菱形练习题(含答案)
- 格式:doc
- 大小:307.00 KB
- 文档页数:2
初三数学菱形的练习题及答案菱形是初中数学中常见的图形之一,通过练习菱形的题目,学生可以巩固对菱形及其性质的认识,培养解决几何问题的能力。
本文将提供一些初三数学菱形的练习题及答案,帮助学生更好地理解和应用相关知识。
练习题一:根据给定条件,求菱形的周长和面积。
1.已知菱形的对角线长度分别为8cm和12cm,求菱形的周长和面积。
解答:求菱形的周长,需要知道菱形的所有边长。
根据菱形的性质,对角线相交于其垂直平分点,且对角线相等。
设菱形的一个对角线长度为d1=8cm,另一个对角线长度为d2=12cm。
根据性质可知,菱形的边长等于对角线长度的一半。
菱形的周长=4×菱形的边长=4×(d1/2)=4×(8/2)=4×4=16cm菱形的面积= (d1×d2)/2=(8×12)/2=96/2=48cm²所以,该菱形的周长为16cm,面积为48cm²。
练习题二:根据给定条件,判断是否为菱形。
2.在平面直角坐标系中,已知四个点的坐标依次为A(3, 0)、B(0, 2)、C(-3, 0)和D(0, -2),判断四边形ABCD是否为菱形。
解答:要判断四边形ABCD是否为菱形,需要验证以下两个条件:- 对角线互相垂直;- 对角线相等。
首先计算对角线的长度:AC = √((x2 - x1)² + (y2 - y1)²)= √((-3 - 3)² + (0 - 0)²)= √((-6)²)= √36= 6BD = √((x2 - x1)² + (y2 - y1)²)= √((0 - 0)² + (-2 - 2)²)= √((0)² + (-4)²)= √(0 + 16)= √16= 4由上述计算可知,AC=6,BD=4。
接下来验证两个条件:- 对角线互相垂直:计算斜率k1、k2,若k1*k2=-1则两对角线互相垂直。
菱形练习题大全菱形练习题是一种常见的数学题型,通过练习菱形练习题,可以提高学生的观察能力、逻辑思维能力以及对几何形状的理解能力。
本文将为你介绍一些常见的菱形练习题,并提供详细解答,帮助你更好地掌握这一题型。
一、填空题1. 已知菱形的周长为20厘米,其中一条边长为4厘米,求其另一条边长。
解答:由于菱形的周长等于4倍的边长,所以另一条边长为(20-4)/4=4.5厘米。
2. 若一条菱形的对角线长为10厘米,求其面积。
解答:菱形的面积可以通过对角线求解,即面积=(对角线1×对角线2)/2。
设菱形的对角线分别为a和b,则(a×b)/2=(10×10)/2=50平方厘米。
3. 若一个菱形的一条边长为6厘米,另一条边长为8厘米,求其面积。
解答:菱形的面积可以通过两条边长的乘积来求解,即面积=边长1×边长2/2。
将给定的边长代入公式,得到面积=6×8/2=24平方厘米。
二、选择题1. 在一个菱形ABCD中,∠BAC的度数为多少?B. 90度C. 120度D. 180度解答:由于菱形的对角线相互平分,所以∠BAC=∠DAC=1/2×180度=90度。
选项B为正确答案。
2. 已知一个菱形的周长为24厘米,其一条边长为6厘米,那么该菱形的面积是多少?A. 12平方厘米B. 18平方厘米C. 24平方厘米D. 36平方厘米解答:已知周长为24厘米,而菱形的周长等于4倍的边长,所以该菱形的边长为6个厘米。
将边长代入菱形面积公式,得到面积=6×6/2=18平方厘米。
选项B为正确答案。
3. 在一个菱形ABCD中,角A的度数为60度,那么角B的度数是多少?A. 60度B. 90度D. 180度解答:由于菱形的对角线相互平分,所以∠BAC=∠DAC=1/2×180度=90度。
又∠BAC+∠ABC=180度,所以∠ABC=180度-90度=90度。
选项B为正确答案。
AC图5中考菱形专题 附参考答案1、(2012•泸州)如图,菱形 ABCD 的两条对角线相交于 O ,若 AC=6,BD=4,则菱 形 ABCD 的周长是( ) A .24 B .16 C .4 D .2DGO HB3 题图2、(2013 凉山州)如图,菱形 ABCD 中,∠B=60°,AB=4,则以 AC 为边长的正 方形 ACEF 的周长为( ) A .14 B .15 C .16 D .173、(2013•绵阳)如图,四边形 ABCD 是菱形,对角线 AC =8cm ,BD =6cm ,DH ⊥AB 于点 H ,且 DH 与 AC 交于 G ,则 GH =()A . 28 cm B . 21 cm C . 28 cm D . 25 cm252015214、(2013•内江)已知菱形 ABCD 的两条对角线分别为 6 和 8,M 、N 分别是边 BC 、 CD 的中点,P 是对角线 BD 上一点,则 PM+PN 的最小值= .DCAB DAPC (5 题)BE E FC5、(2013• 淄博)如图,菱形纸片 ABCD 中,∠ A =60 °,折叠菱形纸片 ABCD ,使点 C 落在 DP (P 为 AB 中点)所在的直线上,得到经过点 D 的折痕 DE .则∠DEC的大小为(A )78°(B )75°(C )60°(D )45° 6、(2013•黔西南州)如图 5 所示,菱形 ABCD 的边长为 4,且 AE ⊥ BC 于 E , AF ⊥ CD 于 F ,∠B=60°,则菱形的面积为_________。
7、(2013,河北).如图 4,菱形 ABCD 中,点 M ,N 在 AC 上,ME ⊥AD , NF ⊥AB . 若 NF = NM = 2,ME = 3,则 AN =8、(2013•安徽)如图,菱形 ABCD 的两条对角线分别长 6 和 8,点 P 是对角线AC 上的一个动点,点 M 、N 分别是边 AB 、BC 的中点,则 PM + PN 的最小值是___________.9、(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接△E F,则AEF的面积是.DAPCMBN第8题图10、(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.10题图11、(2013•遂宁)如图,已知四边形A BCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(△1)ADE≌△CDF;(2)四边形ABCD是菱形.12、(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H 分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.13、(2013•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC 的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.14、(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(△1)求证:ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.15、(2013泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.16、(2013•乌鲁木齐)如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.17、(2013•临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.18、(2013•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A O D和D A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记D D MN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.(第18题图)cm B . cm C . cmD . cmAC答案考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出 AB=BC ,得出等边三角形 ABC ,求出 AC ,长,根据正方形的性质得出 AF=EF=EC=AC=4,求出即可. 解答:解:∵四边形 ABCD 是菱形, ∴AB=BC , ∵∠B=60°,∴△ABC 是等边三角形, ∴AC=AB=4,∴正方形 ACEF 的周长是 AC+CE+EF+AF=4×4=16, 故选 C .(2013•绵阳)如图,四边形 ABCD 是菱形,对角线 AC =8cm ,BD =6cm ,DH ⊥AB 于点 H ,且DH 与 AC 交于 G ,则 GH =()A . 28 21 28 2525 20 15 21DGOH(2013•内江)已知菱形 ABCD 的两条对角线分别为 6 和 8,M 、N 分别是边 BC 、CD 的中点,BP 是对角线 BD 上一点,则 PM+PN 的最小值= 5 .10 题图考点:轴对称-最短路线问题;菱形的性质.