轨迹与方程
- 格式:ppt
- 大小:499.00 KB
- 文档页数:17
求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是高中数学中一个重要的话题,不仅是对数学知识综合运用的考验,也是培养学生逻辑思维和解决问题能力的一个重要环节。
在学习求轨迹方程的过程中,学生需要掌握一定的方法和技巧,同时要注意对不同类型的题目进行分类和分析,以便能够正确地找到轨迹方程。
一、思路和方法求轨迹方程的基本思路是根据给定的条件,建立方程,然后通过逻辑推理和代数计算,最终得到表达轨迹的方程。
在具体进行求解的过程中,我们可以采用以下几种方法:1. 笛卡尔坐标系法在求轨迹方程的过程中,我们常常需要用到二维平面坐标系。
通过设定坐标轴,建立直角坐标系,将问题中的各个点的坐标表示成(x,y),然后根据给定条件进行分析,建立方程,最终得到轨迹方程。
2. 参数法有时候通过引入参数,可以简化问题的解决过程。
我们可以设一个参数t,用其作为辅助变量,来表达轨迹上各点的位置关系。
通过对参数的变化范围和步骤进行分析,最终得到轨迹方程。
3. 抽象化方法对于一些复杂的问题,我们可以通过抽象化的方法来求解轨迹方程。
将问题转化成一个更加简单的形式,然后进行分析和计算,最终得到轨迹方程。
二、对应的题型在求轨迹方程的过程中,我们会遇到各种各样的题目,不同的题目需要采用不同的方法和技巧进行求解。
下面列举一些常见的求轨迹方程的题型:1. 直线的轨迹方程有时候给定直线上的一个点和直线的方向向量,我们需要求直线的轨迹方程。
这时可以通过点斜式或者两点式求解。
给定圆心和半径,求圆的轨迹方程。
可以通过圆的标准方程(x-a)²+(y-b)²=r²来求解。
有时候会给定一组参数方程,我们需要求这些参数方程表示的轨迹方程。
可以通过把参数方程组合起来,得到关于自变量的函数表达式,最终得到轨迹方程。
第二篇示例:求轨迹方程是一种常见的数学问题,涉及到解析几何和函数方程的知识。
在数学学习中,经常会遇到求轨迹方程的题目,需要运用相关的方法和思路来解决。
2023年4月上半月㊀学法指导㊀㊀㊀㊀求动点轨迹方程最简捷的四种方法◉安徽省全椒县城东中学㊀殷宏林㊀㊀摘要:求符合某种条件的动点轨迹方程,实际上就是利用已知的点的坐标之间的运动规律去寻找变量间的关系.求轨迹方程的常规思路,就是想方设法地把题目中的几何问题转化为代数方程问题来解决.关键词:参数法;复数法;交轨法;相关点法㊀㊀求动点的轨迹方程既是高中数学教学大纲要求掌握的主要内容,也是近年来高考考查的高频考点[1].这类题型由于涉及到的知识点多,综合性较强,考查的范围广,分值较高,因此学习和掌握求轨迹方程的方法与技巧,已成为考生在高考中夺取高分的必要条件.轨迹是指点的集合,而方程是实数对的集合.二者看似毫不相干,实则它们之间是可以沟通转化的,求轨迹方程运用的就是这种转化思想.由于动点运动规律所给出的条件不同,因此求动点轨迹方程的方法也就不同[2],但其中最简捷㊁最实用的有以下四种.1参数法当所求动点满足的几何条件不易得出,也看不出明显的相关性时,如果经过仔细观察,发现这个动点的运动常常会受到某个变量(时间㊁角度㊁斜率㊁比值等)的制约,那么我们就可以用这个变量作参数,建立轨迹的参数方程,这就是参数法.图1例1㊀动直线l 与单位圆交于不同的两点A ,B ,当l 总保持平行于直线y =2x 的条件下移动时,求弦A B 中点轨迹的方程.解:由l 平行于直线y =2x ,可设l 的方程为y =2x +b (b 为参数),将其代入单位圆的方程x 2+y 2=1中,整理得5x 2+4b x +b 2-1=0.如图1,因为l 与单位圆有两个交点,所以Δ=16b 2-20b 2+20=20-4b 2>0,则-5<b <5.设弦A B 的中点为P (x ,y ),根据韦达定理可知x =x 1+x 22=-25b ,代入l 的方程中,得y =b5.所以中点P 的轨迹方程为x =-25b ,y =b 5,ìîíïïïï其中-5<b <5.消去参数b ,得x +2y =0(-255<x <255),此即为弦A B 中点轨迹的普通方程,其轨迹为单位圆中的一条线段.思路与方法:从本题的解题思路可以看出以下几点.①利用几何直观即可判断出动点轨迹为过原点且垂直于y =2x 的含于单位圆中的线段;②当动点位置随着直线的平行移动而变化时,常选择截距作为参数较方便;③在求轨迹方程时,只要参数选择得当,常能使问题获得更简捷的解法.2复数法有些问题可以由复数的几何意义将动点和已知点表示成复数式,然后经过复数运算转化为动点的轨迹,这就是复数法.当涉及有向线段绕定点旋转,长度伸缩变化,或可用复数模的形式给出坐标间关系等问题时,运用复数法求解最简捷.图2例2㊀如图2,以抛物线y 2=4x 的焦半径F B 为对角线作正方形F A B C (顶点按逆时针方向顺序排列).求顶点C 的轨迹方程.解:因为抛物线y 2=4x 中焦参数p =2,所以焦点坐标为F (1,0).设动点C (x ,y ),其相关点B (x ᶄ,yᶄ).