2.1工程地质--------------------------------------------------------- 2 2.2水文地质条件----------------------------------------------------- 3 3渗漏水情况说明及原因分析 -------------------------------------------------------------------------- 3 3.1管片自身质量缺陷------------------------------------------------- 5 3.2管片止水条脱落--------------------------------------------------- 5 3.3管片衬背注浆不饱满----------------------------------------------- 5 3.4盾构与管片的姿态不好--------------------------------------------- 5 3.5掘进过程中推力不均匀--------------------------------------------- 5 3.6管片拼装质量控制不严格------------------------------------------- 6 3.7盾构前进反力不足------------------------------------------------- 6 3.8管片上浮或侧移--------------------------------------------------- 6 4预防措施 ---------------------------------------------------------------------------------------------------- 6 4.1加强对管片质量卡控----------------------------------------------- 6 4.2加强管片拼装质量------------------------------------------------- 6 4.3加强同步注浆控制------------------------------------------------- 6 4.4盾构机姿态控制措施----------------------------------------------- 7 4.5规范化管片拼装,严格控制质量------------------------------------- 7 4.6管片上浮或侧移--------------------------------------------------- 8 5渗漏水处理措施 ------------------------------------------------------ 8 5.1二次补浆--------------------------------------------------------- 9 5.2环纵缝注浆堵漏--------------------------------------------------- 9 5.2.1环纵缝漏水处理----------------------------------------------- 9 5.2.2管片螺栓孔渗漏----------------------------------------------- 9 6安全保证措施---------------------------------------------------------------------------------------------- 9

隧道渗漏水处理施工方案Word版

后门隧道渗漏水处理施工方案 一、工程概况: 深圳——汕头一级汽车专用公路后门隧道位于海丰县后门镇新建村至梅陇镇南山冯村之间,施工里程为K117+204.3~k118+435全长1230.7m,隧道为直线,隧道净宽10m,净高7.2m,其中行车道宽2×3.75m。该隧道主要施工方法为:Ⅱ类及Ⅱ类浅埋段采用整体式衬砌施工,Ⅲ类~Ⅴ类采用复合式衬砌施工。隧道防水采用全隧满铺橡胶防水板作为防水层。 二、地形地貌及地质情况: 2.1 地形及地貌 后门隧道地处沿海丘陵地带,纵贯咸台山,山体呈北东——南西延伸。东坡地形较陡,坡度30~40度,洞口标高2.0-22m。西面边坡地形较缓,坡度25-30度,洞口标高18m。东西两端为海积平原,海拔标高1.5-2.2m,南侧比邻大海。 2.2 工程地质情况 隧道处于新华夏系梅陇活动性断裂带南东侧,即海丰-政和构造带的西南段。隧道所穿地层岩性单一,由侏罗系上统火山熔岩(英安斑岩)组成。上复第四系坡积、残积层,厚度不一,由1.64-

14.3

m不等。区内无大断裂通过,但由于受北西、南东两侧的强挤压破碎带的影响,岩石均有不同程度的挤压破碎,并伴有次一级构造。2.3 水文地质情况 后门隧道所处地区雨量充沛,地表植被茂盛。尤其是隧道两端地表属第四系坡积物富含水,含水动态随季节变化而变化,基岩裂隙水水位埋深3.2-23.27m,无稳定含水层,多为构造破碎带含水。 三、后门隧道交付营运后出水情况: 3.1 交付运营时的一般情况 后门隧道左线1991年10月开工,1993年3月竣工。右线1993年6月开工,1996年4月竣工。左右隧道竣工交验时无明显渗漏水现象。 3.2 出水对隧道使用病害性影响 隧道营运约一年时间局部开始渗漏,并逐渐增大渗漏范围,有些部位沿施工缝发展到滴水,甚至淌水。同时,受大气降水影响明显,雨季较旱季渗漏水严重。隧道渗漏水分布不均,隧道两端漏水比隧道中间部位漏水情况严重得多,左隧道比右隧道漏水严重,但渗漏点分布于整隧道。 因此,后门隧道因渗漏水直接危害洞中电器设备,直接影响隧道内汽车正常运行,必须采取有效的堵漏措施,确保行车畅通。