分析:作 M 关于 BD 的对称点 Q ,连接 NQ ,交 BD 于 P ,连接 MP ,此时 MP+NP 的值最小,连接 AC ,求出 OC 、OB ,根据勾股定理求出 BC 长,证出 MP+NP=QN=BC ,即可得出答案.解答:解:作 M 关于 BD 的对称点 Q ,连接 NQ ,交 BD 于 P ,连接 MP ,此时 MP+NP 的值最小,连 接 AC ,∵四边形 ABCD 是菱形, ∴AC ⊥BD ,∠QBP=∠MBP , 即 Q 在 AB 上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,在△Rt BOC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.(2013•遂宁)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1△)ADE≌△CDF;(2)四边形ABCD是菱形.(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.N A Dt∴MP=t=3∵Sin∠ADO==∴MP=(70-t)17题图(2013龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、分别以每秒1个单位的速度从点、同时出发,分别沿A O D 和D A运动,当点N到达点A时,M、N同时停止运动.设运动时间为秒.(1)求菱形ABCD的周长;(2)记D D MN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.(第25题图).(1)在菱形ABCD中,∵AC⊥BD∴AD=302+402=50.∴菱形ABCD的周长为200.·····························4分(2)过点M作MP⊥AD,垂足为点P.①当0<t≤40∵Sin∠OAD=MP OD3==AM AD5351∴S=⨯DN•MP210t2························································································································6分②当40<t≤50时,∴MD=80-tMP AOMD AD452= - t 2 + 28t = - (t - 35)2 + 490 ··························································································8 分⎪⎪10 t ,0 < t ≤ 40则NF = ND • Sin ∠ODA = 30 ⨯ = = 24DF = ND • Cos ∠ODA = 30 ⨯ 30 = = 2 ····································································11 分 ∴FG = OF+ ON 12 + 12 5 1 + 5 tan ∠GOF == 1 +5 =∴ ∠DPK = ∠DPO = ∠DON = ∠FOG ··································································12 分∴PK = ···········································································································13 分∴存在两个点 P 到 OD 的距离都是 15( 5 + 1)∴ S ∆DMN = 1DN • MP2 25 5⎧ 3 2 ∴ S =⎨⎪- 2(t - 35)2 + 490,40 < t ≤ 50 ⎪⎩ 5当 0<t ≤40 时,S 随 t 的增大而增大,当 t =40 时,最大值为 480.当 40<t ≤50 时,S 随 t 的增大而减小,当 t =40 时,最大值为 480.综上所述,S 的最大值为 480. ····························································································· 9 分 (3)存在 2 个点 P ,使得∠DPO =∠DON .········································································ 10 分 方法一:过点 N 作 NF ⊥OD 于点 F ,40 12050 5,90= = 18.50 5∴OF =12,∴ tan ∠NOD =NF 24 OF 12作 ∠NOD 的平分线交 NF 于点 G ,过点 G 作 GH ⊥ON 于点 H . ∴ S ∆ONF 1= OF • NF = S2∆OGN + S ∆OFG 1 1 1 = OF • FG + ON • GH = (OF + ON ) • FG 2 2 2OF • NF 12 + 24 24= =24∴ GF 2 OF 12 1 + 5设 OD 中垂线与 OD 的交点为 K ,由对称性可知:1 12 2 ∴ DK 15 2tan ∠DPK == = PK PK 1 + 515( 5 + 1)2根据菱形的对称性可知,在线段 OD 的下方存在与点 P 关于 OD 轴对称的点 P ' .2.··························································14 分方法二:如图,作 ON 的垂直平分线,交 EF 于点 I ,连结 OI ,IN.过点 N 作 NG ⊥OD ,NH ⊥EF ,垂足分别为 G ,H. 当 t =30 时,DN =OD =30,易知△DNG ∽△DAO ,∴即DN NG DG= = . DA AO OD 30 NG DG= = . 50 40 30⎪⎪∴PE=PI+IE=15+155.····························································································13分∴存在两个点P,到OD的距离都是.∴NG=24,DG=18.·······································································································10分∵EF垂直平分OD,∴OE=ED=15,EG=NH=3.······················································································11分设OI=R,EI=x,则在△Rt OEI中,有R2=152+x2①在△Rt NIH中,有R2=32+(24-x)2②⎧15x=2由①、②可得:⎨⎪R=155⎪⎩22根据对称性可得,在BD下方还存在一个点P'也满足条件.15(5+1)2(2013△?常州)如图,在ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.(2013•南京)如图,将菱形纸片ABCD折迭,使点A恰好落在菱形的对称中心O处,折痕为EF。
菱形的性质专项练习30题(有答案)1.如图,菱形ABCD中,对角线AC、BD交于点O,过点A作AH⊥BC,交BD于E,垂足为H,已知CH=4,AH=8(1)求菱形的周长;(2)求OE的长度.2.如图,菱形ABCD中,两条对角线AC和BD相交于点O,AC=6cm,BD=8cm.(1)求菱形ABCD的面积;(2)求菱形ABCD的周长.3.如图,菱形对角线AC,BD相交于一点O,且AC=12cm,BD=16cm.求这个菱形的周长和面积.4.如图,已知菱形ABCD的边长是2cm,BAD=120°.(1)试说明:△ABC是等边三角形;(2)求菱形两条对角线的长.5.如图,菱形ABCD的两条对角线AC与BD相交于点O,AB=5,OA=3.(1)求菱形ABCD的周长;(2)求菱形ABCD的面积.6.如图,菱形ABCD的周长为200cm,对角AC与BD交于点O,且AC=60cm,试求菱形ABCD的面积.7.已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.8.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.9.如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AC=6,BD=8,求线段OE的长.10.如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:AM=DM;(2)若DF=2,求菱形ABCD的周长;(3)在没有辅助线的前提下,图中共有_________对相似三角形.11.菱形ABCD中,∠B=60°,一块三角板的60°角的顶点绕点A转动,两边分别交BC、CD于点E、F.(1)说明△ABC、△ACD都是等边三角形.(2)判断△AEF的形状,说明理由?