当前位置:文档之家› 初中数学菱形问题经典例题解析

初中数学菱形问题经典例题解析

初中数学菱形问题经典例题解析
初中数学菱形问题经典例题解析

初中数学菱形问题经典例题解析,是由巨人中考网小编特整理的,菱形问题是中考常见的题型,我们一起来看看初中数学菱形问题经典例题解析吧!

典型例题:已知菱形ABCD中,BD为对角线,P、Q两点分别在AB、BD上,且满足∠PCQ=∠ABD.

(1)如图1,当∠BAD=90°时,求证:

(2)如图2,当∠BAD=120°时,试探究线段DQ、BP、CD之间的数量关系,并证明你的结论;

(3)如图3,在(2)的条件下,延长CQ交AD边于点E,交BA延长线于点M,作∠DCE的

平分线交AD边于点F.若,求线段BP的长.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

矩形、菱形经典题型总结

课 题 矩形、菱形 授课日期及时段 教学目的 1、掌握矩形的性质及其判定; 2、掌握菱形的性质及其判定。 教学内容 【知识梳理】 1.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质. 2.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形. ③有三个角是直角的四边形是矩形. 【典例讲解】 例1、如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使C 落在C ’处,BC ’边交AD 于E ,AD=4,CD=2 (1)求AE 的长 (2)△BED 的面积 巩固练习: 1.如图,矩形ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,折痕为EF 求DE 和EF 的长。 2.如图,已知将矩形ABCD 沿EF 所在直线翻折,使点A 与C 重合,AB=6,AD=8求折痕EF 的长 C ’ D A B C E F D A B C E C ’ E F A B C D

例2:如图,矩形ABCD中,E是BC上一点,且AE=AD,又DF⊥AE,F为垂足。求证:EC=EF 巩固练习 1.矩形的相邻两边的长分别是12㎝和5㎝,则矩形的对角线的长是。 2.若矩形的面积是36 3 cm2,两条对角线相交成60o锐角,则此矩形的两邻边长分别是㎝和㎝。3.将两个同样的长为3厘米,宽为2厘米的长方形重新拼一个长方形,则此长方形的对角线长为______厘米。 4. 如图,矩形ABCD中,AD=2AB,点E在AD上, AE=AB。求∠CEB的度数。 5.如图,矩形ABCD的对角线AC、BD交于点O,AE⊥BD,BE⊥AC且AE、BE交于点E。求证:AE=BE E D C OOOOO A B 例3.已知:在矩形ABCD中,AE BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。

《菱形的性质与判定》典型例题

《菱形的性质与判定》典型例题 例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求: (1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面积. 例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F . 求证:.AF AE = 例 3 已知:如图,菱形ABCD 中,E ,F 分别是BC ,CD 上的一点,?=∠=∠60EAF D ,?=∠18BAE ,求CEF ∠的度数. 例4 如图,已知四边形ABCD 和四边形BEDF 都是长方形,且DF AD =. 求证:GH 垂直平分CF .

例 5 如图,ABCD中,AB =,E、F在直线CD上,且 AD2 =. DE= CF CD 求证:AF BE⊥. 例6 如图,在Rt△ABC中, ∠ACB,E为AB的中点,四边形BCDE = 90 是平行四边形. 求证:AC与DE互相垂直平分

参考答案 例1 分析 (1)由E 为AB 的中点,AB DE ⊥,可知DE 是AB 的垂直平分线,从而DB AD =,且AB AD =,则ABD ?是等边三角形,从而菱形中各角都可以求出.(2)而OC AO BD AC =⊥,,利用勾股定理可以求出AC .(3)由菱形的对角线互相垂直,可知.2 1BD AC S ?= 解 (1)连结BD ,∵四边形ABCD 是菱形,∴.AB AD = E 是AB 的中点,且AB DE ⊥,∴.DB AD = ∴ABD ?是等边三角形,∴DBC ?也是等边三角形. ∴.120260?=??=∠ABC (2)∵四边形ABCD 是菱形,∴AC 与BD 互相垂直平分, ∴.2 12121a AB BD OB === ∴a a a OB AB OA 2 3)21(2222=-=-=,∴.32a AO AC == (3)菱形ABCD 的面积.2 3321212a a a BD AC S =??=?= 说明:本题中的菱形有一个内角是60°的特殊的菱形,这个菱形有许多特点,通过解题应该逐步认识这些特点. 例2 分析 要证明AF AE =,可以先证明DF BE =,而根据菱形的有关性质不难证明DCF BCE ???,从而可以证得本题的结论. 证明 ∵四边形ABCD 是菱形,∴D B CD BC ∠=∠=,,且?=∠=∠90DFC BEC ,∴DCF BCE ???,∴DF BE =, AD AB = ,

