第一章 线性系统的状态空间描述
- 格式:ppt
- 大小:1.12 MB
- 文档页数:50
第一章 线性系统的状态空间描述 1. 内容系统的状态空间描述化输入-输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换组合系统的状态空间方程与传递函数矩阵2. 基本概念系统的状态和状态变量状态:完全描述系统时域行为的一个最小变量组。
状态变量:构成系统状态的变量。
状态向量设系统状态变量为)(,),(),(21t x t x t x n 写成向量形式称为状态向量,记为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()(21t x t x t x t x n状态空间状态空间:以状态变量为坐标轴构成的n 维空间。
状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条轨迹。
3. 状态空间表达式设系统r 个输入变量:)(,),(),(21t u t u t u r m 个输出:)(,),(),(21t y t y t y m n 个状态变量:)(,),(),(21t x t x t x n例:图示RLC 电路,建立状态空间描述。
电容C 和电感L 两个独立储能元件,有两个状态变量,如图中所注,方程为)()()()()()(t i dtt du C t u t u t Ri dtt di LL c c L L ==++ )()(),()(21t u t x t i t x c L ==状态方程)(01)()(0/1/1/)()()()()()()()(212112211t u t x t x C L L R t xt x t x t xC t u t x t Rx t x L ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇔⎩⎨⎧==++⇔输出方程[]⎥⎦⎤⎢⎣⎡==)()(01)()(21t x t x t u t y c 一般定义状态方程:状态变量与输入变量之间的关系[][][]t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx r n n n n r n r n );(,),(),();(,),(),()()();(,),(),();(,),(),()()();(,),(),();(,),(),()()(212121212222121111======用向量表示,得到一阶的向量微分方程[]t t u t x f t x),(),()(= 其中n n r r n n f f f f t u t u t u t u t x t x t x t x R R R ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙∙∙=∙∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()(:)(,)()()(:)(,)()()(:)(212121输出方程:系统输出变量与状态变量、输入变量之间的关系,即[][][]t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y r n m m r n r n );(,),(),();(,),(),()();(,),(),();(,),(),()();(,),(),();(,),(),()(2121212122212111=== 用向量表示为[]t t u t x g t y ),(),()(=4系统分类:1) 非线性时变系统[][]⎩⎨⎧==t t u t x g t y t t u t x f t x ),(),()(),(),()(2) 非线性定常系统[][]⎩⎨⎧==)(),()()(),()(t u t x g t y t u t x f t x3) 线性时变系统⎪⎩⎪⎨⎧+++++=+++++=rnr n n nn n n r r n n u t b u t b x t a x t a xu t b u t b x t a x t a x)()()()()()()()(1111111111111写成向量形式即为⎩⎨⎧+=+=)()()()()()()()()()(t u t D t x t C t y t u t B t x t A t x其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t b t b t b t b t b t b t b t b t b t B t a t a t a t a t a t a t a t a t a t A nr n n r r nn n n n n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t d t d t d t d t d t d t d t d t d t D t c t c t c t c t c t c t c t c t c t C mr m m r r mn m m n n4) 线性定常系统⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x5 状态空间表达式的系统结构图状态和输出方程可以用结构图表示,形象地表明系统中信号传递关系。
第1章线性系统的数学描述建立起系统中各变量间的数学关系和变换关系,是系统分析与综合的前提条件。
由于分析方法或解决问题的目的不同,描述系统行为的数学方程也有所不同。
在线性系统时域理论中所使用的数学描述可分为两大类,即系统的输入-输出描述和系统的状态空间描述。
系统的输入-输出描述又称为外部描述,他是通过建立系统的输入和输出之间的数学关系来描述系统特性的。
在经典线性系统控制理论中的传递函数和微分方程都属于系统的外部描述。
系统的状态空间描述又称为内部描述,它选用能够完善描述系统行为的被称为状态的内部变量,通过建立状态和系统的输入以及输出之间的数学关系,来描述系统行为的。
系统的外部描述不是对系统的全部特性的描述,而状态空间描述是对系统行为的完善描述。
本章首先论述系统的外部描述,接着着重讨论系统的内部描述。
线性系统的状态空间描述是分析和综合线性系统的基础,在此给出线性系统状态空间的概念、组成方法、基本性质、描述特性和变换等,这些概念和结论对于后面的各章的讨论是不可缺少的。
1.1线性系统的输入-输出描述系统的输入-输出描述揭示了系统的输入和输出之间的某种数学关系。
在建立系统输入—输出描述时,可以假设系统的内部特性是完全未知的,即将系统看作一个“黑箱”。
向该“黑箱”施加各种类型的输入并测量出与之相应的输出,根据这些输入-输出数据,可以确定出系统的输入和输出之间的数学关系。
在图1-1所示的系统中,外部对系统施加的作用或激励称为系统的输入变量,系统对外部的影响则称为系统的输出变量。
假设系统有p 个输入,q 个输出,分别用12,,p u u u ⋅⋅⋅和12,,,q y y y ⋅⋅⋅来表示,或记为向量的形式:12[]Tp u u u =⋅⋅⋅u ,12[]T q y y y =⋅⋅⋅y ,称u 、y 为系统的外部变量,其中"T"表示向量的转置。
图1-1系统的外部描述如果系统只有一个输入和一个输出(p 1,1)q ==,则称系统为单变量系统,用符号SISO 表示;当系统的输入量或输出量多于一个时.则称其为多变量系统,用符号MIMO 表示。