轨迹方程的五种求法例题
- 格式:docx
- 大小:87.04 KB
- 文档页数:3
轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
1、求曲线方程的一般步骤:建系、设点、列式、化简、确定点的范围.2、求动点轨迹方程的几种方法:(1)直接法:(2)定义法:(3)相关点代入法:(4)待定系数法;(5)交轨法;(6)参数法:(7)点差法: 典型例题一:直接法: 此类问题重在寻找数量关系。
当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.二:定义法:熟悉一些基本曲线的定义是用定义法求曲线方程的关键.1)圆:到定点的距离等于定长;2)椭圆:到两定点的距离之和为常数(大于两定点的距离);3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离);4)抛物线:到定点与定直线距离相等.(定点不在定直线上).例1.已知点()1,0F ,点A 是直线1:1l x =-上的动点,过A 作直线2l ,12l l ⊥,线段AF 的垂直平分线与2l 交于点P .求点P 的轨迹C 的方程.例2: 一条线段AB 的长等于a 2,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点M 的轨迹方程?例3:已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.求曲线Γ的方程.例4:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
5:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支三:相关点代入法 “相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例1:点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )例2:已知抛物线2 4C y x =: 焦点为F .点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 轨迹方程.3.已知A 为曲线2:410C x y 上的动点,定点(2,0)M ,若2AT TM ,求动点T 的轨迹方程.四、交轨法 1.求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程. 2.若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的轨迹方程,也可以解方程组先求出交点坐标的参数方程,再化为普通方程.例:两条直线10x my --=和10mx y +-=的交点的轨迹方程是( )五、待定系数法六、参数法此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
求曲线轨迹方程的五种方法The final edition was revised on December 14th, 2020.求曲线轨迹方程的五种方法一、直接法如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。
例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。
解:设点P的坐标为(x,y),则A(2x,0),B(0,2y),由|AB|=2a得2)2x-2(y+-=2a20()0化简得x2+y2=a,即为所求轨迹方程点评:本题中存在几何等式|AB|=2a,故可用直接法解之。
二、定义法如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。
例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是()A、直线B、椭圆C、双曲线D、抛物线解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。
解法二:设P点坐标为(x,y),则|x+4|-22-=2x+(y)2当x ≥-4时,x+4-22)2(y x +-=2化简得当时,y 2=8x当x <-4时,-x-4-22)2(y x +-=2无解所以P 点轨迹是抛物线y 2=8x点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。
三、 代入法如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。
例3 P 在以F 1、F 2为焦点的双曲线191622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。
轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。
设点。
列式。
化简。
说明等,圆锥曲线标准方程的推导。
1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。
26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。
轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。
高考数学中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x PB PA =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解:),3(),,2(y x y x --=---= ,2)3)(2(y x x +---=⋅∴226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x . 三、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点P 的轨迹方程,称之代入法,也称相关点法、转移法.例3 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN 在直线上,.22211=-+-∴y y x x ① 又l PN ⊥得,111=--x x y y 即011=-+-x y y x .②联解①②得⎪⎪⎩⎪⎪⎨⎧-+=-+=22322311x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.四、几何法几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.解:由平面几何知识可知,当ABM ∆为直角三角形时,点M 的轨迹是以AB 为直径的圆.此圆的圆心即为AB 的中点)1,1(--,半径为25221=AB ,方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x .五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.解:设),(y x M ,直线OA 的斜率为)0(≠kk ,则直线OB 的斜率为k1-.直线OA 的方程为kx y =,由⎩⎨⎧==px y kx y 22解得⎪⎪⎩⎪⎪⎨⎧==kp y k px 222,即)2,2(2k p k p A ,同理可得)2,2(2pk pk B -. 由中点坐标公式,得⎪⎪⎩⎪⎪⎨⎧-=+=pk kpy pk k px 22,消去k ,得)2(2p x p y -=,此即点M 的轨迹方程. 六、交轨法求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例6 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.解:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得直线M A 1的方程为)(11a x a x y y ++=①;直线N A 2的方程为)(11a x ax y y -+-=②. ①×②得)(22221212a x ax y y ---=③. 又,1221221=-b y a x Θ)(2122221x a a b y -=-∴,代入③得)(22222a x ab y --=,化简得12222=+by a x ,此即点P 的轨迹方程. 当b a =时,点P 的轨迹是以原点为圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆.高考动点轨迹问题专题讲解(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ; 5.已知圆C:22(16x y ++=内一点()A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >) 9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时, 设PQ 所在直线方程为(1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程.故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44yx =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r.