把x 轴看作实轴,y 轴为虚轴,则在复平面上,有z C =x +y i ,z B =x ᶄ+y ᶄi ,z F =1,所以z F Cң=(x -1)+y i ,z F Bң=(x ᶄ-1)+y ᶄi .由øB F C =π4,F B =2F C ,得z F B ң=z F C ңˑ2c o s (-π4)+i s i n (-π4)éëêêùûúú,即(x ᶄ-1)+y ᶄi=[(x -1)+y i ] 2(22-22i )=[(x -1)+y ]+[y -(x -1)]i .所以x ᶄ-1=x -1+y ,y ᶄ=y -x +1,{即x ᶄ=x +y ,yᶄ=y -x +1.{因为点B 在y 2=4x 上,所以(yᶄ)2=4x ᶄ.故(y -x +1)2=4(x +y ).整理即得动点C 的轨迹方程为14Copyright ©博看网. All Rights Reserved.学法指导2023年4月上半月㊀㊀㊀x 2+y 2-2x y -6x -2y =0.思路与方法:本题通过建立复平面,利用复数加法和乘法的几何意义,求出动点对应的复数表达式,然后通过比较实部㊁虚部求得动点的轨迹方程.3交轨法在求动点轨迹时,有时会遇到求两动曲线交点的轨迹问题.这类问题可以通过解方程组求出含参数的交点坐标,再消去参数得出所求轨迹的方程,这就是交轨法.图3例3㊀在直角坐标系中,矩形O A B C 的边O A =a ,O C =b ,点D 在A O 的延长线上,D O =a ,设M ,N 分别是O C ,B C 上的动点,使O M ʒM C =B N ʒN C ʂ0,求直线DM 和A N 的交点P 的轨迹方程.解:如图3,建立平面直角坐标系,则各点的坐标分别为A (a ,0),C (0,b ),D (-a ,0),B (a ,b ),设P (x ,y ).设O M ʒM C =B N ʒN C =λ(ʂ0).由定比分点公式,得M (0,λb 1+λ),N (a1+λ,b ).根据两点式,可得直线DM ,A N 的方程分别为㊀㊀㊀㊀y =λba (1+λ)(x +a ),①㊀㊀㊀㊀y =-b (1+λ)λa(x -a ).②①ˑ②,得y 2=-b 2a 2(x 2-a2),即x 2a 2+y 2b2=1(0<x <a ,0<y <b ).故点P 的轨迹方程为x 2a 2+y 2b2=1其中0<x <a ,0<b <y .思路与方法:本题中由于动点P 为动直线DM ,A N 的交点,两动直线均有一定点(D ,A )一动点(M ,N ),而两动点又满足O M ʒM C =B N ʒN C 这一比值条件,所以设此比值为参数较为方便.从本题的求解过程我们发现,运用交轨法求解时,可以不用求交点的坐标,只要能消掉参数,得出点P 的坐标间的关系即可.这也充分展示了运用交轨法求轨迹方程的便捷性与实用性.4相关点法在求动点轨迹方程的过程中,有时动点满足的条件不方便用等式列出,但动点是随着另外相关点而运动的.如果相关点所满足的条件能够看出,或可分析出,这时就可以用动点的坐标来表示相关点的坐标,根据相关点所满足的方程就能够求得动点的轨迹方程,这就是相关点法.图4例4㊀已知定点O (0,0)和A (6,0),M 为O A 的中点,以O A为一边作菱形O A B C ,M B 与A C 交于点P ,当菱形变动时,求点P 的轨迹方程.解:如图4,设动点P (x ,y ),其相关点B (x ᶄ,yᶄ).由A (6,0),得M (3,0).易知M P P B =12.所以由x =3+12x ᶄ1+12,y =0+12y ᶄ1+12,ìîíïïïïïïïïïï得x ᶄ=3x -6,y ᶄ=3y .{由A B =O A =6,可得(x ᶄ-6)2+(yᶄ-0)2=6.即(3x -6-6)2+(3y -0)2=6.整理,得(x -4)2+y 2=4.因为点P 不可能在x 轴上,所以点P 的轨迹方程为(x -4)2+y 2=4(y ʂ0).思路与方法:本题分析已知点与动点间的关系时,找出相关点是关键的一步.在图4中,若连接O B ,则可知P 为әA B O 的重心,所以选B 为相关点更方便;当然也可由A C 平分øO A B ,推知|B P ||PM |=2.事实上,求已知曲线关于某定点(或定直线)的中心对称(或轴对称)的曲线方程时,通常选择相关点法较简捷[3].5结论从上述典型实例可以看出,求动点轨迹方程的方法虽然很多,但上述四种方法最简捷,也非常实用,值得学生借鉴.当然,在求轨迹方程的过程中,要注意以上方法的灵活运用.对同一问题,若几种方法都可解决时,应择优选用;对较复杂的问题,有时需将两种或两种以上的方法结合起来使用.参考文献:[1]钟载硕.求动点轨迹方程八法[J ].理科考试研究:高中版,2004(3):10G14.[2]张黎青.求动点轨迹方程的常用方法介绍[J ].新高考(高二语数外),2010(2):33G35.[3]陆钧.浅谈求动点轨迹方程[J ].理科考试研究:高中版,2006(11):12G13.Z 24Copyright ©博看网. All Rights Reserved.。
高(Gao)三数学轨迹方程50题及答案求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数(Shu)法、交轨法,待定(Ding)系数法。