盾构隧道工程事故案例分析1(推荐文档)

盾构法隧道工程事故案例分析及风险控制 上海市土木工程学会 傅德明 盾构法隧道已经发展到十分先进和安全的技术,但是由于地质水文条件的复杂性,或由于施工操作的错误,还存在许多风险,近年来,我国的盾构隧道工程也出现一些工程故事,因此, 隧道工程的安全和风险控制十分重要. 1、盾构法隧道工程事故分析和风险控制 1.1 南京地铁盾构进洞事故 事故描述: 1.工程概况 南京某区间隧道为单圆盾构施工,采用1台土压平衡式盾构从区间右线始发,到站后吊出转运至始发站,从该站左线二次始发,到站后吊出、解体,完成区间盾构施工。 该区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为空隙潜水,赋存于砂性土中的地下水具一定的承压性,深部承压含水层中的地下水与长江及外秦淮河有一定的水力联系。到达端盾构穿越地层主要为中密、局部稍密粉土,上部局部为流塑状淤泥质粉质粘土,端头井6m采用高压旋喷桩配合三轴搅拌桩加固土体。 2. 事故经过 在盾构进洞即将到站时,盾构刀盘顶上地连墙外侧,人工开始破除钢筋,操作人员转动刀盘,方便割除钢筋,下部保护层破碎,刀盘下部突然出现较大的漏水漏砂点,并且迅速发展、扩大,瞬时涌水涌砂量约为260m3/h,十分钟后盾尾急剧沉降,隧道内局部管片角部及螺栓部位产生裂缝,洞内作业人员迅速调集方木及木楔,对车架与管片紧邻部位进行加固,控制管片进一步变形。仅不到一小时,到达段地表产生陷坑,随之继续沉陷。所幸无人员伤亡,抢险小组决定采取封堵洞门方案。3.处理措施 抢险小组利用应急抽水泵排除积水,同时确定采取封闭两端洞门的方案,在该车站端头外层钢筋侧放置竹胶板,采用编织袋装砂土及袋装水泥封堵,迅速调集吊车及注浆设备进场,采用钢板封堵洞门;始发站洞内积极抢险,利用方木对车架与管片进行支顶,在无法控制抢险的情况下安全撤出作业人员,在洞内进行袋装水泥

盾构区间渗漏水分析及处理措施

盾构区间渗漏水分析及处理措施

编号: 郑州市轨道交通5号线工程土建施工08标段经开第三大街站~商英街站区间 渗漏水分析及处理措施方案 编制: 复核: 批准: 中铁七局集团有限公司郑州轨道5号线土建08标项目经理部

2016年9月4日

目录 1工程概况------------------------------------------------------------ 3 2工程地质条件概况 ---------------------------------------------------- 3 2.1工程地质--------------------------------------------------------- 3 2.2水文地质条件----------------------------------------------------- 4 3渗漏水情况说明及原因分析 -------------------------------------------- 4 3.1管片自身质量缺陷------------------------------------------------- 6 3.2管片止水条脱落--------------------------------------------------- 6 3.3管片衬背注浆不饱满----------------------------------------------- 6 3.4盾构与管片的姿态不好--------------------------------------------- 6 3.5掘进过程中推力不均匀--------------------------------------------- 6 3.6管片拼装质量控制不严格------------------------------------------- 7 3.7盾构前进反力不足------------------------------------------------- 7 3.8管片上浮或侧移--------------------------------------------------- 7 4预防措施------------------------------------------------------------ 7 4.1加强对管片质量卡控----------------------------------------------- 7 4.2加强管片拼装质量------------------------------------------------- 7 4.3加强同步注浆控制------------------------------------------------- 7 4.4盾构机姿态控制措施----------------------------------------------- 8 4.5规范化管片拼装,严格控制质量------------------------------------- 9 4.6管片上浮或侧移--------------------------------------------------- 9 5渗漏水处理措施 ----------------------------------------------------- 10 5.1二次补浆-------------------------------------------------------- 10 5.2环纵缝注浆堵漏-------------------------------------------------- 10 5.2.1环纵缝漏水处理---------------------------------------------- 10 5.2.2管片螺栓孔渗漏---------------------------------------------- 10 6安全保证措施 ------------------------------------------------------- 10

盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结 区间盾构结构为预制钢筋混凝土环形管片,外径6200米米,内径5500米米,厚度 350米米,宽度 1200米米.在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合. 国内一般采用第③种,项目隧道采用该衬砌环. 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量. 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型.由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度 . 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环.即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄. 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度 ;③标准环数与楔形环数之比u值.还有一个可供参考的因素:楔形量管模的使用地域.楔形量理论公式如下: △=D(米+n)B/nR ①

(D-管片外径,米:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面.按最小水平曲线半径R=300米计算,楔形量△=37.2米米,楔形角β=0.334°. 值得注意的是转弯环设计时,环宽最大和最小处是固定的 ,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求. 2、圆曲线预排版 设需拟合圆曲线半径为450米(南门路到团结桥区间曲线半径值),拟合轴线弧长270米,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720米米③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1.

浅谈隧道渗漏水的原因及治理措施

浅谈隧道渗漏水的原因及治理措施 【摘要】铁路隧道工程渗漏水会危及安全运行,因此在施工中必须采取措施,防止铁路隧道出现渗漏水的不良质量现象。 【关键词】隧道;渗漏水;措施 0 前言 由于隧道渗漏水,增加隧道内空气湿度,造成铁路钢轨、通讯、照明等设施损坏。由于道床及路面积水,尤其是隧底翻浆冒泥,直接危及隧道的使用功能,造成不应有的交通事故;隧道漏水加快了衬砌混凝土的碳化速度,特别是有腐蚀性的地下水,能破坏混凝土结构,减少铁路隧道的使用寿命。隧道内保持干燥是保证隧道内行车安全的重要指标,如何做好隧道防水混凝土质量控制工作是实现隧道内干燥目标的关键。 1 铁路隧道工程渗漏水的危害 隧道工程渗漏水,会使钢筋混凝土内部存在的氢氧化钙溶失,PH值变小,容易导致混凝土结构中的钢筋发生锈蚀,并会加快结构混凝土的碱骨料反应,从而影响到结构安全,缩短了工程的使用年限;会失去它的使用功能;须常年采用机械排水和使用抽湿机或用吸湿剂除湿,均会造成能耗损失,成本飙升。 2 隧道渗漏水的主要形式 隧道病害的主要类型有衬砌裂损,渗漏水和钢筋外露,边墙鼓胀开裂,拱顶掉块,基底软化,翻浆冒泥等。其中渗漏水病害的表现形式主要有拱顶渗水、滴水,拱脚处渗水、淌水,伸缩缝部位渗水、淌水,侧墙渗水、淌水,局部涌水、涌泥,道床积水等,在冬天则表现为顶部形成冰挂,侧墙形成冰柱,道床形成冰堆、冰坡等。 3 隧道渗漏水的原因分析 3.1使用的防水材料质量不高。随着我国国民经济的高速发展,大量建设工程不断上马,造成了对防水材料的旺盛需求,刺激了各种防水材料厂的快速发展。有些厂家既无人才,又无技术和设备,造成假冒伪劣产品盛行,自然会影响防水工程质量。具体到隧道工程中,防水板本身存在较多缺陷,拉伸强度、延伸率、抗刺破能力不足,焊接性不好,耐侵蚀性能力不足,厚度不够,防水涂料的强度、延伸率不足,与基层粘结强度不够,长期耐水性不良,防水外加剂对混凝土强度、和易性、凝固时间、固化收缩性能的不良影响等都是造成隧道渗漏水的重要因素。 3.2设计及施工不尽合理。混凝土和易性差或施工工序质量控制不严,导致混凝土质地不均匀,捣固不密实或出现漏振,形成疏松层和蜂窝,或留下各种形状的透水缝隙。裂隙水较发育或有泉眼处没有进行引排水。施工缝处止水带埋设不规范,挡头板粗糙。先拱后墙法施工的拱脚浮碴清理不干净,马口回填不密实,造成渗漏水,这种现象也较普遍。塌方造成衬砌混凝土拉裂,膨胀围岩作用引起衬砌开裂;塌方处理措施不到位,衬砌背后回填不密实,由于应力过大引起开裂;先拱后墙法施工的马口开挖顺序不当,长度过大,拱脚下沉引起拱部开裂;因地质不均匀下沉造成衬砌开裂。以上裂缝都会造成较严重的渗漏水,治理也较困难。岩石隧道光面爆破效果不好。衬砌结构同围岩结合不紧密,不仅恶化了衬砌的受力条件,造成围岩的进一步松动,而且还会在衬砌背后造成存水空间,为地下水的侵入打开方便之门。喷射混凝土表面粗糙,对施工和服务期的防水板极易造成压痕和擦伤,影响防水层的完好,从而造成渗漏。隧道中心水沟因泥砂或冰冻堵死无法排水,必然使隧道产生渗漏。