(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x y G . ∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =u u u r u u u u r,(0,1)A -,∴= 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N .由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴223(,)1313kb bN k k-++. ∵ ||||AP AQ =u u u r u u u r,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+, ∴2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且k ≠. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅u u u r u u u r为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r, 48MP MN y ⋅=+u u u r u u u u r.PN MN ⋅=u u u r u u u u r……………………………………………3分∵MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r ,∴48y+= 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r(1m >),0MN AF =⋅u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,∴ MN 垂直平分AF .又//AM ME u u u u r u u u r,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,||||MA MF =u u u r u u u r ,∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >). 7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r,(2)b xi y j =+-r , 且||||8a b +=r r.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.Q 0OP OA OB =+=u u u r u u u r u u u r,所以P 与O 重合,与四边形OAPB 是矩形矛盾.故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k=-+, Q OP OA OB =+u u u r u u u r u u u r,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=u u u r u u u r.1122(,),(,)OA x y OB x y ==u u u r u u u rQ , ∴ 12120OA OB x x y y ⋅=+=u u u r u u u r.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得5k =. 故存在直线l :53y x =+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF uuu r =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ⋅=u u u u r u u u r.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=, 当34πθπ≤<时,求直线1l 的斜率k 的取值范围. 解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y=-.∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=u u u u r u u u r ,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=u u u u r u u u r ,||||PM PN =u u u u r u u u r.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OAOB ⋅=-u u u r u u u r,且||AB ≤l的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r得(,0)M x -,(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2yPF =-u u u r ,又0PM PF ⋅=u u u u r u u u r ,∴204yx -+=,即动点N 的轨迹方程为24y x =. 10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=u u u,0MN MP +=u u u u r u u u r r .(1)求P 点轨迹E 的方程; (2)将(1)中轨迹E 按向量(0, 1)a=r平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围. 解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r、(, )MP x a y =-u u u r.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. 11.如图()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-u u u r u u u r ,O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =u u u r u u u r,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-u u u r u u u r, ∴14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u u u r得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>, 设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---,∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--, 消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t <<. 故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||AB =u u u r P 满足OP OA OB =+u u u r u u u r u u u r.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+u u u r u u u r u u u r ,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又AB =u u u r ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16).故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l的方程;(y x =)(2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525xy +=) 提示:||1010AB =⇒=,又11y x =,22y x =, 则1221)yy x x +=-,2112)y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=u u u r u u u r,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知||PF =,且2332d ≤≤. (1)求动点P 的轨迹方程;15.如图,直线:1l ykx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k=,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………9分 显然23k10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b 43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>,解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k -.即k >或1k 2<,且k≠0. ∴k的取值范围是11(,(,0)(0,))22-∞-+∞U U U .…………………14分 17.