(3)如果AB=2,写出△CEF的周长的最小值.12.如图,O是菱形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE,CE交于点E.(1)求证:四边形OCED是矩形;(2)若菱形ABCD的周长为20,矩形OCED的周长为14,求菱形ABCD的面积.13.如图,点E、F分别在菱形ABCD的边BC、AD上,且AF=CE,∠BAE=25°,∠BCD=130°,求∠AFC的度数.14.如图,平行四边形ABCD中,AE是BC边上的高,AE是BC沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG:(2)若四边形ABFG是菱形,且AB:BC=2:3,求∠B的度数.15.如图,菱形ABCD中,AE⊥BC,垂足为点E,BE=CE,求∠BAD的度数.16.如图,已知一四边形菜地ABCD为菱形,点E,F分别位于边AB,BC上,AD=6,AE=5BE,BF=5CF,若△DEF 为等边三角形.(1)求∠A的度数;(2)求菱形ABCD的面积.17.如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC 与AM交于点Q,求证:P,D,Q三点共线.18.已知:如图,菱形ABCD的对角线交于点O,且AO、BO的长分别是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两根,菱形ABCD的周长为20,求m的值.19.如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.20.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.21.如图,菱形ABCD中,E是AD中点,EF⊥AC交CB的延长线于点F.(1)DE和BF相等吗?请说明理由.(2)连接AF、BE,四边形AFBE是平行四边形吗?说明理由.22.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.若AE垂直平分BC,AF垂直平分CD.求证:(1)AE=AF;(2)△AEF为等边三角形.23.如图,在菱形ABCD中,过点A作AE⊥BC,垂足E为BC的中点,连接DE,F为DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,求DE和AF的长.24.如图,边长为a的菱形ABCD中,∠A=60°,过C任作直线分别交AB、AD的延长线于E、F,连接DE、BF 交于M,若△BEM和△DFM外接圆的半径分别是R1、R2,求证:R1•R2为定值,并求这个定值.25.如图,四边形ABCD为菱形,已知A(0,6),D(﹣8,0).(1)求点C的坐标;(2)设菱形ABCD对角线AC、BD相交于点E,求经过点E的反比例函数解析式.26.如图,菱形ABCD中,点P是AB的中点,延长DP交CB的延长线于E点.求证:BE=CD.27.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.28.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB.求证:∠APD=∠EBC.29.如图,在菱形ABCD中,E是BC延长线上一点,连接AE,使得∠E=∠B,过D作DH⊥AE于H.(1)若AB=10,DH=6,求HE的长;(2)求证:AH=CE+EH.30.如图,已知点O在菱形ABCD内,过点O分别作OE⊥AB于E,OF⊥AD于F,且OE=OF.(1)求证:OB=OD;(2)把菱形换成矩形、平行四边形、等腰三角形,上述结论仍成立吗?(写出结论,不证明)参考答案:1.(1)设AB=x,则BC=x,BH=BC﹣CH=x﹣4,在Rt△ABH中,AH2+BH2=AB2,∴82+(x﹣4)2=x2,解得x=10,∴菱形周长为40.(2)∵AH=8,CH=4,∴AC==4,∴CO=AO=AC=2,∵BC=10,CO=2,∴BO==4∵∠BHE=∠BOC=90°,∠EBH=∠CBO,∴△BHE∽△BOC,∴,∴,∴EH=3,∴AE=AH﹣EH=8﹣3=5,∴OE==2.(1)菱形的对角线为AC=6cm,BD=8cm,则菱形的面积为AC•BD=×6×8=24cm2;(2)菱形对角线互相垂直平分,∴BO=OD=4cm,AO=OC=3cm,∴AB==5cm,故菱形的周长为20cm,答:菱形的周长为20cm,面积为24cm2.3.∵在菱形ABCD中,AC=12cm,BD=16cm,∴S菱形ABCD =×AC×BD=×12×16=96(cm2).∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=6cm,OB=BD=8cm,∴AB==10cm,∴菱形ABCD的周长为:4×10=40(cm).故这个菱形的周长为40cm,面积为96cm24.(1)∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC,∠BAC=∠BAD=60°,∴△ABC是等边三角形;(2)∵四边形ABCD是菱形,∴AC⊥BD,∵∠BAC=60°,AB=2cm,∴∠ABO=30°,∴OA AB=1(cm),∴OD==(cm),∴AC=2OA=2cm,BD=2OD=2cm.5.(1)∵四边形ABCD是菱形,AB=5,∴菱形ABCD的周长等于5×4=20;(2)∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=,==4,∴AC=2OA=6,BD=2OB=8,∴S菱形ABCD=×AC×BD=×6×8=246.菱形周长为200cm,则AB=50cm,∵AC=60cm,∴AO=30cm,菱形对角线互相垂直,∴△AOB为直角三角形,在Rt△AOB中,BO==40cm,∴BD=2BO=80cm,∴菱形ABCD的面积为S=×60cm×80cm=2400cm2,答:菱形ABCD的面积为2400cm2.7.由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,∴AB=5,∴周长L=4AB=20;∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24.综上可得菱形的周长为20、面积为24.8.四边形AODE是矩形.∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD∴∠AOD=90°,∴四边形AODE是矩形9.(1)四边形OCED是矩形.理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形;(2)在菱形ABCD中,∵AC=6,BD=8,∴OC=AC=×6=3,OD=BD=×8=4,∴CD===5,在矩形OCED中,OE=CD=510.1)证明:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,∵EM⊥AC,∴EM∥BD,∵E为AB的中点,∴M为AD的中点,∴AM=DM;(2)解:∵EB∥FD,EM∥BD,∴四边形FDBE是平行四边形,∴FD=BD,∵DF=2,∴BE=2,∴AB=2BE=2×2=4,∴菱形ABCD的周长=4AB=4×4=16;(3)设ME与AC的交点为G,相似三角形有:△AGE∽△AGM,△AGE∽△CGF,△AGM∽△CGF,△AEM∽△DFM,△ABC∽△ADC共5对.11.(1)∵菱形ABCD中,AB=BC,AD=CD,∠B=∠D=60°,∴△ABC和△ACD都是等边三角形.(2)∵∠B=∠ACD=60°,AB=AC,∴△ABC是等边三角形,∴∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF,又∠EAF=60°,∴△AEF是等边三角形;(3)∵EC+CF=BE+EC=BC=2,△AEF是等边三角形,∴EF=AE,∴△CEF的周长=2+AE,由“垂线段最短”,当AE⊥BC时,AE最短,AE=,∴△CEF的周长=2+12.(1)∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,∵AC,BD为菱形的对角线,∴AC⊥BD,即∠COD=90°,∴平行四边形OCED为矩形.(2)菱形ABCD的周长为20,则菱形的边长为5,即=5,矩形OCED的周长为14,则OC+OD=7,解题OC=3,OD=4,∴AC=6,BD=8,∴菱形的面积为×6×8=24.答:菱形ABCD的面积为2413.由菱形ABCD,得∠BAD=∠BCD=130°,∠BAE=25°,∴∠EAF=105°,又∵AF=CE,AD∥BC,∴四边形AECF是平行四边形,则∠AFC=180°﹣∠EAF=180°﹣105°=75°.14.(1)∵∠ABE=∠CDG,∠AEB=∠CGD,AE=CG,∴△ABE≌△CDG,∴BE=DG,(2)四边形ABFG是菱形,则BF=AB,∵AB:BC=2:3∴FC=AB,∵AE是BC沿BC方向平移,使点E与点C重合,得△GFC.