盾构隧道转弯环管片在曲线上的排版

盾构隧道转弯环管片在曲线上的排版【东莞地铁R2线盾构前言】:盾构施工在缓和曲线上的管片选型排版直接关系 到在圆曲线上盾构机的姿态控制,现以某区间缓和曲线段管片的选型排版为例,对管片在缓和区线段的选型排版方法进行总结介绍,以便在今后盾构施工进行借鉴和指导。一般排版设计的管环宽是1.5米就考虑1.502米-1.503米我考虑的是1.503米排版情况很好。 一、引言 目前盾构工程在地下铁路施工中应用越来越多,由于曲线的存在就要用标准环与转弯环配合使用,以适应线路的走势。曲线是由一条圆曲线和两条缓和曲线组成。对于圆曲线的管片排版已有了相对较为成熟的理论。而缓和曲线上的管片排版以往通常是根据盾构机VMT来选择,没有成型的理论支持,为此,结合测量理论和弯环管片的实际探索出在缓和曲线上准确选择弯环管片理论排版的方法,介绍给大家,供参考和借鉴。 二、缓和曲线理论 按线路的前进方向,直线与缓和曲线的连接点称为直缓点,依次类推其余各点分别为缓圆点、圆缓点、缓直点,分别记为ZH、HY、YH、HZ。其相对关系见图1及图2。 图1 曲线要素示意图

图2 缓和曲线图 由可得 β――为缓和曲线上任一点P处的切线角; ――任一点P所对应的切线长 L S =L时,即可得出β=L/2R (rad) 。 当L S 2.1.弯环管片偏转角计算 依照曲线的圆心角与转弯环产生的偏转角关系可知: 图3 标准环、转弯环关系图 θ=2γ=2arctgδ/D 式中: θ—转弯环的偏转角δ—转弯环的最大楔形量的一半D—管片直径 将数据代入得出θ=0.3629o

