当前位置:文档之家› 中考数学二轮专题目复习动态几何综合题目

中考数学二轮专题目复习动态几何综合题目

中考数学二轮专题目复习动态几何综合题目
中考数学二轮专题目复习动态几何综合题目

中考数学二轮专题复习

动态几何综合题

【简要分析】

函数是中学数学的一个重要概念.加强对函数概念、图象和性质,以及函数思想方法的考查是近年中考试题的一个显著特点.大量涌现的动态几何问题,即建立几何中元素的函数关系式问题是这一特点的体现.这类题目的三乱扣帽子解法是抓住变化中的“不变”.以“不变”应“万变”.同时,要善于利用相似三角形的性质定理、勾股定理、圆幂定理、面积关系,借助议程为个桥梁,从而得到函数关系式,问题且有一定的实际意义,因此,对函数解析式中自变量的取值范围必须认真考虑,一般需要有约束条件.

【典型考题例析】

例1:如图2-4-37,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0)、B (18,6)、C (8,6),四边形OABC 是梯形.点P 、Q 同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,当这两点有一点到达自己的终点时,另一点也停止运动.

(1)求出直线OC 的解析式.

(2)设从出发起运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围.

(3)设从出发起运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半时,直线PQ 能否把梯形的面积也分成相等的两部分?如有可能,请求出t 的值;如不可能,请说明理由.

分析与解答 (1)设OC 的解析式为y kx =,将C (8,6)代入,得34

k =, ∴3

4

y x =

. (2)当Q 在OC 上运动时,设3(,)4

Q m m ,

依题意有2223()(2)4m m t +=,∴8

5

m t =.

故86

(,)(05)55

Q t t t ≤≤

图2-4-38

当Q 在CB 上运动时,Q 点所走过的路程为2t . ∵CO=10,∴210CQ t =-.

∴Q 点的横坐标为210812t t -+=-. ∴(22,6)(510)Q t t -<≤.

(3)易得梯形的周长为44.

①如图2-4-38,当Q 点在OC 上时,P 运动的路程为t ,则Q 运动的路程为(22)t -. 过Q 作QM ⊥OA 于M ,则3

(22)5

QM t =-?.

∴13

(22)25

OPQ S t t ?=-?,1(1810)6842S =+?=四边形.

假设存在t 值,使得P 、Q 两点同时平分梯形的周长和面积, 则有131

(22)84252

t t =?=?,即2221400t t -+=.

∵22241400?=-?<,∴这样的t 不存在.

②如图2-4-39,当Q 点在BC 上时,Q 走过的路程为(22)t -, 故CQ 的长为:221012t t --=-.

∴1()2

OCQP S CQ OP =+梯形.11(12)636842

2

AB t t =?-+?=≠?, ∴这样的t 也不存在.

综上所述,不存在这样的t 值,使得P 、Q 两点同时平分梯形的周长和面积.

例2: 如图2-5-40,在Rt △PMN 中,∠P=900

,PM=PN ,MN=8㎝,矩形ABCD 的长和宽分别为8㎝和2㎝,C 点和M 点重合,BC 和MN 在一条直线上.令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1㎝的速度移动(图2-4-41),直到C 点与N 点重合为止.设移动x 秒

后,矩形ABCD 与△PMN 重叠部分的面积为y ㎝2

.求y 与x 之间的函数关系式.

N

图2-4-40

N

图2-4-41

分析与解答 在Rt △PMN 中,∵PM=PN ,∠P=900

,∴∠PMN=∠PNM=450

. 延长AD 分别交PM 、PN 于点G 、H .

过G 作GF ⊥MN 于F ,过H 作HT ⊥MN 于T (图2-4-42

).

图2-4-39

∵DC=2㎝.∴MF=GF=2㎝, ∵MT=6㎝.

因此矩形ABCD 以每秒1㎝的速度由开始向右移动到停止,和Rt △PMN 重叠部分的形状可分为下列三种情况:

(1)当C 点由M 点运动到F 点的过程中(0≤

x ≤2).如图2-4-42所示,设CD 与PM 交于点E ,

则重叠部分图形是Rt △MCE ,且MC=EC=x .