∴BE=FC,∴AB=2BE,∴直角△ABE中,∠BAE=30°,∴∠ABE=60°15.∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∵AE⊥BC,BE=CE,∴AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∴∠B=60°,又∵AD∥BC,∴∠BAD=180°﹣∠B=120°16.(1)如图,过E作AD,BC的垂线交AD和CB的延长线于H,G.∵AD∥CB,∴△BGE∽△AHE,∵AB=AD=6,∴AE=BF=5,CF﹣BE=1,令BG=x,GE=y,则EH=5y,AH=5x,在△FGE 中,,在△DEH 中,,根据EF=ED,BE=1,易得EF2=ED2,即有,解得,,∴tan∠A=,∴∠A=60°;(2)由以上求得知,EH=AEsin60°=,,故.17.连接PD,DQ,由已知∠PAC=120°,∠QCA=120°,∴△PAC∽△AMC,△AMC∽△ACQ.∴,.∴AC2=PA•QC,又AC=AD=DC.∴,又∠PAD=∠DCQ=60°,∴△PAD∽△DCQ,∴∠APD=∠CDQ.∴∠PDA+∠ADC+∠CDQ=180°,∴P,D,Q三点共线.18.∵菱形ABCD的周长为20,∴菱形的边长AB=5,由直角三角形的三边关系可得:AO2+BO2=25,又有根与系数的关系可得:AO+BO=2m﹣1,AO•BO=4(m﹣1),∴AO2+BO2=(AO+BO)2﹣2AO•BO=(2m﹣1)2﹣2×4(m﹣1)=25,整理得:4m2﹣12m+9=25,解得:m=4或﹣1(舍去).故m=419.∵四边形ABCD为菱形,∴AD=AB=CD=CB,∠B=∠D.又∵CE=CF,∴CD﹣CE=CB﹣CF,即DE=BF.∴△ADE≌△ABF.∴AE=AF20.菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE 的长为cm21.(1)DE=BF.理由如下:如图,设AB、EF相交于G,连接BD,在菱形ABCD中,BD⊥AC,∵EF⊥AC,∴EG∥BD,∵E是AD中点,∴EG是△ABD的中位线,∴AG=BG,又∵AD∥BC,∴∠AEG=∠BFG,在△AEG和△BFG 中,,∴△AEG≌△BFG(AAS),∴AE=BF,∵E是AD中点,∴AE=DE,∴DE=BF;(2)四边形AFBE是平行四边形.理由如下:∵四边形ABCD是菱形,∴AD∥BC,∴AE∥BF,又∵AE=BF,∴四边形AFBE是平行四边形22.(1)∵四边形ABCD是菱形,∴AB=CB=CD=AD,∠B=∠D,∵BE=DF∴△ABE≌△ADF(SAS),∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD.∴AB=AC=AD,∴AB=AD=BC=CD=AC,∴∠B=60°,∴∠BCD=120°,∴∠EAF=60°,∴△AEF为等边三角形.23.(1)证明:∵∠B+∠C=180°,∠AFE+∠AFD=180°,∠AFE=∠B,∴∠C=∠AFD.∵AD∥BC,∴∠ADF=∠DEC.∵AD=DC,∴△ADF∽△DEC.(2)解:∵AB=4,E为BC的中点,∴BE=2,AE=,DE=.∵△ADF∽△DEC,∴.∴AF=.24.△BEC∽△DCF,∴.∴△BED∽△DBF.∴∠BED=∠DBM.∴∠BME=∠BDM+∠DBM=∠BDM+∠BED=∠ABD= 60°.∴由正弦定理得:2R1=,2R2=.∴R1•R2=•==.25.(1)∵A(0,6),D(﹣8,0),∴OA=6,OD=8,∴由勾股定理可得AD=10,∵四边形ABCD为菱形∴CD=AD=10,∴OC=2,∴C(2,0),(2)∵A(0,6)C(2,0),∴E(1,3),设经过点E 的反比例函数解析式为,将E(1,3)代入求得k=3∴反比例函数解析式为:26.∵点P是AB的中点,∴AP=BP,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠A=∠PBE,∵在△ADP和△BEP中,,∴△ADP≌△BEP(ASA),∴BE=AD,∵AD=CD,∴BE=CD27.(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.28.∵四边形ABCD是菱形,∴BC=CD,AC平分∠BCD,在△BCE和△DCE 中,,∴△BCE≌△DCE(SAS),∴∠EBC=∠EDC,又AB∥DC,∴∠APD=∠EDC,∴∠EBC=∠APD29.(1)∵四边形ABCD是菱形,∴AD=AB=10,∵DH⊥AE,∴∠AHD=90°,在Rt△ADH中,AH===8,∵∠E=∠B,∴AE=AB=10,∴HE=AE﹣AH=10﹣8=2;证明:(2)过点D作DF⊥BC的延长线于点F,连接DE,∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,AD=CD,∴∠1=∠B,∠2=∠3,∵∠B=∠2,∴∠1=∠3,∵DH⊥AE,DF⊥CF,∴∠4=∠F,在△ADH和△CDF中,,∴△ADH≌△CDF(AAS),∴AH=CF,DH=DF,∴在Rt△DEH和Rt△DEF中,,∴Rt△DEH≌Rt△DEF(HL),∴EH=EF,∵CF=CE+EF,∴AH=CE+EH30.(1)证明:连接OA、AC、BD,∵OE⊥AB,OF⊥AD,且OE=OF,∴∠BAO=∠DAO,∵菱形ABCD,∴AC⊥BD,MB=MD,∠BAC=∠DAC,∴O在AC上,∴OB=OD.(2)解:矩形和平行四边形时,结论不成立,等腰三角形时,结论成立,因为:矩形和平行四边形的对角线不一定平分对角,而等腰三角形的三线合一性质,能得出结论成立菱形的性质--11。
八年级数学《菱形》练习题随堂演练一、填空题1.菱形的对角线长为24和10,则菱形的边长为 ,周长为 .2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角为 , , , .3.菱形的两条对角线分别为3和7,则菱形的面积为 .4.已知在菱形ABCD 中,E ,F 是BC ,CD 上的点,且AE =EF =AF =AB ,则∠B= .5.已知菱形两邻角的比是1:2,周长为40cm ,则较短对角线的长是 .6.已知菱形的面积等于80cm 2,高等于8cm ,则菱形的周长为 .7.已知菱形ABCD 中AE ⊥BC ,垂足E ,F 分别为BC ,CD 的中点,那么∠EAF 的度数为 .8.顺次连结菱形各边的中点,所得的四边形为 形.二、选择题1.能够判定一个四边形是菱形的条件是( )A .对角线相等且互相平分B .对角线相等且对角相等C .对角线互相垂直D .两组对角分别相等且一条对角线平分一组对角2.菱形ABCD ,若∠A:∠B =2:1,∠CAD 的平分线AE 和边CD 之间的关系是( )A .相等B .互相垂直且不平分C .互相平分且不垂直D .垂直且平分3.已知菱形ABCD 的周长为40cm ,BD=34AC ,则菱形的面积为( ) A .96cm 2 B .94cm 2 C .92cm 2 D .90cm 24.菱形的周长等于高的8倍,则这个菱形较大内角是( )A .60°B .90°C .120°D .150°5.菱形具有而矩形不具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .对边平行且相等6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .邻边相等的四边形为菱形7.矩形具有而菱形不具有的性质是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直8.菱形的对角线把它分成全等的直角三角形的个数是( )A .4个B .3个C .2个D .1个三、解答题1.如图,在菱形ABCD中,延长AD到E,连结BE交CD于H,交AC于F,且BF=DE,求证:DH=HF.2.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.3.已知菱形的面积为24cm2,边长为5cm,求该菱形中一组对边之间的距离.4.已知:如图,在菱形ABCD中,BD是对角线,过D作DE⊥BA交BA延长线于点E,若BD=2DE,AB=4,求菱形的面积。