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

第1讲 菱形(培优课程讲义例题练习含答案)

菱形(提高) 【学习目标】 1. 理解菱形的概念. 2. 掌握菱形的性质定理及判定定理. 【要点梳理】 要点一、菱形的定义 有一组邻边相等的平行四边形叫做菱形. 要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件. 要点二、菱形的性质 菱形除了具有平行四边形的一切性质外,还有一些特殊性质: 1.菱形的四条边都相等; 2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角. 3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称 中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分. (2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高; 另一种是两条对角线乘积的一半(即四个小直角三角形面积之和). 实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘 积的一半. (3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题. 要点三、菱形的判定 菱形的判定方法有三种: 1.定义:有一组邻边相等的平行四边形是菱形. 2.对角线互相垂直的平行四边形是菱形. 3.四条边相等的四边形是菱形. 要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等. 【典型例题】 类型一、菱形的性质 1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数. 【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

七年级数学上册期末复习典型例题讲析(人教版)

七年级数学上册典型例题 例1. 已知方程2x m-3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3 所以m=4或m=3 警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3). 例2. 已知2 x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 解:∵x=-2是方程ax2-(2a-3)x+5=0的解 ∴将x=-2代入方程, 得a·(-2)2-(2a-3)·(-2)+5=0 化简,得4a+4a-6+5=0 ∴ a=8 1 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 解:去括号,得2x+2-12x+9=9-9x, 移项,得2+9-9=12x-2x-9x. 合并同类项,得2=x,即x=2. 点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式. 例4. 解方程 1 7 5 3 2 1 4 1 6 1 8 1 = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? + - x . 解析:方程两边乘以8,再移项合并同类项,得111 351 642 x ?-? ?? ++= ? ?? ?? ?? 同样,方程两边乘以6,再移项合并同类项,得11 31 42 x- ?? += ? ??

最新菱形讲义(经典)

第一章特殊的平行四边形 一、菱形: 【知识梳理】 1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质 菱形是特殊的平行四边形,它具有平行四边形的所有性质,?还具有自己独特的性质: ①边的性质:对边平行且四边相等. ②角的性质:邻角互补,对角相等. ③对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④对称性:菱形是中心对称图形,也是轴对称图形. 菱形的面积等于底乘以高,等于对角线乘积的一半. 点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定 判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形. 【例题精讲】板块一、菱形的性质 例1.如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. (1)求菱形ABCD的边长; (2)求菱形ABCD的高DM. 例2.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE 相交于点G,连接CG与BD相交于点H. 求证:(1)求∠BGD的度数。(2)求证:DG+BG=CG

例3.将两张宽度相等的长方形纸片叠放在一起得到如图29所示的四边形ABCD. (1)求证:四边形ABCD是菱形. (2)如果两张长方形纸片的长都是8,宽都是2,那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由. 例4. 已知,菱形 ABCD 中,E、F分别是BC、CD上的点,若AE AF EF AB ===,求C ∠的度数. F E D C B A 跟踪练习: 1.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为() A.4 B.2.4 C.4.8 D.5 2.如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC和CD的中点,连接AE、EF、AF,则△AEF的周长为() A.23 B.33 C.43 D.3. 3.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口 与第二次折痕所成角的度数应为() A.15°或30° B.30°或45°

初一下册数学经典题型

1. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. 例如:方程260x =- 的解为3x= ,不等式组205x x ->????-??-+<-? , 的关联方程是 ;(填序号) (2)若不等式组1144275 x x x ? -?? ?++?<, >-的一个关联方程的根是整数,则这个关联方程可以是 ;(写 出一个即可) (3)若方程21+2x x -=, 1322x x ? ?+=+ ???都是关于x 的不等式组22x x m x m -?? -?<,≤的关联方程,求m 的取值范围.