(1)直(Zhi)接法(Fa)直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程.(6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=B 、x 2+y 2=C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41)11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A、(x-2)2+(y+4)2=16B、(x-2)2+4(y+2)2=16 (0)yC、(x-2)2-(y+4)2=16D、(x-2)2+4(y+4)2=1612、椭(Tuo)圆(Yuan)C与椭(Tuo)圆关于(Yu)直线x+y=0对(Dui)称,椭圆C的方程是()A、 B、C、 D、13、设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为 ( )A. B.C. D.14、中心在原点,焦点在坐标为(0,±5)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为,则椭圆方程为 ( )15、已知⊙O:x2+y2=a2, A(-a, 0), B(a, 0), P1, P2为⊙O上关于x轴对称的两点,则直线AP1与直线BP2的交点P的轨迹方程为()A、x2+y2=2a2B、x2+y2=4a2C、x2-y2=4a2D、x2-y2=a2二、填空题:16、动圆与x轴相切,且被直线y=x所截得的弦长为2,则动圆圆心的轨迹方程为。
第二章轨迹与方程本章在上章建立的空间点与径向量及有序实数组的对应基础上,先介绍平面曲线的方程,然后过渡到曲面与空间曲线方程的研究,从而建立轨迹与方程的对应。
§2.1平面曲线的方程教学目的:正确理解空间曲线与曲线方程的意义,并初步熟悉根据已知条件建立空间曲线方程的基本方法.教学重难点:正确的理解空间曲线方程的意义, 并掌握根据已知条件建立空间曲线方程.教学过程:一.曲线的一般方程1.平面曲线(包括直线): 具有某种特征性质的点的集合,即:①曲线上的点都具有这些性质;②具有这些性质的点都在曲线上.反映: 曲线上的点)(yx满足一定的互相制约的条件.一般用方程),F或x(y,y=来表达.f)(x2. 定义2.1.1 当平面上取定了坐标后,如果一个方程与一条曲线有着关系: (1) 满足方程的)x必是曲线上某个点的坐标; (2) 曲线上任何一点的坐标满足这个(y,方程,那么这个方程就叫做这条曲线的方程,而这条曲线叫做这个方程的图形.由上定义可得:①研究曲线的几何问题转化为研究其方程的代数问题.②已知曲线,要求它的方程,实际上就是在给定的坐标下,将这条曲线上的点的特征性质,用关于曲线上的点的两个坐标yx,的方程来表达.例1求圆心在原点,半径为R的圆的方程.解: 根据圆的定义,圆上任意点)(yM在圆上的充要条x,M的特征性质,即)(y,x=件是M到圆心O的距离等于半径R,即R应用两点距离公式,得 R y x =+22 (1) 两边平方得 222R y x =+ (2) 由于方程(2)与(1)通解,所以(2)即为所求圆的方程.完全类似的,可以求圆心在),(b a 半径为R 的圆的方程是:222)()(R b y a x =-+-.注: 求曲线的方程,有时在化简过程中,会增添不属于给定条件的内容, 此时,必须从方程的开始检查一下,把方程中代表那些不符合给定条件的点限制掉.例2已知两点)2,2(--A 和)2,2(B ,4=-的动点M 的轨迹方程.解: 动点M 4=-用点的坐标来表达就是,4)2()2()2()2(2222=-+--+++y x y x (3) 移项得,4)2()2()2()2(2222+-+-=+++y x y x 两边平方整理得 ,2)2()2(22-+=-+-y x y x (4) 再两边平方整理得 2=xy (5) 因为方程(2)和(3)同解,而方程(4)与(3)却不同解,但当方程(4)附加了条件02≥-+y x , 即2≥+y x 后,方程(4)与(3)同解,从而方程(4)与(3)同解,所以方程)2(,2≥+=y x xy为所求动点M 的轨迹方程.二.曲线的参数方程当动点按照某种规律运动时,与它对应的径向量也将随着时间t 的不同而改变(模与方向的改变),这样的径向量,称为变向量,记做(t r .如果变数)(b t a t ≤≤的每个值对应于变向量的一个完全确定的值(模与方向))(t r ,那么就说是变数t 的向量函数,并把它记做:=(t r , )(b t a ≤≤ (6)设平面上取定的标架为},;{21e e O ,向量就可以用它的分量来表达,这样的向量函数(6)就可以写为 21)()((e t y e t x t r += )(b t a ≤≤ (7)定义2.1.2 若取)(b t a t ≤≤的一切可能取的值,如图2-2,由(7)表示的径向量(t r 的终点总在一条曲线上;反过来,在这条曲线上的任意点,总对应着以它为终点的径向量,而这径向量可由t 的某一值)(00b t a t ≤≤通过(7)完全决定,那么就把表达式(7)叫做曲线的向量式参数方程,其中t 是参数。