已知向量OA u u u r=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r -d 2),其中O 为坐标原点,K 为参数.(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围. 18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=u u u r u u u r ,1()2OM OA OB =+u u u u r u u u r u u u r ,1()2ON OC OD =+u u u r u u u r u u u r .(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;xyOA BEF M(2)若M 为动点,且90EMF∠=o ,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值. 法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==o o当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+u u u u r u u u r u u u r.(1)建立适当的直角坐标系,求点M 的轨迹方程; (2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r ,求实数λ的取值范围.。
轨迹方程的求法一、直接法求轨迹方程的一般步骤:“建、设、限、代、化” 1、建立恰当的坐标系; 2、设动点坐标(),x y ;3、限制条件列出来(如一些几何等量关系);4、代入:用坐标代换条件,得到方程(),0f x y =;5、化简(最后要剔除不符合条件的点).例1、过点()2,4P 作两条互相垂直的直线1l 、2l ,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.巩固训练1:平面内动点M 与两定点()1,0A -、()2,0B 构成MAB ∆,且2MBA MAB ∠=∠,求动点M 的轨迹方程.巩固训练2:已知点A 、B 的坐标分别为()5,0-、()5,0,直线AM 、BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.巩固训练3:已知直角坐标平面上的点()2,0Q 和圆221C x y +=:,动点M 到圆C 的切线长与MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程.二、定义法:如果动点的轨迹满足某已知曲线的定义,则可以依据定义求出轨迹方程.如圆、椭圆、双曲线、抛物线等. 规律可寻:(1)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.例2、(1)求与圆221:(3)1C x y ++=外切,且与222:(3)81C x y -+=内切的动圆圆心P 的轨迹方程.(2)已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程.巩固训练1:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆221:42F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练2:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆2211:24F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练3:在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,求点M 的轨迹方程.巩固训练4:已知点1F 、2F 分别是椭圆22:171617C x y +=的两个焦点,直线1l 过点2F 且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段1GF 的垂直平分线交2l 于点H ,求点H 的轨迹方程.巩固训练5:在极坐标系Ox 中,直线l 的极坐标方程为sin 2ρθ=,点M 是直线l 上任意一点,点P 在射线OM 上,且满足4OP OM ⋅=,记点P 的轨迹方程为C ,求曲线C 的极坐标方程.三、相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. “相关点法”的基本步骤:(1)设点:设被动点的坐标为(),x y ,主动点的坐标为()00,x y ;(2)求关系式:求出两个动点坐标之间的关系式()()00,,x f x y y g x y =⎧⎪⎨=⎪⎩; (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例3、已知点P 是圆22:4C x y +=上任意一点,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,求线段PD 的中点M 的轨迹方程.巩固训练1:已知在ABC ∆中,()2,0A -,()0,2B -,第三个顶点C 在曲线231y x =-上动点,求ABC ∆的重心的轨迹方程.巩固训练2:已知点P 是圆22:25C x y +=上任意一点,点D 是点P 在x 轴上的投影,点M 为PD 上一点,且满足45MD PD =,当点P 在圆上运动时,求点M 的轨迹方程.四、参数法:如果动点(),P x y 的坐标之间的关系不容易找,可以考虑将,x y 用一个或几个参数表示,最后消参数,得出,x y 之间的关系式,即轨迹方程.常用参数有角度θ、直线的斜率、点的横、纵坐标,线段的长度等.例4、过抛物线24y x =的顶点O 引两条互相垂直的直线分别与抛物线相交于,A B 两点,求线段AB 的中点P 的轨迹方程.巩固训练1:设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于,A B ,O 是坐标原点,直线l 的动点P 满足()12OP OA OB =+,当直线l 绕点M 旋转时,求点P 的轨迹方程.五、交轨法:写出动点所满足的两个轨迹方程后,组成方程组分别求出,x y ,再消去参数,即可求解,这种方法一般适合于求两条动直线交点的轨迹方程.例5、设1A 、2A 是椭圆22195x y +=的长轴的两端点,1P 、2P 是垂直于12A A 的弦的端点,求直线11A P 与22A P 的交点的轨迹方程.巩固训练1:已知双曲线2212x y -=的左、右顶点分别为1A 、2A ,点()11,P x y 、()11,Q x y -是双曲线上不同的两个动点,求直线1A P 与2A Q 的交点的轨迹E 的方程.。
与椭圆有关的轨迹方程的求法一.定义法:若动点轨迹的条件符合某一基本轨迹的定义,可用定义直接探求.例1:已知两圆169)4(:221=+-y x C ,9)4(:221=++y x C ,动圆在圆1C 内部且和圆1C 相内切,和圆2C 相外切,求动圆圆心M 的轨迹方程.分析:动圆满足的条件为:①与圆C 1相内切;②与圆C 2相外切.依据两圆相切的充要条件建立关系式 解:设动圆圆心),(y x M ,半径为r 如图所示,由题意:圆M内切于圆C 1,∴r MC -=131, 圆M外切于圆C 2 ,∴r MC +=32, ∴1621=+MC MC ,∴动圆圆心M的轨迹是以C 1、C 2为焦点的椭圆, 且82,162==c a ,48222=-=c a b ,故所求轨迹方程为:1486422=+y x 。
例2.在周长为定值的ABC ∆中,已知|AB |6=,且当顶点C 位于定点P 时,C cos 有最小值为257,建立适当的坐标系,求顶点C 的轨迹方程. 解:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 )3(2>=+a a CB CA 为定值,则C 点的轨迹是以B A ,为焦点的椭圆, 焦距62==AB c ,因为:1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥, 由题意得 25,25718122==-a a,此时,PB PA =,P 点坐标为)4,0(±, 所以C 点的轨迹方程为:)0(1162522≠=+y y x 。
例3.已知圆16)1(:22=++y x B 及点)0,1(A ,C 为圆B 上任一点,求线段AC 的垂直平分线l 与线段BC 交点P 的轨迹方程。
求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。
隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。
极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。
通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。
下面是一个例题:
例题:求解椭圆的轨迹方程。
解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。
我们可以使用参数方程法来求解椭圆的轨迹方程。
假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。
取参数θ,定义点P在椭圆上的坐标为(x, y)。
