合并同类项和移项
- 格式:ppt
- 大小:173.50 KB
- 文档页数:12
《解一元一次方程(一)合并同类项与移项》知识解析课标要求1.了解解方程的基本目标(使方程逐步转化为x=a 的形式),理解解一元一次方程的一般步骤(本节主要是合并同类项与移项),掌握一元一次方程的解法,体会解法中蕴涵的化归思想;2.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”,体会建立数学模型的思想;3.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.知识结构 内容解析1.合并同类项:本质是分配律的逆运算,原来是在式子中运算,现在是在等式中运算,并且要注意格式上的问题,原来可以写“解:原式=......”,现在在方程中不存在这种写法,也可以帮助学生理解合并同类项在两处的却别,还能说明方程是在化简,渗透化归思想.2.移项:把等式一边的某项变号后移到另一边,叫做移项.这是概念,其中移项变号显得尤为重要,而且这也是许多学生极为容易犯错的地方,我认为让学生理解透彻这移项的本质实际上是等式性质1——等式两边同时加上或减去同一个数,等式仍然成立,是帮助学生避免犯错的办法之一.3.合并同类项与移项的作用:合并同类项与移项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程向x =a 的形式转化,让学生明白,解方程实际上是化简的一个过程,而且可以帮助学生建立解数学题的一种方法:把未解决的问题转化为一个已经解决的问题,这就是重要的数学思想——化归思想,也是一种重要的学习方法!4.解方程的步骤:移项、合并同类项、系数化为1.5.用一元一次方程分析和解决实际问题的一般过程:表示同一量的两个不同式子相等. 重点难点本节的重点是:利用合并同类项、移项变号法则解方程.教学重点的解决方法:学生在整式加减中已经学会了合并同类项,通过观察类比得出合并同类项与移项的解法,学生积极动手、动脑、动口为主线来完成,设置由浅入深一些练习题,加深对概念的理解与把握.通过题组的学习和训练,归纳出用一元一次方程解题的一般步骤.体会方程是刻画现实世界数量关系的一个有效的数学模型,本节的难点是:找相等关系列一元一次方程教学难点的解决方法:要运用一元一次方程解决生活中的实际问题,首先必须了解一元一次方程的概念,而概念的教学又要从大量的实例出发.通过问题情境,建立一元一次方程的数学模型.(1)注意师生互动,提高学生的思维效率.(2)针对学生的盲区,出相应的练习巩固.教法导引本节的重点在于讨论解方程中的“合并同类项”和“移项”两个基本做法,这样就已经可解ax+b=cx+d 类型的一元一次方程.实际问题 一元一次方程 合并 移项 步骤 设未知数,列方程本节中对于“合并同类项”和“移项”的讨论,分别以问题1和问题2为出发点.以较为简单的实际问题作讨论方程解法的背景,一方面可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面可使根据实际问题列方程贯穿于全章,将列方程的教学过程拉长.从而达到由简单问题到复杂问题地逐步提高学生列方程的能力的教学效果.本节首先提及在数学史上对解方程颇有影响的一部著作,即生活在约780~850年间的阿拉伯数学家阿尔—花拉子米所著的《对消与还原》一书,提问“对消”与“还原”是什么意思,以此作为后面内容的引子.本节在问题1和问题2之后,各安排了两道例题,其中前一例题是单纯解方程,其作用是巩固对相应解法的理解和掌握;后一例题是简单的实际问题,其作用有两个,一是巩固对相应解法的理解和掌握,二是逐步引导学生理解和掌握如何列方程.解方程和列方程是利用方程分析和解决实际问题的基本过程中不可或缺的两个环节.在教学中,要把数学思想和方法的教学贯穿于整个教学中,学生只有及早形成自己的思想和方法,才能学得轻松,从而更加爱学数学.同时及时找出课堂上出现的共性问题,利用辅导课及时纠正,然后做针对性练习来巩固盲区,强化课堂薄弱环节,使课堂走向优质高效化.学法建议通过回顾已学过的整式加减中的合并同类项和等式性质1这些已有知识,为后续的合并同类项与移项学习作好知识储备与铺垫,通过对实际问题的讨论与探究,激发起学生的强烈的求知欲和探索愿望,用方程思想从日常生活情境中借助等量关系,用一元一次方程表示出来,初步建立一元一次方程基本模型.让学生尝试进一步将所学知识运用到解方程中,最后体验到“合并同类项”和“移项”给解方程带来的便利性!并通过应用题组灵活运用所学知识形成技能技巧.让学生自己归纳出用一元一次方程解决实际问题的一般步骤,体会方程是刻画现实世界数量关系的一个有效的数学模型.。
