线性定常连续系统状态方程的解
- 格式:ppt
- 大小:298.50 KB
- 文档页数:30
连续系统的状态变量方程求解连续系统的状态变量方程求解通常采用数值方法,例如龙格-库塔法(Runge-Kutta)等。
在这个过程中,需要将连续系统的状态方程离散化,即将连续时间步长的微分方程转化为离散时间步长的离散方程。
求解离散方程可采用递推的方式,根据系统的初始条件和上一时刻的状态变量值,计算出当前时刻的状态变量值。
以下是一个求解连续系统状态变量方程的步骤:1. 确定连续系统的状态变量方程。
例如,给定线性定常系统dx/dt = Ax + Bu,其中x为状态变量,A和B为系统矩阵。
2. 离散化。
将状态变量方程转化为离散方程。
常见的离散化方法有前项差分变换、后项差分变换和Tustin变换。
具体变换方法取决于系统的特性以及所需的数值稳定性和精度。
例如,使用Tustin变换将连续系统离散化,得到离散状态方程x[k+1] = A*x[k] + B*u[k]。
3. 初始化。
给定初始条件,如x[0] 和u[0],初始化状态变量值。
4. 数值求解。
使用数值方法(如龙格-库塔法)递推计算离散方程,得到一系列状态变量值x[1], x[2], ...,以及对应的输出值y[1], y[2], ...。
5. 分析结果。
根据求解得到的状态变量值和输出值,分析系统的性能,如稳定性、收敛速度等。
在MATLAB中,可以使用ode45等函数求解连续系统的状态变量方程。
以下是一个简单的示例:```MATLAB定义系统矩阵A、B和输入信号uA = [1 0; -1 1];B = [0 1];u = [1; 0.5];定义初始条件x0 = [1; 2];设置求解参数tspan = [0, 10];options = odeset('RelTol', 1e-6, 'AbsTol', 1e-6);求解状态变量方程[x, u] = ode45(@(t, x) A*x + B*u, tspan, x0, options);绘制状态变量曲线figure;plot(t, x(:, 1), 'b', 'LineWidth', 2);hold on;plot(t, x(:, 2), 'r', 'LineWidth', 2);xlabel('Time');ylabel('State Variables');legend('x1', 'x2');```这个示例中,我们使用ode45函数求解了一个线性定常系统在给定输入信号下的状态变量演化。
第一周绪论1、我国人民哪些发明属于在经典控制理论萌芽阶段的发明?(AB)A指南车B水运仪象台C指南针D印刷术2、经典控制理论也可以称为(BD)A现代控制理论B自动控制理论C近代控制理论D古典控制理论3、以下哪些内容属于现代控制理论基础的内容?(AB)A李雅普诺夫稳定性理论B极小值原理C频率响应法D根轨迹法4、传递函数模型假设模型初值不为零。
(X)5、传递函数描述的是单输入单输出的外部描述模型。
(X)6、线性系统理论属于现代控制理论的知识体系中数学模型部分。
(,)7、最优控制理论属于现代控制理论的知识体系中估计方法部分。
(X)8、控制科学的意义下,现代控制理论主要研究(数学建模)和(控制理论方法)的科学问题。
9、现代控制理论在整个控制理论发展中起到了(承上启下)的作用。
10、除了稳定性外,现代控制理论基础还考虑系统(能控性)和(能观测性)两个内部特性。
一、现代控制理论作为一门科学技术,已经得到了广泛的运用。
你还知道现代控制理论具体应用到哪些具体实际的例子么?第二周状态空间描述下的动态方程1、关于输出方程,下列哪些说法是正确的?(BD)A输出方程中状态变量必须是一阶的B输出方程中不含输入的任何阶倒数C输出方程中输入变量可以是任意阶的D输出方程中不含状态变量的任何阶倒数2、关于系统的动态方程,下列哪些说法是正确的?(AB)A系统的状态方程的状态变量的个数是惟一的B系统输出方程的输入输出变量是惟一的C系统输出方程的输入输出变量是不惟一的D系统的状态方程的状态变量是惟一的3、对于一个有多个动态方程表示的系统,下列说法正确的是?(AC)A这些动态方程一定是等价的B这些动态方程经过线性变化后,不能转化为一个动态方程C这些动态方程经过线性变化后,可以转化为一个动态方程D这些动态方程不一定是等价的4、选取的状态向量是线性相关的(X)5、状态向量的选取是不唯一的(/)6、状态向量的个数是不唯一的(X)7、输出方程的选取是不唯一的(/)8、(系统的输出量与状态变量、输入变量关系的数学表达式)称为输出方程。