那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。
通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。
进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。
以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。
根据具体的问题和曲线类型,选择合适的方法进行求解和推导。
轨迹方程求法及经典例题汇总一、轨迹为圆的例题:1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论)2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。
(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。
(1)求圆心的P 的轨迹方程;(2)若P 点到直线x y =的距离为22,求圆P 的方程。
如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x-4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。
轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r·,求直线AP与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变. 五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =u u u r ,1()2AE AB AD =+u u u r u u u r u u u r.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+u u u r u u u r u u u r知E 为BD 中点,易知(222)D x y -,.又2AD =u u u r,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =.将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
动点轨迹方程的常见求法一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。
其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。
例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。
求椭圆和双曲线的方程。
解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22by = 1,双曲线的方程为22mx -22n y = 1。
Θ2c = 213 , ∴c = 13 .Θa – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . Θ b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。
二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。
它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。
例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。
解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2αΘ3-x y = K PB = tg(π-2α) = - tg2α =αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。
动点轨迹方程的求法
一、直接法
按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.
例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线.
【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有
,即
,
.整理得,这就是动点
M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆.
二、代入法
若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.
例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线.
【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线.
三、定义法
若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是
12
2
=+y x MQ ()0>λλλ=MQ
MN λ=-MQ
ON
MO 2
2λ=+--+2
222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45=
x )0,4
5
(2
222
222)1(3112-+=+-λλλλy x )-()0,12(2
2-λλ1
3122-+λλ12
+=x y ),(),,(11y x B y x P 2==
PB
AP
λ.2121,212311++=++=
y y x x 2
1
23,232311-=-=y y x x 12+=x y .1)2
3
23()2123(
2+-=-x y ),3
1
(32)31(2-=-x y 4)2(2
2
=++y x
(A ) (B )
(C ) (D )
【解析】:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是.选(B ). 例4 一动圆与两圆和都外切,则动圆圆心轨迹为 (A )抛物线 (B )圆 (C )双曲线的一支 (D )椭圆
【解析】:如图,设动圆圆心为M ,半径为r ,则有动点M 到两定点的距
离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选(C ).
四、参数法
若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程. 例5设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且
,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.
【解析】:(1)设所求椭圆方程为由题意得解得
所以椭圆方程为. (2)设点解方程组得
由和得
012122
=+-x y 012122
=-+x y 082=+x y 082
=-x y )1(122
--=x y 12
2
=+y x 01282
2
=+-+x y x .
1,
2,
1=-+=+=MO MC r MC r MO 12-=t t OQ
OP ).0(122
22
>>b a b x a y =+⎪⎩⎪
⎨⎧==-,
,
122t b
a b a ⎪⎪⎩
⎪⎪⎨
⎧-=-=.11.122222t b t t a 222222)1()1(t y t x t t =-+-),,(),,(11y x Q y x P ⎩⎨⎧==-+-,,
)1()1(1122122122tx y t y t x t t ⎪⎪⎩
⎪
⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 12-=t t OQ OP 1x x OQ OP =⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,
2,
2,2222
t y t x t y t x 或
其中t >1.消去t ,得点P 轨迹方程为和.其轨迹为抛物线在直线右侧的部分和抛物线在直线在侧的部分. 五、交轨法
一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.
例6 已知两点以及一条直线:y =x ,设长为的线段AB 在直线上移动,求直线PA 和QB 交点M 的轨迹方程.
【解析】:PA 和QB 的交点M (x ,y )随A 、B 的移动而变化,故可设,则
PA :Q QB :消去t ,得当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以
点M 的轨迹方程是
以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关
系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.
)22(222
>=
x y x )2
2(222-<-=x y x y x 222
=
22=x y x 2
22
-=2
2
-
=x )2,0(),2,2(Q P -ι2λ)1,1(),,(++t t B t t A ),2)(2(222-≠++-=
-t x t t y ).1(1
1
2-≠+-=-t x t t y .082222=+-+-y x y x .082222
2
=+--+-y x x y x。