∴2

11(02)2

2

y MC EC x x ==

≤≤. (2)当C 点由F 点运动到T 点的过程中(26)x <≤, 如图2-4-43所示,重叠部分图形是直角梯形MCDG . ∵,2MC x MF ==,∴FC=DG=x -2,且DC=2. ∴1()22(06)2

y MC GD DC x x =+=-<≤

N

T 图2-4-44

图2-4-43

M

T

F

(3)当C 点由T 点运动到N 点的过程中(68)x <≤, 如图2-4-44所示,设CD 与PN 交于点Q , 则重叠部分图形是五边形MCQHG . ∵MC x =,∴CN=CQ=8-x ,且DC=2.

∴21

11()(8)12(68)2

2

2

y MN GH DC CN CQ x x =+-=--+<≤.

说明:此题是一个图形运动问题,解答方法是将各个时刻的图形分别画出,将图形 则“动”这“静”,再设法分别求解.这种分类画图的方法在解动态几何题中非常有效,它可帮我们理清思路,各个击破.

【提高训练】

图2-4-42

1.如图2-4-45,在ABCD中,∠DAB=600,AB=5,BC=3,鼎足之势P从起点D出发,

沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所以过的线段与绝无仅有AD、AP所围成图形的面积为y,y随x的函数关系的变化而变化.在图2-4-46中,能正确反映y与x的函数关系的是()

A B C D

2.如图2-4-47,四边形AOBC为直角梯形,

OB=%AC,OC所在直线方程为2

y x

=,平行于OC的直线l为:2

y x t

=+,l是由A点平移到B点时,l与直角梯形AOBC两边所转成的三角形的面积记为S.(1)求点C的坐标.(2)求t的取值范围.(3)求出S与t 之间的函数关系式.

3.如图2-4-48,在△ABC中,∠B=900,点P从点A开始沿AB边向点B以1㎝/秒的速度移动,点Q从点B开始沿BC边向点C以2㎝/秒的速度移动.(1)如果P、Q分别从A、B

同时出

图2-4-47

发,几秒后△PBQ的面积等于8㎝2?(2)如果P、Q分别从A、B同时出发,点P到达点B 后又继续沿BC边向点C移动,点Q到达点C后又继续沿CA边向点A移动,在这一整个移动过程中,是否存在点P、Q,使

图2-4-48

A

△PBQ 的面积等于9㎝2

?若存在,试确定P 、Q 的位置;若不存在,请说明理由.

4.如图2-4-49,在梯形ABCD 中,AB=BC=10㎝,CD=6㎝,∠C=∠D=900

(1)如图2-4-50,动点P 、Q 同时以每秒1㎝的速度从点B 出发,点P 沿BA 、AD 、DC 运动到点C 停止.设P 、Q 同时从点B 出发t 秒时,△PBQ 的面积为1y (㎝2

),求1y (㎝2

)关于t (秒)的函数关系式.

图2-4-49

(2)如图2-4-51,动点P 以每秒1㎝的速度从点B 出发沿BA 运动,点E 在线段CD 上随之运动,且PC=PE .设点P 从点B 出发t 秒时,四边形PADE 的面积为2y (㎝2

).求2y (㎝2

)关于t (秒)的函数关系式,并写出自变量t 的取值范围.

图2-4-51

图2-4-50

B

B

【答案】 1.A

2.(1)C (1,2) (2)-10≤t ≤2

(3)S 与t 的函数关系式为2

15(100)20

S t t t =++-≤≤或211(02)4S t t t =-+≤≤

3.(1)2秒或4秒

(2)存在点P 、Q ,使得△PBQ 的面积等于9㎝2

,有两种情况:

①点P 在AB 边上距离A 为3㎝,点Q 在BC 边上距离点B 为6㎝; ②点P 在BC 边上,距B 点3㎝时,此时Q 点就是A 点 4.(1)当点P 在BA 上运动时,2

1310

y t =

; 当点P 在AD 上运动时,130y =; 当点P 在DC 上运动时,190y t =-+

(2)2

21299025

BPC PEC ABCD y S S S t t ??=--=-+梯形,自变量t 的取值范围是0≤t ≤5.