三、缓和曲线上转弯环管片用量计算 在缓和曲线段内,缓和曲线切线角β与一环转弯环的偏转角θ的比值即为曲线上所需管片的数量。现以某区间右线JD8为例进行计算。 某区间管片技术参数如下: 管片长度:1500mm;管片内径:5400mm; 管片厚度:300mm;管片外径:6000mm; 转弯环楔形量:38mm; N=β/θ=10.53(环) N——单条缓和曲线需加设的弯环管片用量 由此可以看出在JD8的单条缓和曲线上需放10.53环转弯环管片,但是管片都要成环拼装,0.5环就要和圆曲线组合综合考虑了,整条曲线的弯环数按取整数进行取舍,如果有不足一环的管片存在,就可以多拼出一个转弯环,而不能少拼,即拼11环。 四、缓和曲线上转弯环管片位置确定 考虑切线角β累计超过转弯环偏转角θ的一半时即应该放置一个转弯环管片,可以计算出当β=0.5θ、1.5θ、2.5θ、3.5θ……时所对应曲线长,即将每一个弯环所对应的曲线长度逐个计算出来。再通过曲线位置计算出转弯环在线路上的具体里程。从表中可以清楚的看出每个转弯环管片准确的位置。

隧道渗漏水处理

隧道渗漏水处理 一、隧道渗漏水主要现象、原因分析及主要处理措施: 1、隧道二衬施工后,隧道内出现渗漏水的主要现象 (1)点状渗漏水:渗漏水在隧道内表面呈单点渗漏水,周围没有连续; (2)线状渗漏水:渗漏水在隧道内表面呈水平向、竖向、斜向或弯曲型的缝,整条缝均有渗漏水现象; (3)面渗漏水:渗漏水在隧道内表面呈区域性,区域内有点状、线状,但距离较近,不能相互分开单独处理; (4)湿渍:在隧道内表面没有明显的渗漏水现象,没有水流或水滴,但隧道表面长期潮湿。 2、原因分析 (1)混凝土振捣不密实,造成混凝土内有空隙,给外部水源留下了通道,此种情况下的渗漏水量一般比较大; (2)施工中混凝土配合比没有达到设计配合比要求,混凝土形成毛细孔,造成隧道渗水,这种情况渗漏水比较轻微,主要表现为湿渍; (3)混凝土脱模过早或养护不到位,造成混凝土开裂,主要表现为线状渗漏水; (4)变形缝、施工缝连接处渗漏水,主要表现为线状渗漏水,此种渗漏水一般水量比较大。 3、主要处理措施 隧道变形缝一般采用止水带防水,根据止水带安装位置的不同,可分为埋入式和外贴式。其中附贴式止水带适用于水压小于0.03MPa,变形量为20-30mm的变形缝;埋入式止水带适用于水压大于0.03MPa,变形量为20-30mm的变形缝。这两种安装方法都要配合填缝板、膨胀板和嵌缝膏等材料综合使用。 二、隧道内渗漏水治理措施 1、封闭注浆 (1)封闭注浆是指对二次衬砌背后的空隙进行注浆。 在二次衬砌完成后,对有渗漏水的部位进行钻孔注水泥浆,水泥浆在各种空隙内固结,将空隙封闭以达到止水效果,对一次注浆达不到堵漏效果的部位,根据