菱形性质习题精选(含答案)菱形性质习题精选一.填空题(共26小题)1.(2015?模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.2.(2015?模拟)如图,在四边形ABCD中,AB=6,∠ABC=90°,E在CD上,连接AE,BE,∠DAE=75°,若四边形ABED 是菱形,则EC的长度为.3.(2015?模拟)如图,菱形ABCD的对角线AC、BD交于点O,其中AC=8,BD=6,以OC、OB为边作矩形OBEC,矩形OBEC 的对角线OE、BC交于点F,再以CF、FE为边作第一个菱形CFEG,菱形CFEG的对角线FG、CE交于点H,如此继续,得到第n个菱形的周长等于.4.(2015?州市校级模拟)己知菱形相邻两角的度数比为1:5,且它的面积为8,则这个菱形的周长为.5.(2015?模拟)如图,在菱形ABCD中,∠A=45°,DE⊥AB,垂足为E,若CD=4cm,则菱形ABCD的面积是.6.(2015?模拟)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于.7.(2014?)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=cm.8.(2014?)菱形的周长为20cm,两个相邻的角的度数之比为1:2,则较长的对角线长度是cm.9.(2014?)如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=.10.(2014?宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y 轴上,则点C的坐标是.11.(2014?眉山)如图,菱形ABCD中,E、F分别是BC、CD 的中点,过点E作EG⊥AD 于G,连接GF.若∠A=80°,则∠DGF的度数为.12.(2014春?期末)如图在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为.13.(2014?模拟)如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为.14.(2014?江都市二模)已知菱形ABCD的对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为cm.15.(2014?简阳市模拟)如图,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记=k,我们把k叫做这个菱形的“形变度”.若变形后的菱形有一个角是60°,则形变度k=.16.(2014?淮区一模)如图,在菱形ABCD中,∠ABC=60°,BC=1cm,以DC为边在菱形的外部作正三角形CDE,连接AE,则AE=cm.17.(2014?惠安县二模)如图,菱形ABCD的边长是2cm,∠A=60°,点E、F分别是边AB、CD上的动点,则线段EF的最小值为cm.18.(2013秋?海陵区期末)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为4cm,∠A=120°,则EF=cm.19.(2014春?仙游县校级期末)如图,以菱形AOBC的顶点O 为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=,点C的坐标为(4,0),则点A的坐标为.20.(2014春?期末)如图,在菱形ABCD中,AB=13cm,BC 边上的高AH=5cm,那么对角线AC的长为cm.21.(2014春?泰兴市校级期末)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF 经过点A,则对角线BD长为cm.22.(2014春?建湖县期末)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,则ED的长等于.23.(2014春?玄武区期末)如图,在菱形ABCD中,BE⊥AD,垂足为E,且E为AD为中点.则∠ADC=°.24.(2014春?定县期末)如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P 是对角线AC上的一个动点,当P移动到AC的中点时,则PE+PB的值是.25.(2014春?顺义区期末)如图,菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=度.26.(2014秋?武进区期中)如图,依次连结第一个矩形各边的中点得到第一个菱形,再依次连结所得菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为2,则第2013个菱形的面积为.二.解答题27.(2014?县模拟)如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.28.(2014?江都市模拟)如图,在菱形ABCD中,点M是对角线AC上一点,且MC=MD.连接DM并延长,交边BC于点F.(1)求证:∠1=∠2;(2)若DF⊥BC,求证:点F是边BC的中点.29.(2014春?期末)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.30.(2014春?高淳县校级期末)如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.31.(2013秋?东海县月考)如图,在菱形ABCD中,点E是AD 边的中点,点M是AB边上的一个动点(不与点A重合),延长ME 交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)若∠DAB=60°,当点M位于何处时,四边形AMDN是矩形?并说明理由.(请在备用图中画出符合题意的图形)32.(2012秋?鼓楼区校级期末)如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B 出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.参考答案1.50 2.3 3. 4.16 5.8cm 2 6.5 7.5 8.5 9.35° 10.(5,4) 11.50° 12.20°13.3 14.4.8 15. 16.17. 18.2 19.(2,1)20. 21.4 22.4-3 23.120 24.2 25.105 26.27、证明:四边形ABCD 是菱形CE ⊥AE,CF ⊥AF∠DAB=∠CBB,∠DAB=∠FDC,∴∠CBE=∠FDC又 BC=DC,∴Rt △BEC ≌Rt △DFC,∴CE=CF.28、证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵MC=MD ,∴∠ACD=∠2,∴∠1=∠2;(2)连接BD ,∵四边形ABCD 是菱形,∴∠ACB=∠ACD ,BC=CD ,∵∠ACD=∠2,∴∠ACB=∠ACD=∠2,∵DF ⊥BC ,∴3∠2=90°,∴∠2=30°,∴∠BCD=∠ACB+∠ACD=60°,∴△BCD 是等边三角形,∴BF=CF ,即点F 是边BC 的中点.29、(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =2t ,∴DF =t .又∵AE=t ,∴AE=DF(2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又AE =DF ,∴四边形AEFD 为平行四边形.∵AB =21AC BC=35 222AC BC AB =+∴()2223521AC AC =+??? ?? ∴AC=1010 2.AD AC DC t ∴=-=-若使AEFD 为菱形,则需10.102,.3AE AD t t t ==-=即即当103t =时,四边形AEFD 为菱形30、(1)△ABP ≌△ACQ ,△APC ≌△AQD ;(2)∵△ACP ≌△ADQ ,∴S △ACP =S △ADQ ,即S 四边形APCQ =S △ACD =3221??;(3为菱形的高) (3)∵△PAQ 是等边三角形,点P 是BC 的中点时,AP 垂直于BC ,AP 最小,∴当AP ⊥BC 时,三角形APQ 的面积最小,故在四边形APCQ 的面积一定,△APQ 面积最小时,△PCQ 的面积最大. 此时BP=1,31、证明:∵四边形ABCD 是菱形∴∠DNM=∠AMN又∵DE=AE ,∠NDE=∠MAE∴△NDE=△MAE∴ND=AM∴ND ∥AM∴四边形ANDM 是平行四边形(2)当点M 是AB 的中点时,四边形AMDN 是矩形证明:如图所示∵四边形AMDN 是矩形,∠DAB=60o∴∠ADM=30o∴AM=AD 21 ∵AD=AB ∴AM=AB 21 即M 是AB 的中点32、解:(1)经过x 秒后,四边形AQCP 是菱形∴DP=X cm AP=CP=AD-DP=(8-X)cm∵DP 2+CD 2=PC 2∴16+X 2=(8-X) 2 解得x=3即经过3秒后四边形是菱形(2)由(1)得菱形的边长为5∴菱形AQCP的周长=5×4=20(㎝)菱形AQCP的面积=5×4=20(㎝2)。
