电絮凝的原理结构和用途PPT培训课件
- 格式:ppt
- 大小:598.00 KB
- 文档页数:33
电絮凝法的原理和应用行业1. 电絮凝法的原理电絮凝法是一种物理化学方法,用于处理废水和污水中悬浮固体、胶体物质的去除。
该技术利用电解作用和固液分离原理,通过电极间的电场来将水中的固体颗粒聚集,形成较大的絮凝体,达到废水的净化目的。
1.1 电絮凝法的基本原理在电絮凝法过程中,通常使用两个电极,即阳极和阴极。
当外加电压施加在这两个电极上时,阳极释放出阳极氧化物,而阴极释放出氢气。
这种物质的释放和气泡的形成导致了两个电场:带正电的阳极产生的电场和带负电的阴极产生的电场。
1.2 电极间电场的作用在电极间形成的电场下,水中的悬浮颗粒被吸引到极板表面。
同时,在极板表面的区域,由于相邻电极之间的电场差异,水中的离子产生氧化和还原反应。
这些反应促使水中的粒子和离子相互结合,形成絮凝体。
1.3 电絮凝法中的协同效应除了电极间电场的作用,电絮凝法中还存在协同效应。
这种效应是指在电解过程中产生的酸化和碱化等反应,可以调节溶液的pH值,进一步促进絮凝体的形成。
此外,由于电解时水的电解产生的气泡,还可以帮助将形成的絮凝体升至液体表面,从而更好地实现固液分离。
2. 电絮凝法的应用行业2.1 工业废水处理电絮凝法被广泛应用于工业废水处理领域。
工业废水中常含有各种悬浮固体、胶体物质和重金属离子等污染物,对环境造成严重污染。
电絮凝法通过将这些污染物聚结成絮凝体,从而实现对废水的净化。
该技术在钢铁、化工、电子等行业得到了广泛应用。
2.2 农田灌溉水处理传统的农田灌溉水处理方法往往无法有效去除水中的悬浮颗粒和有机物质。
而电絮凝法可以在灌溉前,将水中的污染物聚集成絮凝体,提高水质。
这在农田灌溉中防止土壤污染、促进土壤农业可持续发展等方面具有重要意义。
2.3 饮用水处理电絮凝法也可以用于饮用水处理,特别是处理含有高浓度有机物质和胶体悬浮物的水源。
通过电絮凝法初步去除水中的污染物,可以有效保障饮用水的安全性。
2.4 矿山废水处理矿山废水通常含有大量的悬浮颗粒、重金属离子等有害物质。
电絮凝的原理电絮凝是一种利用电场能够引起的强烈电荷作用使得悬浮在水中的微小悬浮颗粒聚集成大颗粒从而达到澄清或过滤水体的方法。
电絮凝这种技术通常被运用于市政污水处理厂、工业制造、饮用水净化、生物制药、化工产品等领域。
它可以去除水中的悬浮物、胶体、溶解质等杂质物质,从而改善水质。
实现电絮凝技术的方法是利用外界电场作用在悬浮颗粒上,将使颗粒表面的电荷重新分布产生的相互吸引作用,从而聚集成较大的颗粒块。
水中的悬浮颗粒和溶质通常带有表面电荷,通过提供相反电荷的电荷,可以使颗粒和分子聚集到一起形成较大的沉淀,利于处理和去除。
电絮凝改善水质的原理是十分简单的。
在水中加入一定量的电解质,需要选用一种酸或碱,以及调整水中的pH值,通常值为6至9之间,水中的离子便会经历反应。
离子在水中溶解着,并与水分子破裂,释放出带有负电荷的阴离子和带有正电荷的阳离子。
当电解质的浓度达到一定值时,就能够满足聚合颗粒的条件,这时候加入电荷逆向的电极,颗粒就会聚集在一起。
结冰时可能会产生冰芯电位的调整,这可能需要对电解质浓度进行调整。
电絮凝的原理基于三个方面的因素,包括颗粒的电性、溶液中的离子稳定性以及电场强度。
通常微小的悬浮颗粒表面具有正负电性。
通过添加电解质或调整液体中的pH值,可以将表面电荷分散到整个颗粒上。
这就允许颗粒聚集成更大的带有悬浮沉淀的颗粒团聚体。
一旦电极开始释放相同极性的电荷,并在水中形成带电场的环境,高度带电的颗粒会受到电场作用力的吸引而开始聚集,这将最终导致水中的悬浮颗粒沉淀到底部,从而实现净化水体的目的。
此外,经过合适的操作,通常可以获得很高的沉淀率。
如果调整浓度、pH值以及电场强度之间的平衡,可以使电絮凝达到最佳效果。
它在面对处理水体中难以去除的微小颗粒时,特别是比筛过滤更小的颗粒时,非常有效。
与传统的澄清技术相比,可以减少处理过程的时间和成本。
电絮凝设备原理及优点一、电絮凝设备原理电絮凝设备工作原理是:给多组并联的极板接通直流电,在极板之间产生电场,使待处理的水流入极板的空隙。
此时通电的极板会发生电化学反应,如阳极(铁、铝阳极板)失去电子后发生氧化反应,生成较强氧化剂(Cl2、[O]、HClO等)和金属阳离子Fe2+、Al3+,强氧化剂来分解水中污染物从而以降低原液中的BOD5、CODcr、氨氮,而形成的金属阳离子Fe2+、Al3+与溶液中的OH-生成金属氢氧化物胶体絮凝剂,这类新生态氢氧化物的活性高、吸附力量强。
阴极上得到电子后发生还原反应。
间接还原在阴极得到电子的高价或低价金属阳离子,使其直接被还原为低价阳离子或金属沉淀。