隧道管片渗漏水及破损原因分析及措施

隧道管片渗漏水及破损原因分析及措施 【摘要】通过莞惠6(B)标大朗盾构区间工程施工实践,对局部管片出现渗漏现象的原因进行分析,并提出预防措施及其治理方法,供同行参考。 关键词:盾构隧道;管片渗漏水;原因分析 1工程概况 莞惠6(B)标大朗盾构区间工程,隧道单线长3000m,采用全新德国海瑞克∮8.83米土压平衡盾构机施工,隧道管片长度1600mm,外径8500mm,内径7700mm,厚度400mm,衬砌结构为C50钢筋混凝土预制管片,内径7700㎜、外径8500㎜。 随着我部盾构隧道施工作业的展开,新盾构机的逐步磨合,管片施工质量有所改善,但个别管片仍不时出现渗漏现象,主要表现在部分管片拼缝渗漏、管片崩角、螺栓孔渗水、管片裂缝等,给盾构隧道质量造成了一定影响,如不有效的解决隧道渗漏水问题,有可能造成地下水侵入隧道结构与附属管线,减少隧道的使用寿命。 2 管片渗漏水及破损的原因分析 2.1.管片拼装不熟练 由于是第一次使用该品牌盾构机,管片拼装手对于拼装机的使用不是很熟练,会出现管片拼装过程中的破损以及错台,从而导致管片渗水。 2.2靴板挤压 盾构机推进油缸靴板面为一整个平面,在推进时会挤压管片止水条,造成止水条被挤压变形或粘接不牢,从而造成渗漏; 2.3靴板旋转 盾构推进时,油缸伸出的过程中,在重力作用下靴板发生旋转,导致靴板轴线与管片轴线接触时不重合,局部受压过大; 2.4盾尾间隙 盾构机在推进过程中控制不好会造成一侧间隙过小,从而影响管片的拼装质量,造成破损和渗水,在挤压力过大的情况下形成管片裂缝; 2.5隧道拱顶压力不足 盾构机在浅埋软弱地层中掘进,且处于下坡区段,为防止盾构机低头,上下压力不同,顶部油缸压力过小,不足以将止水条挤压密实。 2.6管片螺栓未拧紧 管片螺栓未按设计要求拧紧,造成拧紧扭矩不足以将止水条挤压密实,致使拱顶渗漏。 2.7同步注浆时拱顶未填充密实 管片拼装时局部止水条破损,同步注浆时充盈系数偏小或压力不足,导致拱顶未填充密实,拱顶渗漏水。