2019年 八年级数学下册 菱形 精选练习一、选择题1.如图,菱形ABCD 中,AB=5,BD=6,则菱形的高为( )A.2.4B.4.8C.12D.242.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,若∠CDF=24°,则∠DAB 等于( )A .100°B .104°C .105°D .110°3.如图,在周长为12的菱形ABCD 中,AE=1,AF=2,若P 为对角线BD 上一动点,则EP+FP 的最小值为( )A.1B.2C.3D.44.如图,在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB ′E ,AB ′与CD 边交于点F,则B ′F 的长度为( )A.1B.C.2-D.2﹣25.如图,在菱形ABCD 中,∠ABC=60°,AB=1,E 为BC 的中点,则对角线BD 上的动点P 到E 、C两点的距离之和的最小值为( )A.43B.33C.23 D.216.如图,在菱形ABCD 中,AB=4cm ,∠ADC=120°,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A.1B.C.D.7.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动,可以添加一个条件,使四边形CBFE为菱形,下列选项中错误的是()A.BD=AEB.CB=BFC.BE⊥CFD.BA平分∠CBF8.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12mB.20mC.22mD.24m9.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4,则菱形ABCD的周长是( )A.8B.16C.8D.1610.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE⊥BC,垂足为E,则AE的长为( )A.8B.C.D.二、填空题11.如图,正方形ABCD的面积为18,菱形AECF的面积为6,则菱形的边长为.12.把两张宽为2 cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.13.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.14.如图,四边形ABCD和CEFG都是菱形,连接AG,GE,AE,若∠F=60°,EF=4,则△AEG面积为________.15.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为三、解答题17.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.18.如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.19.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.20.如图所示,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)①当AM为何值时,四边形AMDN是矩形?②当AM为何值时,四边形AMDN是菱形?21.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.22. (1)如图,纸片▱ABCD中,AD=5,S=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平▱ABCD移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1 图2答案1.B2.B.3.C4.C5.C.6.D7.A8.C9.A.10.C.11.答案为:;12.答案为:菱形,413.答案为:2.5;14.答案为:15.答案为:15.17.18.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.19.【解答】(1)证明:四边形ABCD是菱形,∴OA=OC=0.5AC,AD=CD,∵DE∥AC且DE=0.5AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∴OE=AD,∴OE=CD;(2)解:∵AC⊥BD,∴四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=.∴在Rt△ACE中,AE==.解:(1)略;(2)PC2=PE PF20. (1)证明:∵四边形ABCD是菱形,∴ND∥AM,21.解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即=8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2××3×4=20(cm2).。
19.2.1 菱形的性质运用菱形的有关知识进行计算和说理专题练习题1.已知菱形的周长为16 cm,一条对角线长为4 cm,则菱形的4个角分别为()A.30°,150°,30°,150°B.45°,135°,45°,135°C.60°,120°,60°,120°D.以上都不对2.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC相交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°3.如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED=50°,则∠CBO=____度.4.如图,在菱形ABCD中,∠ABC=120°,对角线AC,BD相交于点O,AE平分∠CAD,分别交OD,CD于F,E 两点,求∠AFO的度数.5.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC的长为____cm.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.245B.125C .5D .4 7.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为____.8.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和4时,则阴影部分的面积为____.9.如图,O 是菱形ABCD 对角线AC 与BD 的交点,CD =5 cm ,OD =3 cm, 过点C 作CE ∥DB ,过点B 作BE ∥AC ,CE 与BE 相交于点E .(1)求OC 的长;(2)求四边形OBEC 的面积.10.如图,在菱形ABCD 中,∠BAD =44°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连结DF ,则∠CDF 等于( )A .112°B .114°C .116°D .118°11.在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为 .12.如图,四边形ABCD 是菱形,CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD 交AD 的延长线于点F ,求证:DF =BE .13.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD 于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.14.如图,在菱形ABCD中,F是BC上任意一点,连结AF交对角线BD于点E,连结EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?请说明理由.15.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是____.16.如图1,在菱形ABCD中,点E,F分别为AB,AD的中点,连结CE,CF.(1)求证:CE=CF;(2)如图2,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.答案:1. C2. C3. 504. ∵在菱形ABCD中,∠ABC=120°,∴∠BAD=60°,∵对角线AC,BD相交于点O,∴∠BAC=∠CAD=30°,∠DOA =90°,∵AE平分∠CAD,∴∠OAF=15°,∴∠AFO的度数为90°-15°=75°5. 266. A7. 308. 109. (1)∵四边形ABCD是菱形,∴AC⊥BD,∴在Rt△OCD中,OC=CD2-OD2=52-32=4 (cm)(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形,又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形,∵OB=OD,∴S四边形OBEC=OB·OC=4×3=12(cm2)10. B11. 45°或105°12. 连结AC ,∵四边形ABCD 是菱形,∴AC 平分∠DAB ,CD =BC ,∵CE ⊥AB ,CF ⊥AD ,∴CE =CF ,∠CFD =∠CEB =90°,∴Rt △CDF ≌Rt △CBE (HL ),∴DF =BE13. (1)连结AC ,BD ,并且AC 和BD 相交于点O ,∵AE ⊥BC ,且AE 平分BC ,∴AB =AC =BC ,∴BE =12BC =2,∴AE =42-22=23,S =BC ·AE =4×23=83, ∴菱形ABCD 的面积是83(2)∵AC =AB =AD =CD ,△ADC 是等边三角形,∵AF ⊥CD , ∴∠DAF =30°,又∵CG ∥AE ,AE ⊥BC , ∴四边形AECG 是矩形,∴∠AGH =90°, ∴∠AHC =∠DAF +∠AGH =120°14. (1)连结AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE =EC(2)点F 是线段BC 的中点.