2. 对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A的等距点,称三角形ABC的面积为点A的 等距面积. 例如:如图,点A(2,1),点B(5,4),因为AC= BC=3,所以B 为点A的等距点,此时点A的等距面积为9 2. (1)点A的坐标是(0,1),在点B1(-1,0),B2(2,3),B3(-1,-1)中,点A的等距点为. (2)点A的坐标是(-3,1),点A的等距点B在第三象限, ①若点B的坐标是 ? ? ? ? ? 2 1 2 9 ,- - ,求此时点A的等距面积; ② ②若点A的等距面积不小于9 8,求此时点B的横坐标t的取值范围. 备用图

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

《菱形》典型例题

菱形 例1 如图,在菱形ABCD 中,E 就是AB 得中点,且,求: (1)得度数;(2)对角线A C得长;(3)菱形A BCD 得面 例2 已知:如图,在菱形ABCD 中,于于 F 。求证:AE=AF 例4 如图,中,,、在直线上,且。 求证:. 例5 如图,在△中,,为得中点,四边形就是平行四边形.求证:与互相垂直平分 例6、如图,在就是△AB C中,∠ACB =90°,B C得垂直平分线DE 交BC 于D,交AB 于E,点 F 在直线DE 上,AF=CE 。 (1)说明,四边形ACEF 就是平行四边形;(5分) (2)当∠B 得大小满足什么条件时,四边形ACEF 就是菱形?说明理由、(4分) 例7、如图,△ABC 中,点O 就是AC 边上一动点,过点O作直线MN ∥BC,设MN 交∠BC A得平分线于E,交∠BCA 得外角平分线于点F . (1)说明:EO=O F (2)当点O 运动到时,四边形BE FC 可能就是菱形不?并说明理由. (3)当点O 运动到何处时,四边形AECF 就是矩形?并说明理由. (4)在(3)得条件下,当△ABC 满足什么条件时,四边形A ECF 就是正方形?并说明理由、 巩固练习 1、梯形ABCD 中,AD ∥BC,BD 平分∠ABC,∠C=60°,当AB=C D=4时,梯形A BCD 得周长 2、在等腰梯形A BC D中,AB ∥CD, 对角线A C平分∠BA D,∠B =60 o,CD=2cm,则梯形ABCD 得面积为 3.如图,梯形ABCD 中,AD ∥BC ,A C为对角线,AE ⊥BC 于E ,AB ⊥AC ,若 ∠AC B=30°,BE =2。则EC =___________、 5。在梯形ABCD 中,AD∥BC ,AB =AC ,若∠D =110°,∠A C D =30°,则∠BAC 等于 7.直角梯形一腰长16 cm,该腰与一个底所成得角为30°,那么另一腰长________ cm 。 9、如图,等腰梯形ABCD 中,AD ∥B C,AB =D C,AC ⊥BD ,过D 点作DE ∥A C交BC 得延长线于E 点。 ⑴求证:四边形ACED 就是平行四边形; ⑵若AD =3,BC =7,求梯形ABCD 得面积、 菱形得测试题 一. 填空题 1. 若平行四边形ABC D就是菱形,则与AD 2. 如图,菱形ABCD 中,对角线AC,BD 相交于点O,如果∠A=60o,对角线BD =7cm,则菱形 得周长=___cm 3. 若菱形得两条对角线长分别为6cm 与8cm,则菱形得面积就是___,周长就是___、 4. 若菱形得高为3cm,较小得内角就是30o,则菱形得边长为___,面积为___。 5。 已知菱形得周长为20cm,两条对角线得比为3 :4,则菱形得面积为___c m。 二. 选择题 1。 菱形具有其它平行四边形不一定具有得性质( ) A 。对边平行 B 。对角相等 C 、对角线互相平分 D。对角线互相垂直 2、 在菱形AB CD 中,AEBC 于E,AFCD 于F,且E,F分别就是BC,CD 得中点,那么 C D E A B F O F E C D B N M A E