(本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

初中三年级中考复习平面几何证明题一题多解

初中三年级中考复习平面几何证明题一题多解 如图:已知青AB=AC ,E 是AC 延长线上一点,且有BF=CE ,连接FE 交BC 于D 。求证:FD=DE 。 分析:本题有好多种证明方法,由于新课标主 要用对称、旋转方法证明,但平行四边形的性质、平行线性质等都是证题的好方法,我在这里向初中三年级同学面对中考需对平面几何证明题的证明方法有一个系统的复习和提高。 下边我将自己证明这道题的方法给各位爱好者作以介绍,希望各位有所收获,仔细体会每 中方法的异同和要点,从中能得到提高。我是一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱: wangsj629@https://www.doczj.com/doc/aa5082299.html, . 证法一 ∧≌∠⊥∥△□° 证明:过E 点作EM ∥AB 交DC 延长线于M 点,则∠M=∠B ,又因为∠ACB=∠B ∠ACB=∠ECM=∠M ,所以CE=EM , 又EC=BF 从而EM=BF ,∠BFD=∠DEM 则△DBF ≌△DME ,故 FD=DE ; 证法二 证明:过F 点作FM ∥AE ,交BD 于点M , 则∠1=∠2 = ∠B 所以BF=FM , 又 ∠4=∠3 ∠5=∠E 所以△DMF ≌△DCE ,故 FD=DE 。 证法三 以BC 为对称轴作△BDF 的对称△BDN ,连接NE ,则△DBF ≌△DBN ,DF=DN ,BN=BF , NF ⊥BD ,∠FBD=∠NBD ,又因为∠C=∠FBD 所以∠NBD=∠C 。 BN ∥CE ,CE=BF=BN ,所以四边形BNCE 为平行四边形。故NF ∥BC , 所以NF ⊥NE ,因FN 衩BD 垂直平分,故D 是FE 的中点,所以FD=DE 。(也可证明D 是直角△NEF 斜边的中点)。 证法四: F C A E N E

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

中考数学几何一题多解获奖作品

中考几何母题的一题多解(多变) 一、三角形一题多解 如图:已知AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。 证法一 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过F点作FM∥AE,交BD于点M, 则∠1=∠2 = ∠B 所以BF=FM, 又∠4=∠3 ∠5=∠E 所以△DMF≌△DCE,故 FD=DE。 二、平行四边形一题多解

如图4,平行四边形 ABCD中AD=2AB,E、F在直线AB上,且AE=BF=AB,求证:DF⊥CE. 证法一、易知ΔADF、ΔBCE为等腰三角形,故∠1=∠F, ∠2=∠E,又CD∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。 证法二、如图5,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根据菱形的对角线互相垂直,结论成立。 证法三、如图6,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则ΔAFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF⊥CE。 证法四、如图7,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE 四\一题多解、多变《四边形面积》 1.如图所示,一个长为a,宽为b的矩形,两个阴影都是长为c的矩形与平行 四边形,则阴影部分面积是多少。 解法一 将大矩形进行平移将平行四边形 进行转换。 (a-c)(b-c) 解法二 重叠面积为c的平方,大矩形面积为ab,小矩形为ac,平行四边形为bc,阴影面积为ab-ac-bc+cc=(a-c)(b-c)

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

中考数学复习专题四几何变换压轴题试题

2019-2020 年中考数学复习专题四几何变换压轴题试题 类型一图形的旋转变换 几何图形的旋转变换是近年来中考中的常考点,多与三角形、四边形相结合.解决旋转变换问题,首先要明确旋转中心、旋转方向和旋转角,关键是找出旋转前后的对应点,利用旋转前后两图形全等等性质解题.如图,在菱形 ABCD 中,AB=2,∠BAD=60°,过点 D 作DE⊥AB 于点 E,DF⊥BC 于点 F. 1 (1)如图 1,连接 AC 分别交 DE,DF 于点M,N,求证:MN=AC; 3 (2)如图2,将∠EDF以点D 为旋转中心旋转,其两边DE′,DF′分别与直线AB,BC 相交于点G,P.连接GP,当△DGP的面积等于3 3时,求旋转角的大小并指明旋转方向. 【分析】(1)连接 BD,由∠BAD=60°,得到△ABD为等边三角形,进而证明点 E 是AB 的中点,再根据相似三角形的性质解答;(2)分∠EDF 顺时针旋转和逆时针旋转两种情况,然后根据旋转的性质解题. 1.(xx·潍坊)边长为 6 的等边△ABC 中,点 D,E 分别在 AC,BC 边上,DE∥AB,EC=2 3. (1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点 N.当 CC′多大时,四边形MCND′为菱形?并说明理由. (2)如图 2,将△DEC绕点C 旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为 P. ①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由; ②连接 AP,当 AP 最大时,求AD′的值.(结果保留根号) 图1 图2 2.(xx·成都)如图 1,△ABC中,∠ABC=45°,AH⊥BC于点H,点 D 在AH 上,且 DH=CH,连接 BD. (1)求证:BD=AC; (2)将△BHD 绕点 H 旋转,得到△EHF(点 B,D 分别与点 E,F 对应),连接 AE. ①如图 2,当点 F 落在 AC 上时(F 不与 C 重合),若 BC=4,tan C=3,求 AE 的长; ②如图 3,当△EHF 是由△BHD 绕点H 逆时针旋转 30°得到时,设射线 CF 与AE 相交于点 G,连接 GH,试探究线段 GH 与EF 之间满足的等量关系,并说明理由.