根轨迹方程与特征方程的区别摘要:一、引言二、根轨迹方程与特征方程的定义及关系1.根轨迹方程2.特征方程三、根轨迹方程与特征方程的区别1.本质区别2.适用范围四、实际应用案例1.线性系统分析2.非线性系统分析五、总结与展望正文:一、引言在控制系统理论和信号与系统领域,根轨迹方程与特征方程是两个重要的概念。
它们在系统分析中起着至关重要的作用,然而,许多初学者对这两个概念的区别并不十分清楚。
本文将详细阐述根轨迹方程与特征方程的区别,并介绍它们的实际应用。
二、根轨迹方程与特征方程的定义及关系1.根轨迹方程根轨迹方程是一种描述线性系统输入输出关系的方程,它通过求解系统的传递函数,得到系统在不同频率下的稳定状态。
根轨迹法是一种图形化方法,它通过绘制系统的根轨迹,直观地表示系统在不同频率下的性能。
2.特征方程特征方程是线性系统的一种数学表示,它描述了系统状态方程的稳定性。
特征方程是通过求解系统的矩阵方程得到的,它可以用来分析系统的稳定性和动态性能。
三、根轨迹方程与特征方程的区别1.本质区别根轨迹方程关注的是系统的输入输出关系,它反映了系统在不同频率下的稳定状态。
而特征方程关注的是系统状态方程的稳定性,它反映了系统内部状态的变化。
2.适用范围根轨迹方程适用于分析线性时不变系统,它可以通过绘制根轨迹图来评估系统的性能。
特征方程适用于分析线性时变系统,它可以通过求解系统的特征值和特征向量来评估系统的稳定性。
四、实际应用案例1.线性系统分析在线性系统分析中,根轨迹方程可以用来评估系统的稳定性和动态性能。
通过分析根轨迹图,可以了解系统在不同频率下的响应特性,从而优化系统设计。
2.非线性系统分析在非线性系统分析中,特征方程可以用来评估系统的稳定性和动态性能。
通过求解非线性系统的特征方程,可以得到系统的稳定域,从而指导系统的设计和控制。
五、总结与展望本文从根轨迹方程与特征方程的定义、区别和应用等方面进行了详细阐述。
通过对这两个概念的深入分析,有助于初学者更好地理解控制系统理论和信号与系统领域的基本概念,为实际工程应用提供理论支持。
轨迹方程的求法一、直接法求轨迹方程的一般步骤:“建、设、限、代、化” 1、建立恰当的坐标系; 2、设动点坐标(),x y ;3、限制条件列出来(如一些几何等量关系);4、代入:用坐标代换条件,得到方程(),0f x y =;5、化简(最后要剔除不符合条件的点).例1、过点()2,4P 作两条互相垂直的直线1l 、2l ,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.巩固训练1:平面内动点M 与两定点()1,0A -、()2,0B 构成MAB ∆,且2MBA MAB ∠=∠,求动点M 的轨迹方程.巩固训练2:已知点A 、B 的坐标分别为()5,0-、()5,0,直线AM 、BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.巩固训练3:已知直角坐标平面上的点()2,0Q 和圆221C x y +=:,动点M 到圆C 的切线长与MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程.二、定义法:如果动点的轨迹满足某已知曲线的定义,则可以依据定义求出轨迹方程.如圆、椭圆、双曲线、抛物线等. 规律可寻:(1)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.例2、(1)求与圆221:(3)1C x y ++=外切,且与222:(3)81C x y -+=内切的动圆圆心P 的轨迹方程.(2)已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程.巩固训练1:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆221:42F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练2:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆2211:24F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练3:在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,求点M 的轨迹方程.巩固训练4:已知点1F 、2F 分别是椭圆22:171617C x y +=的两个焦点,直线1l 过点2F 且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段1GF 的垂直平分线交2l 于点H ,求点H 的轨迹方程.