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

(完整版)中考数学必考经典题型

中考数学必考经典题型 题型一 先化简再求值 命题趋势 由河南近几年的中考题型可知,分式的化简求值是每年的考查重点,几乎都以解答题的形式出现,其中以除法和减法形式为主,要求对分式化简的运算法则及分式有意义的条件熟练掌握。 例:先化简,再求值:,1 2)1111( 22+--÷-++x x x x x x 其中.12-=x 分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值带入计算即可求值。 题型二 阴影部分面积的相关计算 命题趋势 近年来的中考有关阴影面积的题目几乎每年都会考查到,而且不断翻新,精彩纷呈.这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。 例 如图17,记抛物线y =-x 2+1的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为P 1,P 2,…,P n -1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n -1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为 S 1,S 2,…,这样就有S 1=2312n n -,S 2=23 4 2n n -…;记W=S 1+S 2+…+S n -1,当n 越来越大时,你猜想W 最接近的常数是( ) (A)23 (B)12 (C)13 (D)14 分析 如图17,抛物线y =-x 2+1的图象与x 正半轴的交点为 A(1,0),与y 轴的交点为8(0,1). 设抛物线与y 轴及x 正半轴所围成的面积为S ,M(x ,y )在图示 抛物线上,则 222OM x y =+

《菱形》典型例题

菱形 例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求: (1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面 例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F .求证:AE=AF 例4 如图,ABCD 中,AB AD 2=,E 、F 在直线CD 上,且CF CD DE ==. 求证:AF BE ⊥. 例5 如图,在Rt △ABC 中, 90=∠ACB ,E 为AB 的中点,四边形BCDE 是平行四边形.求证:AC 与DE 互相垂直平分 例6、如图,在是△ABC 中,∠ACB=90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,点F 在直线DE 上,AF=CE . (1)说明,四边形ACEF 是平行四边形;(5分) (2)当∠B 的大小满足什么条件时,四边形ACEF 是菱形?说明理由.(4 分) 例7、如图,△ABC 中,点O 是AC 边上一动点,过点O 作直线MN ∥BC,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F . (1)说明:EO =OF (2)当点O 运动到时,四边形BEFC 可能是菱形吗?并说明理由. (3)当点O 运动到何处时,四边形AECF 是矩形?并说明理由. (4)在(3)的条件下,当△ABC 满足什么条件时,四边形AECF 是正方形?并说明理由. C D E A B F

巩固练习 1、梯形ABCD 中,AD ∥BC,BD 平分∠ABC,∠C=60°,当AB=CD=4时,梯形ABCD 的周长 2、在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60o,CD =2cm ,则梯形ABCD 的面积为 3.如图,梯形ABCD 中,AD ∥BC ,AC 为对角线,AE ⊥BC 于E ,AB ⊥AC ,若 ∠ACB =30°,BE =2.则EC =___________. 5.在梯形ABCD 中,AD ∥BC ,AB =AC ,若∠D =110°,∠ACD =30°,则∠BAC 等于 7.直角梯形一腰长16 cm,该腰和一个底所成的角为30°,那么另一腰长________ cm. 9、如图,等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC 的延长线于E 点. ⑴求证:四边形ACED 是平行四边形; ⑵若AD =3,BC =7,求梯形ABCD 的面积. 菱形的测试题 一. 填空题 1. 若平行四边形ABCD 是菱形,则与AD 相等的线段有___。 2. 如图,菱形ABCD 中,对角线AC,BD 相交于点O ,如果∠A=60o,对角线BD=7cm , 则菱形的周长=___cm 3. 若菱形的两条对角线长分别为6cm 和8cm ,则菱形的面积是___,周长是___。 4. 若菱形的高为3cm ,较小的内角是30o,则菱形的边长为___,面积为___。 5. 已知菱形的周长为20cm ,两条对角线的比为3 :4,则菱形的面积为___cm 2 。 二. 选择题 1. 菱形具有其它平行四边形不一定具有的性质( ) A .对边平行 B.对角相等 C.对角线互相平分 D.对角线互相垂直 2. 在菱形ABCD 中,AE ⊥BC 于E,AF ⊥CD 于F ,且E,F 分别是BC,CD 的中点,那么 ∠EAF 等于( ) A .75o B.55o C.45o D.60o 3.菱形ABCD 的周长20cm ,∠A:∠B=2:1,则顶点A 到对角线BD 的距离是( ) A.5cm B.4cm C.3cm D.2.5cm 4.菱形的一边和等腰直角三角形的一直角边等长,若菱形的一个角是30o,则菱形和三角形 O F E C D B N M A E 60?D C B A B A C D