《线性系统理论》大作业报告引言:研究线性定常连续系统状态方程的解时,求解状态方程是进行动态系统分析与综合的基础,是进行定量分析的主要方法。
而线性定常连续系统状态方程的解由两个部分相加组成。
第一个部分是由初始状态所引起的自由运动,即状态的零输入响;第二个部分是由输入所引起的系统强迫运动,其值为输入函数与矩阵指数函数的卷积,即状态的零状态响应。
由于这两部分中都包含有状态转移矩阵,因此状态转移矩阵的计算是线性定常连续系统状态方程求解的关键。
本文先总结了的计算方法,并运用matlab命令求解证明各方法的正确性及给出相应的零输入响应仿真结果。
然后推导了脉冲响应的公式,希望通过飞机模型的例子来研究其系统的脉冲响应。
最后推广研究了任意输入的零状态响应。
第一部分的计算方法及零输入响应的仿真证明一.的计算方法1.根据的定义直接计算定义式是一个无穷级数,故在计算中必须考虑级数的收敛条件和计算收敛速度问题。
类似于标量指数函数,对所有有限的常数矩阵A和有限的时间t来说,矩阵指数函数这个无穷级数都是收敛的。
显然用此方法计算一般不能写成封闭的解析形式,只能得到数值计算的结果。
2.变换A为约旦标准型因为任何都可经线性变换成为对角矩阵或约旦矩阵,因此下面将利用对角矩阵和约旦矩阵的矩阵指数函数计算的简便性质,通过线性变换将一般形式的系统矩阵变换成对角矩阵或约旦矩阵计算其矩阵指数函数。
对于矩阵A,若经过非奇异变换(相似变换)矩阵P作变换后,有则3. 利用拉氏反变换求已知齐次方程两边取拉氏变换即对上式两边取拉氏反变换得齐次微分方程的解:而由定义法求得的齐次微分方程的解为比较两式得4. 应用凯莱—哈密顿定理求(1)由凯莱—哈密顿定理,方阵A 满足其自身的特征方程,即()1110 0n n n fA A a A a A a I--=++++=故121210...n n n n n A a A a A a A a I ----=-----它是的线性组合。
Chapter2状态方程的解我们要解决的问题是:在系统初始时刻0t t =时,初始状态为00)(x t x =的条件下,对该系统施加控制)(t u ,求出系统状态)(t x 的变化,即求解非齐次方程(0)(≠t u )初值问题的解:000)()()()()()(t t x t x t u t B t x t A t x≥=+=或者在系统不加控制)(t u ,(0)(=t u 称为自由系统)的条件下,求出初值)(0t x 对系统状态)(t x 的影响,即求解齐次方程初值问题的解:000)(),()()(t t x t x t x t A t x≥==⇒⎩⎨⎧离散连续线性定常⇒⎩⎨⎧离散连续线性时变⎩⎨⎧⨯∆⇒⎩⎨⎧⨯∆数值解解析解非齐次数值解解析解齐次 2.1 线性定常系统状态方程的解2.1.1n 阶、线性、定常(无关与时间t A )连续系统齐次状态方程的解我们知道:常系数线性微分方程(标量方程))()(t ax t x= ,0)0(x x =,0≥t 其解为 000!)(x k t a x e t x k kk at∑∞===对齐次状态方程(矩阵方程))()(t Ax t x= ,0)0(x x =,0≥t 很自然,仿照常系数线性微分方程,可得到n 阶线性、定常、连续系统齐次(0)(=t u )状态方程的解000!)(x k t A x e t x k kk At∑∞=== 定义矩阵指数:k k k k k Att A k t A At I k t A e!121!220++++=≡∑∞= ,它仍是一个矩阵。
若初始时间为0t ,则状态方程的解为0000)(!)()(0x k t t A x et x k kk t t A ∑∞=--==∑∞=--=00)(!)(0k kk t t A k t t A e称为定常(连续)系统的状态转移矩阵。
)(0t t A e -物理意义:将系统从初始状态)(0t x 转移到(时刻t 的)状态)(t x 。