理由:在菱形ABCD 中,AB =BC , 又∵∠ABC =60°,∴△ABC 是等边三角形,∴∠BAC =60°, ∵AE =EC ,∴∠EAC =∠ACE ,∵∠CEF =60°, ∴∠EAC =12∠CEF =30°,∴∠EAC =12∠BAC ,∴AF 是△ABC 的角平分线,∵AF 交BC 于点F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点 15.17216.(1)易证△BCE ≌△DCF (SAS ),∴CE =CF(2)延长BA 与CF ,交于点G ,∵四边形ABCD 是菱形,∴∠B =∠D ,AB =BC =CD =AD ,AF ∥BC ,AB ∥CD ,∴∠G =∠FCD ,∵点F 为AD 的中点,且AG ∥CD ,易证△AGF ≌△DCF (AAS ),∴AG =CD ,∵AB =CD ,∴AG =AB ,∵△BCE ≌△DCF ,∴∠ECB =∠DCF =∠G ,∵∠CHB =2∠ECB ,∴∠CHB =2∠G ,∵∠CHB =∠G +∠HCG ,∴∠G =∠HCG ,∴GH =CH ,∴CH =AH +AG =AH +AB。
菱形性质经典练习题一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(2010•肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.(2010•宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.(2011•铜仁地区)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.(2011•綦江县)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.(2011•南京)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.9.(2010•嘉兴)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________度.10.(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________度.10题图12题13题图14题图11.(2009•朝阳)已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.(2009•安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.(2008•长沙)如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.(2006•云南)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.(2005•黄石)已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.(2005•新疆)已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.(2004•贵阳)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.(2011•南昌)如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.(2010•益阳)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.(2010•宁洱县)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E 连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.(2006•大连)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C 运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。
中考数学复习之菱形习题(含答案)1.菱形不具备的性质是()A. 四条边都相等B. 对角线一定相等C. 是轴对称图形D. 是中心对称图形2.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A. 24B. 18C. 12D. 93.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A. 108°B. 72°C. 90°D. 100°4.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是()A. 3B. 2C. 2 3D. 45.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB、BC边上的中点,则MP+PN的最小值是()A. 12 B. 1 C. 2 D. 26.如图,在菱形ABCD中,AB=16,∠B=60°,P是AB上一点,BP=10,Q是CD边上一动点,将四边形APQD沿直线PQ折叠,点A的对应点为A′.当CA′的长度最小时,CQ的长为()A. 10B. 12C. 13D. 147.如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,那么使得四边形EPFD为菱形的x的取值范围是______________.8.已知一个菱形的边长为2,较长的对角线长为23,则这个菱形的面积是_________________.9.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C 的坐标是_________________.10.如图所示,菱形ABCD的对角线AC、BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为点E,则AE的长为_________________.11.如图,在平行四边形ABCD中,AB=6,BC=10,对角线AC⊥AB,点E、F分别是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)当BE长度为___________时,四边形AECF是菱形.12.如图,在三角形ABC中,∠ACB=90°,点E是AB边的中点,点F是点E关于AC所在直线的对称点.(1)证明:四边形CF AE为菱形;(2)连接EF交AC于点O,若BC=26,求线段OF的长.13.如图,在 ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC,①当AE与AB的数量关系为___________时,四边形BEDF是矩形;②当AE与AB的数量关系为___________时,四边形BEDF是菱形.14.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的一点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.参考答案:1-6 BABABD7.1≤x≤38. 239. (-5,4)10.24 511. (1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)解:∵四边形AECF是菱形,∴AE=CE,∴∠EAC=∠ECA,∵AC⊥AB,∴∠BAC=90°,∴∠B+∠ECA=90°,∠BAE+∠EAC=90°,∴∠B=∠BAE,∴AE=BE,∴BE=CE=12BC=5.12. (1)证明:∵∠ACB=90°,点E是AB边的中点,∴CE=12AB=EA,∵点F是点E关于AC所在直线的对称点,∴AE=AF,CE=CF,∴CE=EA=AF=CF,∴四边形CF AE是菱形;(2)解:四边形CF AE是菱形,∴OA=OC,OE=OF,∴OE=12BC=262=6,∴OF= 6.13. (1)证明:∵四边形ABCD是平行四边形,∴AB ∥CD ,OA =OC , ∴∠EAO =∠FCO , 在△AOE 和△COF 中,⎩⎨⎧OA =OC∠EAO =∠FCO AE =CF, ∴△AOE ≌△COF (SAS ); (2)解:①AE =AB ;②AE =13AB .14. (1)证明:由折叠的性质可知DG =FG ,ED =EF ,如图,∠1=∠2,∵FG ∥CD , ∴∠1=∠3, ∴∠2=∠3, ∴FG =FE ,∴DG =GF =EF =DE , ∴四边形DEFG 为菱形;(2)解:设DE =x ,根据折叠的性质得,EF =DE =x ,EC =8-x , 在Rt △EFC 中,FC 2+EC 2=EF 2, 即42+(8-x )2=x 2,解得x =5,∴CE =8-x =8-5=3, ∴CE DE =35.。