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

(word完整版)初一数学经典题型解析

初一数学经典题型解析 1、如图,将一个含30°角的三角板的直角顶点放在直尺的一边上,如果∠1=115°, 那么∠2的度数是() A。95°B。85°C。75°D。65° 考点:平行线的性质;三角形的外角性质. 专题:计算题. 分析:根据题画出图形,由直尺的两对边AB与CD平行,利用两直线平 行,同位角相等可得∠1=∠3,由∠1的度数得出∠3的度数,又∠3为三角形 EFG的外角,根据外角性质:三角形的外角等于与它不相邻的两内角之和得到 ∠3=∠E+∠2,把∠3和∠E的度数代入即可求出∠2的度数. 解答:已知:AB∥CD,∠1=115°,∠E=30°, 求:∠2的度数? 解:∵AB∥CD(已知),且∠1=115°, ∴∠3=∠1=115°(两直线平行,同位角相等), 又∠3为△EFG的外角,且∠E=30°, ∴∠3=∠2+∠E, 则∠2=∠3﹣∠E=115°﹣30°=85°. 故选B. 点评:此题考查了平行线的性质,以及三角形的外角性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握性质是解本题的关键. 2、如图,AB∥CD,DE交AB于点F,且CF⊥DE于点F,若∠EFB=125°, 则∠C=35°. 考点:平行线的性质. 专题:计算题 分析:根据对顶角相等,得出∠AFD=∠EFB,由∠EFB的度数求出∠AFD的 度数,再根据垂直的定义得到∠CFD=90°,利用∠AFD﹣∠CFD得出∠AFC的度数,最后由两直线平行内错角相等,即可得到所求的角的度数. 解答: 解:∵∠EFB=125°(已知), ∴∠AFD=∠EFB=125°(对顶角相等), 又∵CF⊥DE(已知), ∴∠CFD=90°(垂直定义), ∴∠AFC=∠AFD﹣∠CFD=125°﹣90°=35°, ∵AB∥CD(已知), ∴∠C=∠AFC=35°(两直线平行内错角相等). 故答案为:35

八年级数学菱形经典题

八年级数学菱形测试题及答案 一.选择题(共10小题) 1.(2012?长沙)已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为() A. 6 cm B.4cm C.3cm D.2cm 2.(2010?襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为() A. 3 :1 B.4:1 C.5:1 D.6:1 3.(2010?宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为() .7.5 .D C.A. 1 5 B 4.(2010?陕西)若一个菱形的边长为2,则这个菱形两条对角线的平方和为() A. 1 6 B.8 C. 4 D.1

sinA=,,则下列结论正确的个数有⊥AB,垂足为E兰州)如图所示,菱形(2010?ABCD的周长 为20cm,DE5.() 2BD=2cm.;④②BE=1cm;③菱形的面积为15cm ①DE=3cm; B.24个个3 个C.个D.A.1 ,、、EFAF的中点,连接分别是,B=60菏泽)如图,菱形.6(2010?ABCD中,∠°,AB=2cmE、 FBC、CDAE )△则AEF的周长为 ( cm 3 C B .A ...Dcm 4cm 3cm 2. 7.(2010?北京)菱形的两条对角线的长分别是6和8,则这个菱形的周长是() A. 2 4 B.20 C.10 D. 5 2,则菱形的边长为()2倍,且它的面积是16cm 8.菱形的一条对角线是另一条对角线的

DC..B..Acm 22cm 4cm 4cm 9.下列性质中,菱形具有而矩形不具有的是() A.轴对称图形B.邻角互补C.对角线平分对角D.对角相等 10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为() .D C.A.1 B.2 二.解答题(共6小题) 11.如图,已知△ABC的面积为4,且AB=AC,现将△ABC沿CA方向平移CA的长度,得到△EFA. (1)判断AF与BE的位置关系,并说明理由; (2)若∠BEC=15°,求AC的 长. 12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形; (2)若CE=4,∠BCF=120°,求菱形BCFE的面 积.

相关主题
文本预览