同时在电解过程中阴极和阳极上分别会析出氢气和氧气,生成分散度极高的微小气泡(俗称电气浮)与原水中的胶体、悬浮物、可溶性污染物、细菌、病毒、重金属等结合生成较大絮状体,经沉淀、气浮被去除。
最终通过沉淀池、膜系统或生化系统达到废水回用目的。
二、电絮凝设备优点1电絮凝工艺在重金属废水破络处理、含油废水破乳除油、印染废水脱色降COD、提高难降解有机废水的可生化性、细小悬浮颗粒的脱稳沉降等方面,具有其他水处理工艺不行替代的优势;2由于不用加药,电絮凝工艺产生的污泥量通常比其它处理工艺少40%,污泥密实度高,从而大大降低了污泥的处置费;3设备自动化程度高,操作简洁,对操作人员的要求很低,运行平稳,处理效率高,出水水质稳定;4电絮凝处理工艺在项目投资方面与其它处理工艺的项目投资基本相当,但通常电絮凝处理工艺运行成本仅为其它处理工艺运行成本的1/3左右;5电絮凝法产生的氢氧化物比化学法絮凝剂的活性高,分散吸附力量强处理效果好,所需金属离子的量只有化学混凝法的1/3左右,并且不会因向水中投加药剂而使水中阴离子含量增加;6电絮凝处理设备设计紧凑,占地面积小,仅为化学法处理设施占地面积的1/5。
电絮凝原理电絮凝是一种利用电化学原理来去除水中悬浮物和胶体物质的方法。
它是利用电解池中的电场作用,使悬浮物和胶体物质在电场作用下发生聚集和沉淀,从而达到净化水质的目的。
电絮凝原理是通过电解池中的电极产生的电场,将水中的杂质聚集在一起,形成较大的絮凝体,然后通过沉淀或过滤的方式将其去除,从而达到净化水质的目的。
电絮凝原理的核心是电解池中的电场作用。
电解池通常由两个电极组成,分别是阳极和阴极。
当外加电压作用于电解池时,阳极和阴极之间会形成一个电场。
在这个电场中,水中的悬浮物和胶体物质会受到电场力的作用,发生聚集和沉淀的过程。
具体来说,当电场作用于水中的悬浮物和胶体物质时,它们会带上电荷,并在电场力的作用下向电极移动。
在移动的过程中,它们会相互碰撞并聚集在一起,形成较大的絮凝体。
这些絮凝体会随着电场的作用逐渐增大,最终沉积到电解池的底部,或者通过过滤的方式去除。
电絮凝原理的关键在于如何有效地利用电场力将水中的悬浮物和胶体物质聚集在一起。
为了达到这个目的,需要合理设计电解池的结构和电场的分布,以及选择合适的电解液和电极材料。
此外,控制电解池的电压和电流,以及调节电解液中的pH值和温度等因素也是非常重要的。
除了上述因素外,水质的特性也会对电絮凝的效果产生影响。
比如水中的离子浓度、溶解氧含量、水温等因素都会影响电絮凝的效果。
因此,在实际应用中,需要根据不同的水质特点来调整电絮凝的工艺参数,以达到最佳的净化效果。
总之,电絮凝原理是一种利用电场力将水中的悬浮物和胶体物质聚集在一起,然后通过沉淀或过滤的方式去除的方法。
它的核心是通过电解池中的电场作用,使水中的杂质发生聚集和沉淀。
在实际应用中,需要合理设计电解池结构、控制工艺参数,并根据水质特点进行调整,以达到最佳的净化效果。
希望本文能够帮助您更好地理解电絮凝原理及其应用。
电絮凝工艺技术原理
电絮凝是利用电化学方法产生氢氧化物作为凝聚剂净水的一种工艺。
作为阳极,在电流作用下,金属离子进入水中与水电解产生的氢氧根形成氢氧化物,氢氧化物絮凝将杂质颗粒吸附,生成絮状物。
电絮凝净水的基本原理,如图所示:
金属阳极可以是铝或铁。
如铝作阳极时,当直流电源通电后,阳极金属放电成为金属离子并进入水中。
Al-3e-→Al3+
水被电解:
H2O→H++OH-
带正电荷的氢离子在阴极上获得电子成为氢气。
2H++2e-→H2
带有负电荷的氢氯根离子向阳极移动,并在阳极放电,生成新生态的氯。
4OH-+4e-→2H2O+2[O]
在阴极产生氢气气泡,在阳极产生氧气气泡,这些气泡上升时,就能将悬浮物带到水面,于是在水面上就形成了浮渣层,带到水面的物质增多后,浮渣层就变密或变厚。
过程中产生的Al3+与OH-反应生成Al(OH)3,这是一种活性很强的凝聚剂。
反应生成的氢氧化铝或氢氧化铁,与水中的悬浮颗粒生成絮状物,这些絮状物相对密度较小时就上浮分离,相对密度较大时则向下沉淀分离。
因此在通直流电的过程中,就同时有两个作用:一个是产生的气体将悬浮物带到水面形成浮渣层进行分离,另一个是反应生成的氢氧化铝或氢氧化铁是凝聚剂,可以使悬浮小粒凝聚起来,依靠相对密度的不同上浮分离或沉淀分离。
此外,电絮凝还有共沉淀作用,即电絮凝时产生Fe(OH)3与水中金属氢氧化物共沉淀,如果铝作阳极时,形成的Al(OH)3还能吸附水中的硅化物和氟化物。
同时,在阴、阳电极处可发生氧化、还原作用,还可以去除水中的一些有害物质,如氰根被氧化变成CO2和N2而除去,水中Cr6+被还原成毒性较小的三价铬。