中考数学几何压轴题辅助线专题复习

中考压轴题专题几何(辅助线) 精选1.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.精选2.如图,△ABC中,∠C=60°,∠CAB与∠CBA的平分线AE,BF相交于点D, 求证:DE=DF. 精选3.已知:如图,⊙O的直径AB=8cm,P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC. (1)若∠ACP=120°,求阴影部分的面积; (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,∠CMP的大小是否发生变化若变化,请说明理由;若不变,求出∠CMP的度数。 精选4、如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P, (1)当OA=时,求点O到BC的距离; (2)如图1,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少 (3)若BC边与⊙O有公共点,直接写出OA的取值范围; (4)若CO平分∠ACB,则线段AP的长是多少 . 精选5.如图,已知△ABC为等边三角形,∠BDC=120°,AD平分∠BDC, 求证:BD+DC=AD. 精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图) (1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度. 精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少

中考数学重难点专题讲座动态几何与函数问题含答案(终审稿)

中考数学重难点专题讲座动态几何与函数问题 含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学重难点专题讲座 第八讲动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E. (1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积. (2)当24 t<<时,求S关于t的函数解析式.

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t = . 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论:

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

中考数学十大解题思路之几何变换法-平行变换

中考数学十大解题思路之几何变换法 在数学问题的研究中,常常需要运用到变换法。几何变换就是几何图形在平面上满足某种条件的运动。运用几何变换可以把分散的点、线段、角等已知图形转移到恰当的位置,从而使分散的条件都集中在某个基本图形中,建立起新的联系,从而使问题得以转化解决。 ●平移变换 ●对称变换(示例详见《2013中考数学十大解题思路之几何变换法-对称变换》) ●旋转变换(示例详见《2013中考数学十大解题思路之几何变换法-旋转变换》) 第一节平移变换 所谓“平移变换”是指在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移。图形平移的主要因素是平移方向和平移距离。平移变换后的图形与原图形是全等形,对应线段相等,对应角相等。平移变换法通常用于等腰梯形、正方形、矩形中平行线的辅助线作法及简单图形的平移以及函数图象的平移等有关知识巾,特别是进行图案设计及日常生活问题的解决中。 例题1

例题2 说明:对于已知条件中有共线且相等的线段的几何问题,也可以考虑用平移变换处理。 例题3

例题4 ' '32Y Y X X =-=+说明: 例题 5

例题6 例题7-1 例题7-2

第二节对称变换 对称变换就是将某一图形变到关于直线对称的另一图形的过程,称为该图形关于直线的对称变换。变换后的图形与原图形是全等形,对应线段相等,对应角相等,对称图形上每一对对称点的连线被对称轴垂直平分。对称变换经常用于等腰三角形、等边三角形、特殊平行四边形、梯形及圆等图形中。 第三节旋转变换 在平面内,某一图形绕一个中心旋转若干角度后得到另一个图形,这种变换称为旋转变换。旋转后的图形与原图形是全等形,对应线段相等,对应角相等,旋转变换的对应点到旋转中心的距离相等,任意两条对应线段的夹角等于旋转角。 旋转变换法主要用途是把分散元素通过旋转集中起来,从而为解题创造条件,旋转变换法经常用于等腰三角形、等边三角形及正方形等图形中。

人教版_2021年中考数学二轮复习--几何综合题(附答案)

2021年中考数学二轮复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构 造基本图形. ⑵掌握常规的证题方法和思路. ⑶运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运 用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点. (1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长. 解:(1)证明:连接OD,AD. AC是直径, ∴AD⊥BC.⊿ABC中,AB=AC, ∴∠B=∠C,∠BAD=∠DAC. 又∠BED是圆内接四边形ACDE的外角, ∴∠C=∠BED. 故∠B=∠BED,即DE=DB. 点F是BE的中点,DF⊥AB且OA和OD是半径, 即∠DAC=∠BAD=∠ODA.