特殊的平行四边形——菱形
一.菱形的定义:有一组邻边相等的平行四边形叫做菱形.
二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:
1.菱形的四条边相等。
2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。
三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形;
3.对角线垂直的平行四边形是菱形;
4.对角线互相垂直平分的四边形是菱形。
四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或等腰三角形的问题来解决.),周长=边长的4倍 复习:
1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF .
(1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明.
解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=.
又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=.
(2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平
行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形.
菱形例题讲解:
1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC ,
试判断四边形AEDF 的形状,并说明理由.
解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA ,
∴△ADE ≌△DAF ,∴AE=DF ;
∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形.
2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD ,
∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB ,
∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC ,
∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形)
3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB ,
(1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离.
解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB
∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形.
(2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴.
4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF .
∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线.
∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形
5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,.
(1)求证:ADE CBF △≌△.
(2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论.
解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD
的中点∴AE =CF , (SAS)AED CFB ∴△≌△.
(2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △,
且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12
DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形.
O
D
C B A
第5题 实战演练 1.一菱形周长是20cm ,两条对角线的比是4∶3,则这菱形的面积是( B ) A.12cm 2
B.24cm 2
C.48cm 2
D.96cm 2
2.如图,已知长方形ABCD ,AB =3cm ,AD =4cm ,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为_____78
cm __________. 分析:连EB,∵EF 垂直平分BD,∴ED=EB,设AE=x,则DE=EB=(4-x ),AE²+AB²=BE²,即:x²+3²=(4-x )²,解得:x= 7/8
3.如图,在菱形ABCD 中,AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH = 12/5 .
4.如图,菱形ABCD 的连长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为___23______㎝2.
5.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,OE ⊥AB ,若∠ADC=130°,则∠AOE 的大小为 65°
6.如图,已知四边形ABCD 是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 90 度.
7.在菱形ABCD 中,已知AB=10,AC=16,那么菱形ABCD 的面积为 96
8.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是 58° .
9.已知菱形ABCD 的两条对角线相交于点O ,若AB = 6,∠BDC = 30︒,则菱形的面积为 183 .
10.在四边形ABCD 中,给出四个条件:①AB=CD ,②AD ∥BC ,③AC ⊥BD ,④AC 平分∠BAD ,由其中三个条件推出四边形ABCD 是菱形,你认为这三个条件是 ①③④或②③④ .(写四个条件的不给分,只填序号)
11.如图,已知在□ABCD 中,AD=2AB ,E 、F 在直线AB 上,CE 与AD 交与点M , DF 与CB 交与点N ,且AE=AB=BF , 求证:CE ⊥DF.
证明:连接MN,∵□ABCD, ∴AB=DC, 又∵AB=AE, ∴AE=DC ∴∆AEM ≅∆CDM,
∴M 为AD 的中点. 又∵AD=2AB, ∴CD=DM ∴CDMN 是棱形, 所以CE ⊥DF.
12.如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD•交AC 于点D ,CH ⊥AB 于H ,且交BD 于点F ,DE ⊥AB 于E ,四边形CDEF 是菱形吗?请说明理由.
解:解法一:四边形CDEF 是菱形.理由:如图所示,BD 平分∠ABC ,∴CD=DE ,
因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,•∴∠3=∠4.∴CF=CD .
∴CF=DE .因为CF //DE .•所以四边形CDEF 是平行四边形.所以□CDEF 是菱形.
13.如图所示,已知△ABC 中,AB=AC ,D 是BC 的中点,过点D•作DE ⊥AB ,DF ⊥AC ,
垂足分别为E ,F ,再过E ,F 作EG ⊥AC ,FH ⊥AB ,垂足分别为G ,H ,且EG ,•FH 相交
于点K ,试说明EF 和DK 之间的关系. 解:EF 与DK 互相垂直平分.理由:因为DE ⊥AB ,FH ⊥AB ,∴DE ∥FH .•
∵DF ⊥AC ,EG ⊥AC ,所以DF ∥EG .∴四边形DEKF 是平行四边形.
∵AB=AC ,∴∠B=∠C .又因为BD=CD ,∠BED=∠CFD=90°, ∴△BDE ≌△CDF ,∴DE=DF .∴DEKF 是菱形,∴EF 与DK 互相垂直平分.
点拨:要说明EF 与DK 互相垂直平分,只要说明四边形DEKF 是菱形,•要说明四边形DEKF 是菱形,可先说明四边形DEKF 是平行四边形,再说明一组邻边相等即可. 第4题
B
A D
C
E
第2题 第3题 D
A
C
F H E B K D A C F H
G E B。