巩固训练5:在极坐标系Ox 中,直线l 的极坐标方程为sin 2ρθ=,点M 是直线l 上任意一点,点P 在射线OM 上,且满足4OP OM ⋅=,记点P 的轨迹方程为C ,求曲线C 的极坐标方程.三、相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. “相关点法”的基本步骤:(1)设点:设被动点的坐标为(),x y ,主动点的坐标为()00,x y ;(2)求关系式:求出两个动点坐标之间的关系式()()00,,x f x y y g x y =⎧⎪⎨=⎪⎩; (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例3、已知点P 是圆22:4C x y +=上任意一点,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,求线段PD 的中点M 的轨迹方程.巩固训练1:已知在ABC ∆中,()2,0A -,()0,2B -,第三个顶点C 在曲线231y x =-上动点,求ABC ∆的重心的轨迹方程.巩固训练2:已知点P 是圆22:25C x y +=上任意一点,点D 是点P 在x 轴上的投影,点M 为PD 上一点,且满足45MD PD =,当点P 在圆上运动时,求点M 的轨迹方程.四、参数法:如果动点(),P x y 的坐标之间的关系不容易找,可以考虑将,x y 用一个或几个参数表示,最后消参数,得出,x y 之间的关系式,即轨迹方程.常用参数有角度θ、直线的斜率、点的横、纵坐标,线段的长度等.例4、过抛物线24y x =的顶点O 引两条互相垂直的直线分别与抛物线相交于,A B 两点,求线段AB 的中点P 的轨迹方程.巩固训练1:设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于,A B ,O 是坐标原点,直线l 的动点P 满足()12OP OA OB =+,当直线l 绕点M 旋转时,求点P 的轨迹方程.五、交轨法:写出动点所满足的两个轨迹方程后,组成方程组分别求出,x y ,再消去参数,即可求解,这种方法一般适合于求两条动直线交点的轨迹方程.例5、设1A 、2A 是椭圆22195x y +=的长轴的两端点,1P 、2P 是垂直于12A A 的弦的端点,求直线11A P 与22A P 的交点的轨迹方程.巩固训练1:已知双曲线2212x y -=的左、右顶点分别为1A 、2A ,点()11,P x y 、()11,Q x y -是双曲线上不同的两个动点,求直线1A P 与2A Q 的交点的轨迹E 的方程.。
几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。
典型高考数学试题解读与变式2018版考点37 轨迹与轨迹方程【考纲要求】正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直接法、定义法、待定系数法、相关点法、参数法等 【命题规律】轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题. 【典型高考试题变式】 (一)求点的轨迹方程例1.【2017新课标卷】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【分析】(1)设出点P 的坐标,利用2=NP NM 得到点P 与点M 坐标之间的关系即可求得轨迹方程为222x y +=;(2)利用1OP PQ ⋅=可得坐标之间的关系:2231m m tn n --+-=,结合(1)中的结论整理可得OQ PF ⋅=0,即⊥OQ PF ,据此即可得出结论.(2)由题意知()1,0F -.设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-,()(),,3,OP m n PQ m t n ==---. 由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以OQ PF ⋅=0,即⊥O Q P F .又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系F (x ,y )=0. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程. (4)代入(相关点)法:动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而运动,常利用代入法求动点P (x ,y )的轨迹方程.【变式1】【2016新课标卷】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(2)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22ba Rb Q a P b b B a A +---. 记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x y b a . 