故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2. 点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行. 【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上, 点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。 证明:因为∠ABD=∠ACD,∠BDE=∠CDE 而∠BDE=∠AB D +∠BAD,∠CDE=∠ACD+∠CAD 所以 ∠BAD=∠CAD,而∠ADB=180°-∠BDE ∠ADC=180°-∠CDE,所以∠ADB =∠ADC 在△ADB 和△ADC 中, ∠BAD=∠CAD AD =AD ∠ADB =∠ADC 所以 △ADB≌△ADC 所以 BD =CD 。 (注:用“AAS”证三角形全等,同样给分) A B C D E

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

几何变换综合题2018版中考数学压轴题

一、选择题 1.(2017四川省达州市,第9题,3分)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为() A.2017πB.2034πC.3024πD.3026π 2.(2017临沂,第14题,3分)如图,在平面直角坐标系中,反比例函数 k y x =(x>0)的图象与边长是 6的正方形OABC的两边AB,BC分别相交于M,N两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是() A.62B.10C.226D.229 3.(2017新疆乌鲁木齐市,第10题,4分)如图,点A(a,3),B(b,1)都在双曲线 3 y x =上,点C, D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A.52B.62C.21022 +D.82 4.(2017湖北省恩施州,第12题,3分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,

直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E 关于y轴对称,抛物线2 y ax bx c =++过E、B、C三点,下列判断中: ①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有() A.5B.4C.3D.2 5.(2017湖北省咸宁市,第8题,3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为() A.(3 2 ,0)B.(2,0)C.( 5 2 ,0)D.(3,0) 6.(2017辽宁省营口市,第8题,3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函 数 k y x 的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()

2020年中考数学 一题多解

一题多解 探究数学问题解决的新思路,对于学生发散性思维和创造性思维的培养是十分有利 的。 下面一道例题,是从多维度角度出发来探究解题新思路的: 例:如图(1)在梯形ABCD 中,AB ∥CD ,四边形ACED 是平行四边形,延长DC 交BE 于F. 求证:EF=FB 分析:这个题目本身不难,求证也容易,但通过对题设和结论的深入挖掘与探索,我们可以得出许多好的证法,总结如下: I E F B C A 证明一:如图所示,作BQ∥AD,交DF 延长线于Q 点,则四边形ABQD 是平行四边形,从而BQ=AD ,再由题设可证△CEF≌△QBF, 得证EF=FB. Q I E F B C A 证明二:如左图所示:作FM∥DA 交AB 于M ,则四边形ADFM 是平行四边形,从而FM=DA.再证△CEF≌△MFB,从而结论可得证. M I E F B C A 证明三:作CN∥EB 交AB 于N ,则四边形CNBF 是□,从而CN=FB. 再证:△ANC≌△DFE,可得CN=EF ,即EF=FB. N I E F B C A 证明四:作DP ∥FB 交AB 于P ,证明△ADP ≌△CEF ,从而得出结论. P I E F B C A

证明五:延长EC 交AB 于G ,则四边形ADCG 是□,∴CE=AD=GC ,即C 是EG 中点.又CF ∥GB ,∴F 是EB 中点,结论得证. G I E F B C A 证明六:连结AE 交CD 于O 点,则O 是AE 中点,又OF ∥AB , ∴F 是AB 中点,得证. I E F B C A 证明七:延长ED 交BA 延长线于H 点,则HACD 是□ , ∴CA=DH=ED ∴D 是EH 中点.又DF ∥HB ∴F 是EB 中点,得证. H I E F B C A 证明八:作ES ∥CD 交AD 延长线于S ,则CDSE 是□ ∴DS=CE=AD, ∴D 是AS 中点.又SE ∥CD ∥AB ∴F 是EB 中点,得证. S I E F B C A 证明九:在证明一作的辅助线基础上,连结EQ ,则可得ECBQ 是□,从而F 是□ECBQ 对角线EB 的中点。 总之,上述不同证法的辅助线可归结为以下两种: ①作平行线构成平行四边形和全等三角形进行等量代换。 ②作平行线,由题设产生中点,通过平行线等分线段定理的推论得出结论。 这其中,其实蕴含了平面几何的平移变换和旋转变换的数学思想。

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

相关主题
文本预览
相关文档 最新文档