浅谈隧道成型管片渗漏水处理措施

浅谈隧道成型管片渗漏水处理措施 发表时间:2019-04-17T13:47:03.487Z 来源:《建筑学研究前沿》2018年第35期作者:崔航飞 [导读] 随着近几年城际轻轨和城市地铁施工快速发展,给盾构施工带来了空前的发展机遇,而隧道成型管片渗漏水现象一直伴随着盾构施工生产,是一种较为普遍的质量问题,本文以莞惠城际项目GZH-6标项目为例分析了盾构隧道渗漏水现象并提出了有效处理方法 崔航飞 中铁二十局集团第五工程有限公司云南昆明 650200 摘要:随着近几年城际轻轨和城市地铁施工快速发展,给盾构施工带来了空前的发展机遇,而隧道成型管片渗漏水现象一直伴随着盾构施工生产,是一种较为普遍的质量问题,本文以莞惠城际项目GZH-6标项目为例分析了盾构隧道渗漏水现象并提出了有效处理方法。 关键词:盾构;成型管片;渗漏水 1.工程概况 莞惠城际项目GZH-6标松山湖北到大朗盾构区间隧道位于东莞市大朗镇,GDK32+845(隧道暗挖段)~GDK37+780(U型槽与路基分界),正线全长5.036Km,其中隧道长4594双延米,隧道盾构段3225双延长米,隧道暗挖段789双延长米。隧道主要穿过强风化片麻岩,上覆第四系人工填土,地质条件复杂地下水主要是第四系孔隙潜水和基岩裂隙水,地下水位埋深在2.0~5.0m。年平均降雨量1788.6~1989.4mm,年平均蒸发量达1731.0~1752.3mm。雷暴雨较多,主要集中在雨季的4~9月份。本工程地下水位较浅,地下水压力大,地质复杂,渗漏水处理难度较大。 2.成型管片渗漏水现象及原因分析 2.1管片接缝渗漏水 引起管片接缝渗漏水主要原因是管片密封橡胶止水条未贴整齐、损坏、错开及止水条之间夹有泥沙等杂物影响止水效果。 2.2管片崩角漏渗水 管片崩角产生主要原因有:盾构管片运输、吊装、安装过程中由于操作不当导致碰撞;盾构机姿态调整过大使管片间产生应力等原因。管片崩角均有肯能伴随渗漏水发生。 2.3管片裂缝渗漏水 管片裂缝渗漏水主要是管片质量问题造成的,管片在生产时砼振捣不均匀,在管片内部形成裂隙,管片拼装后管片受力出现管片表面裂缝渗漏水现象。 2.4螺栓渗漏水处理措施 管片渗处漏水往往是由于螺栓未拧紧、止水橡胶圈损坏、橡胶螺纹损坏和螺栓孔裂缝等原因造成的。 3.渗漏水处理措施 3.1管片接缝漏水渗水处理措施 管片接缝出现渗水时,管片密封止水条未损坏,仍然起到一定的防水作用,采用在渗水部位打入铝管的方法,不会破坏密封止水条,然后进行进行勾缝注入环氧树脂方法进行止水。 (1)查清渗漏的部位,采用钢丝刷清出拼缝内的浮泥,二次注浆残留浆液。 (2)沿渗水缝按50㎝的距离钻孔,孔径1.5cm,孔深10cm打入环氧树脂,采用速凝水泥嵌缝埋管。 (3)对渗水部位用速凝水泥浆进行勾缝。 (4)在铝管内注入环氧树脂,注入压力控制在0.2~0.3MP,等待4、5个小时后再看是否有漏水或渗水,如果有漏水或渗水则继续向铝管注环氧树脂。 (5)拆除铝管,最后对管片表面进行修复。 3.2管片崩角漏水渗水处理措施 (1)管片蹦角处理(有渗漏水) 找出缺陷管片,人工凿除已破裂松动的要求打出新断面,不允许有松动的砼块残留,再用钢刷清理已打出的新断面,用水冲洗。人工拌合胶皇水泥砂浆,然后迅速用尖匙把修补砂浆填补,并预先埋设注浆铝管,用灰匙、平镗初修饰成型。待速凝水泥达到一定强度后,从预埋铝管内注入氯丁胶乳。最后对管片表面进行修复。常用配合比如下, 胶皇净浆配比:PO42.5水泥:水:胶皇=1:0.22:0.1 胶皇水泥砂浆配比:PO42.5水泥:水:胶皇:细沙=1:0.22:0.1:1。 (2)管片蹦角处理(无渗漏水) 找出缺陷管片,人工凿除已破裂松动的要求打出新断面,不允许有松动的砼块残留,再用钢刷清理已打出的新断面,用水冲洗。平镗初修饰成型,后检查修补砂浆与原有混凝土结合情况。如果结合紧密则再次用修补砂浆填满找平抹光滑,如有剥离现象或裂纹出现则需把修补砂浆敲掉重新修补。修补达到的效果应为新旧混凝土紧密结合强度达到要求,颜色一致,表面无裂纹无凹凸,平整光滑,用灰匙柄重敲击该部位无脱落、无剥离、无裂纹产生。常用配合比如下, 胶皇净浆配比:PO42.5水泥:水:胶皇=1:0.22:0.1 胶皇水泥砂浆配比:PO42.5水泥:水:胶皇:细沙=1:0.22:0.1:1 3.3.管片裂缝渗漏水处理措施 (1)查清渗漏水位置,用水清洗干净裂缝。 (2)沿渗漏水缝按20㎝的距离钻孔,孔径1cm,孔深根据裂缝深浅程度5-15cm打入环氧树脂,采用速凝水泥嵌缝埋管。

盾构隧道管片排版总结

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径 5500mm,厚度350mm,宽度1200mm。在盾构施.匸开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点一简化施工控制,减少管片选型工作量;缺点一需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △二D (m+n) B/nR

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 木次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R二300m计算,楔形量△二37. 2mm,楔形角o 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K 块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m (南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: B 二L/R二② △总二(R+D/2 ) B- (R-D/2 ) 3 =3720mm ③ 由△总计算出需用楔形环数量: nl二△总/A=100 ④ 标准环数量为: n2= (L-nl*B) /B二125 ⑤ 标准环和楔形环的比值为: u=n2: nl=5:4 ⑥ 即在R二450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加lo 3)管片实际拼装位置排版

相关主题
文本预览
相关文档 最新文档