3.2解一元一次方程——合并同类项与移项合并同类项解方程的方法与步骤(1)合并同类项,即把含有未知数的同类项和常数项分别合并.(2)系数化为1,即在方程的两边同时除以未知数的系数.注意:(1)解方程中的合并同类项和整式加减中的合并同类项一样,它们的依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式性质2求出方程的解创造条件;(2)系数为1或-1的项,合并时不能漏掉.题型1:解一元一次方程——合并同类项1.解下列方程∶(1)3x+2x+x=24; (2)-3x+6x=18.【答案】(1)x=4 (2)x=6【变式1-1】(1)5x-6x=-57 (2)13x-15x+x=-3.【答案】(1)x=57 (2)x=3移项解方程的方法与步骤1.移项把等式的某项变号后移到另一边,叫做移项.移项必须变号.2.移项的依据移项的依据是等式的性质1,在方程的两边加(或减)同一个适当的整式,使含未知数的项集中在方程的一边,常数项集中在另一边.3.解简单的一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.注意:(1)移项通常把含有未知数的项移到“=”的左边,常数项移到“=”的右边(2)若将2=x变形为x=2,直接利用的是等式性质的对称性,不能改变符号.(3)方程中的每项都包括前面的符号.题型2:解一元一次方程——移项2.将下列方程移项(1)7+x=13,移项得x=13+7(2)5x=4x+8,移项得 5x-4x=8(3)3x-2=x+1,移项得 3x-x=2+1(4)8x=7x-2,移项得 8x-7x=-2(5)2x-1=3x+4,移项得 2x-3x=1+4【变式2-1】解下列方程(1)4x+2=3x-3; (2)4y=203y+16【答案】(1)x=-5 (2)y=-6【变式2-2】解下列方程(1)2x+3=4x-5; (2)9x-17=4x-2.【答案】(1)x=4 (2)x=3题型3:绝对值方程3.解方程 |2x-3|=1.【分析】解绝对值方程的关键是把绝对值符号去掉,将方程转化为普通方程求解.【解答】∶因为|2x-3|=1,所以2x-3=1或2x-3=-1,解得x=2或x=1.【变式3-1】如果|2x+3|=|1﹣x|,那么x的值为( )A.−23B.−32或1C.−23或﹣2D.−23或﹣4【分析】根据绝对值的意义得到2x+3=1﹣x或2x+3=﹣(1﹣x),然后解两个一次方程即可.【解答】解:∵|2x+3|=|1﹣x|,∴2x+3=1﹣x或2x+3=﹣(1﹣x),题型4:依题意构建方程求解4.代数式2x+5与x+8的值相等,则x的值是 .【答案】3【解析】【解答】解:∵代数式2x+5与x+8的值相等,∴2x+5=x+8,解得:x=3,故答案为:3.【分析】根据已知条件:2x+5与x+8的值相等,可得到关于x的方程,解方程求出x的值.【变式4-1】当x= 时,代数式6x+1与-2x-5的值互为相反数。
数学移项合并同类项在数学的学习中,移项和合并同类项是两个非常重要的基本运算方法,它们就像是数学大厦的基石,为我们解决各种方程和代数式的问题提供了有力的工具。
让我们先来聊聊移项。
移项,简单来说,就是把方程中的某一项从等号的一边移到另一边,同时改变符号。
比如说,对于方程“3x + 5 =17”,我们要把 5 从左边移到右边,就变成了“3x = 17 5”。
这是为什么呢?其实道理很简单,因为等式两边的数值是相等的,我们在移动一项的时候,要保证等式仍然成立,所以就得改变符号。
移项的目的是为了把含有未知数的项放在等式的一边,常数项放在另一边,这样就更方便我们求解未知数。
再来说说合并同类项。
同类项,就是具有相同变量部分的项。
比如“3x”和“5x”就是同类项,“2y²”和“7y²”也是同类项。
合并同类项就是把同类项的系数相加。
比如,对于代数式“3x +5x”,合并同类项后就是“8x”;对于“2y² +7y²”,合并后就是“9y²”。
那移项和合并同类项在实际解题中是怎么运用的呢?我们来看一个例子。
比如方程“5x + 8 = 3x +20”,首先,我们要移项,把含有 x 的项移到左边,常数项移到右边,得到“5x 3x =20 8”。
然后合并同类项,“5x 3x”就是“2x”,“20 8”就是“12”,所以方程就变成了“2x =12”,最后解得“x =6”。
再来看一个稍微复杂一点的代数式化简:“3x² + 5x 2x²+7 4x”。
先找出同类项,“3x²”和“-2x²”是同类项,“5x”和“-4x”是同类项。
合并同类项后得到“(3x² 2x²) +(5x 4x) + 7 = x²+ x +7”。
移项和合并同类项不仅在解一元一次方程中有用,在二元一次方程组、一元二次方程等更复杂的数学问题中也是经常用到的基础方法。
《合并同类项与移项》教学设计一、教学目标1、知识与技能目标学生能够理解合并同类项和移项的概念,掌握合并同类项和移项的方法。
学生能够熟练地运用合并同类项和移项来解方程。
2、过程与方法目标通过实际问题的引入,让学生经历从实际问题中抽象出数学模型的过程,培养学生的抽象思维能力和建模能力。
通过观察、比较、分析等活动,让学生体会数学中的转化思想,培养学生的逻辑思维能力和推理能力。
3、情感态度与价值观目标让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。
通过小组合作学习,培养学生的合作意识和团队精神。