而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y .【变式2】在平面直角坐标系中,已知A 1(-2,0),A 2(2,0),P (x ,y ),M (x,1),N (x ,-2),若实数λ使得λ2OM ·ON =1A P ·2A P (O 为坐标原点).求P 点的轨迹方程,并讨论P 点的轨迹类型.【解析】OM =(x,1),ON =(x ,-2), 1A P =(x +2,y ),2A P =(x -2,y ).∵λ2OM ·ON =1A P ·2A P , ∴(x 2-2)λ2=x 2-2+y 2, 整理得(1-λ2)x 2+y 2=2(1-λ2).①当λ=±1时,方程为y =0,轨迹为一条直线; ②当λ=0时,方程为x 2+y 2=2,轨迹为圆; ③当λ∈(-1,0)∪(0,1)时,方程为x 22+y 2-λ2=1,轨迹为中心在原点,焦点在x 轴上的椭圆;④当λ∈(-∞,-1)∪(1,+∞)时,方程为x 22-y 2λ2-=1,轨迹为中心在原点,焦点在x 轴上的双曲线. (二)求点的轨迹例2. 如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A B C 运动时,在映射f 的作用下,动点P ′的轨迹是( )【答案】D【解析】当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),∴y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),∴y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 所示,故选D.【名师点津】轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).【变式1】已知△ABC 的两个顶点A ,B 的坐标分别是(0,-1),(0,1),且AC ,BC 所在直线的斜率之积等于m (m ≠0).求顶点C 的轨迹E 的方程,并判断轨迹E 为何种圆锥曲线.【数学思想】①数形结合思想. ②分类讨论思想. ③转化与化归思想. 【温馨提示】区分“求轨迹”与“求轨迹方程”的不同.一般来说,若遇“求轨迹方程”,求出方程就可以了;若是“求轨迹”,求出方程还不够,还应指出方程所表示的曲线的类型,有时候,问题仅要求指出轨迹的形状,如果应用“定义法”求解,可不求轨迹方程. 【典例试题演练】1. 已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1B.x 248+y 264=1C.x 248-y 264=1 D.x 264+y 248=1【答案】D【解析】设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16, ∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8, 故所求的轨迹方程为x 264+y 248=1.2. 已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP ·QF =FP ·FQ ,则动点P 的轨迹C 的方程为( )A .x 2=4y B .y 2=3x C .x 2=2y D .y 2=4x【答案】A【解析】设点P (x ,y ),则Q (x ,-1).∵QP ·QF =FP ·FQ ,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y , ∴动点P 的轨迹C 的方程为x 2=4y .3. 已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0【答案】D【解析】设Q (x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0得Q 点的轨迹方程为2x -y +5=0. 4. 已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则动点P 的轨迹是( )A .直线B .圆C .椭圆D .双曲线【答案】B【解析】设P (x ,y ),则x +2+y 2=2x -2+y 2,整理得x 2+y 2-4x =0,又D 2+E 2-4F =16>0,所以动点P 的轨迹是圆.5. 平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线【答案】A【解析】设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.6. 已知A ,B 为平面内两定点,过该平面内一动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线【答案】C7. 已知F 1,F 2分别为椭圆C :x 24+y 23=1的左,右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0)C.9x 24+3y 2=1(y ≠0) D .x 2+4y23=1(y ≠0)【答案】C【解析】依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎪⎨⎪⎧x =x 0-1+13,y =y3.即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y .代入x 204+y 203=1得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0).8. 设双曲线x 2a 2-y 2b2=1(a >0,b >0)两焦点为F 1,F 2,点Q 为双曲线上除顶点外的任一点,过焦点F 1作∠F 1QF 2的平分线的垂线,垂足为P ,则P 点的轨迹是( )A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.圆的一部分【答案】D【解析】设点Q 在双曲线的右支上(如图),延长QF 2,交F 1P 的延长线于点M ,连接OP ,则有||QM =||QF 1,P 为F 1M 的中点,∴||PO =12||F 2M =12(||QM -||QF 2)=12(||QF 1-||QF 2)=a ,且P 点不能落在x 轴上,故P 点的轨迹是圆的一部分.故选D.9. 已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是________.【答案】椭圆【解析】由题意可知|PM |+|PN |=|MA |=6.又M (-2,0),N (2,0),∴动点P 的轨迹是椭圆. 10.【2016广东省湛江市模拟】已知圆22:9O x y +=,点()2,0A ,点P 为动点,以线段AP 为直径的圆内切于圆O ,则动点P 的轨迹方程是______.【答案】15922=+y x11. 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).则动点P 的轨迹C的方程为____________________.【答案】x 2-y 2λ=1(λ≠0,x ≠±1)【解析】由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ, 整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).12. 在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于点D ,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为________.【答案】x 22-y 22=1(x >2)【解析】以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E 、F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |,|AE |=|AF |.∴|AB |-|AC |=22,∴点A 的轨迹为以B ,C 为焦点的双曲线的右支(y ≠0),且a =2,c =2,∴b =2, ∴顶点A 的轨迹方程为x 22-y 22=1(x >2).13. 设A 1,A 2是椭圆x 29+y 24=1的长轴左、右顶点,P 1,P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2的交点P 的轨迹方程为________.【答案】x 29-y 24=1.【解析】设P (x ,y ),P 1(x 1,y 1),P 2(x 1,-y 1),易求A 1(-3,0),A 2(3,0), 则直线A 1P 1的方程为y =y 1x 1+3(x +3),①直线A 2P 2的方程为y =-y 1x 1-3(x -3),② 由①②得y 2=-y 21x 21-9(x 2-9).③∵点P 1在椭圆上,∴x 219+y 214=1,得y 21=-4(x 21-9)9,即y 21x 21-9=-49.④把④代入③整理得x 29-y 24=1,这就是点P 的轨迹方程.14. 平面内与两定点距离之比为定值)1(≠m m 的点的轨迹是________.【答案】圆15.【2017广西南宁、梧州联考】已知点C 的坐标为()1 0,,A ,B 是抛物线2y x =上不同于原点O 的相异的两个动点,且0OA OB ⋅=.(1)求证:点 A C B ,,共线;(2)若()AQ QB R λλ=∈,当0OQ AB ⋅=时,求动点Q 的轨迹方程.(2)由题意知,点Q 是直角三角形AOB 斜边上的垂足,又定点C 在直线AB 上,90OQB ∠=︒,(3)设动点() Q x y ,,则() OQ x y =,,()1 CQ x y =-,,又0OQ CQ ⋅=,所以()210x x y -+=,即()2211024x y x ⎛⎫-+=≠ ⎪⎝⎭,动点Q 的轨迹方程为()2211024x y x ⎛⎫-+=≠ ⎪⎝⎭.。