二、教学重难点1、教学重点合并同类项和移项的概念及方法。
运用合并同类项和移项来解方程。
2、教学难点理解移项的依据和目的。
正确地进行合并同类项和移项。
三、教学方法讲授法、练习法、讨论法、启发式教学法四、教学过程1、导入新课教师通过多媒体展示一个实际问题:学校图书馆有故事书和科技书共 1000 本,其中故事书的数量是科技书的 3 倍,问故事书和科技书各有多少本?引导学生设未知数,列出方程:设科技书有 x 本,则故事书有 3x 本,可列出方程 x + 3x = 1000。
2、讲授新课合并同类项教师引导学生观察方程 x + 3x = 1000,提问:方程左边的 x 和 3x 有什么特点?学生通过讨论得出:x 和 3x 都含有字母 x,并且 x 的指数都是 1,它们是同类项。
教师讲解合并同类项的概念:把多项式中的同类项合并成一项,叫做合并同类项。
教师示范合并同类项的方法:x + 3x =(1 + 3)x = 4x,所以方程 x + 3x = 1000 可以化为 4x = 1000。
教师让学生练习合并同类项:2x + 5x,3y 2y 等。
移项教师展示方程 4x 2 = 3x + 1,提问:如何将方程变形,使含 x 的项在等号左边,常数项在等号右边?学生通过讨论,尝试变形方程。
教师讲解移项的概念:把等式一边的某项变号后移到另一边,叫做移项。
解一元一次方程(一)──合并同类项和移项教学任务分析 教学目标 知识技能1.掌握解方程中的合并.2.理解并掌握移项变号法则进行解方程.3.灵活的运用移项变号法则解决一些实际问题. 数学思考 使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用. 解决问题 能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.情感态度解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力. 重点 利用合并同类项、移项变号法则解方程.难点 移项变号法则、合并同类项.一、创设情景、引发学生的兴趣,提出本节课要研究的问题约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答.问题1:某校三年共买了计算机140台,去年买的数量是前年的2倍,今年又是去年的2倍,前年这个学校买了多少台计算机?学生活动设计:通过审题发现可以设前年购买了计算机x 台,则去年购买了2x 台,今年购买了4x 台,问题中的相等关系是:前年购买的计算机+去年买的计算机+今年买的计算=140台,于是可以列出方程x +2x +4x =140,可以把关于x 的同类项合并得:7x =140,于是问题解决.活动:从上述方程的解决你能发现什么?x =20x +2x +4x =1407x =140合并系数化为1系数化为1:指的是使方程的一边ax 化为x ,这里可能还有其他设未知数的方法(比如设今年的为x 台)若出现这种情况,请同学分析比较多种解决方案中的简易,找到最简方法.问题2:把一些图书分给某班同学阅读,如果每人3本则剩余20本,若每人4本,则还缺少25本,这个班的学生有多少人?思考:对于方程3x+20=4x-25两边都含有x,如何把它向x=a的形式转化?观察由方程3x+20=4x-25到方程3x-4x=-25-20的过程,你能发现什么?把等式的一边的某项变号后移到另一边,叫作移项.移项合并系数化为1巩固练习、应用移项解方程,进一步理解方程的过程例:解下列方程(1)3x+7=32-2x;(2)6x-7=4x-5 ;(3).问题:有一列数,按一定规律排列:1,-3,9,-27,81,-243,…,其中某3个相邻的数的和为-1701,这三个数是多少?解:设第一个数是x,则它后面的一个数是-3x,-3x后面的一个数是9x,根据题意有x+(-3x)+9x=-1701,合并得,7x=1701,系数化为1得,x=-243,所以-3x=729,9x=-2 187.问题2:两种移动话费如表全球通神州行月租费50 无本地通话费0.40元/分0.6元/分(1)一个月内在本地通话200分钟和300分钟,按两种记费方式各需要交多少元?(2)对于某个本地通话时间,会出现两种记费方式相同的情况吗?为什么?对于第(1)个问题,容易得到全球通话费为:50+200×0.4=130元;神州行话费:200×0.6=120元.对于第(2)个问题,可以想到运用方程的思想,设本地通话时间x分钟时两种记费方式相同,则第一种话费为:50+0.4x,第二中记费方式是:0.6x,根据两种记费方式费用相同的相等关系,得到方程0.6x=50+0.4x,然后解方程即可.〔解答〕(1)全球通话费:130元,神州行话费:120元.(2)设累计通话x分时两种记费方式的收费相同,则0.6x=50+0.4x,移项得,0.6x-0.4x=50,合并,0.2x=50,系数化为1,x=250.即:若本地通话250分钟时两种记费方式收费相同.问题3根据以上两个问题的解决过程,你能从中发现什么?步骤:1列方程2解方程3检验。