第三章线性系统状态方程解
- 格式:ppt
- 大小:676.00 KB
- 文档页数:49
第三章 线性控制系统的能控性和能观性01010( 1) A10 1B( 2) A 0 0 1 ,B 011024311113 10 1 1( 3) A0 10 1 0 3 0 , B00 ( 4) AB0 0 11 001211【解】:(1)11U c B AB 1 1, rankU c n 2 ,所以系统完全能控。
c 0 1 c(2)10 0 1 2U c B AB A 2B1 1 11 1 17前三列已经可使 rankU c n 3 ,所以系统完全能控(后续列元素不必计算) 。
(3)A 为约旦标准型, 且第一个约旦块对应的B 阵最后一行元素全为零, 所以系统不完全 能控。
(4)A 阵为约旦标准型的特殊结构特征, 所以不能用常规标准型的判别方法判系统的能控 性。
同一特征值对应着多个约旦块,只要是单输入系统,一定是不完全能控的。
可以求一下能控判别阵。
1213 1223B AB A 2B A 3B2 3 U c1 1 12 13 1 11 12 31111rankU c 2 ,所以系统不完全能控。
3 1110 10 0 x0 3 0x 0 0ux0 01x 0u (1)0 0 12(2)61161101yxy10 0x1 10解】:1)311 已知 A 0 30,B0 001220 0 D CB CAB CA 2B 0 0 前两列已经使 rank D CBCAB110 1 0 00 , C ,D1 1 0 0 031112CA B m2, 所以系统输出能控。
(2) 系统为能控标准型,所以状态完全能控。
又因输出矩阵 状态维数 n ,所以状态能控则输出必然能控。
C 满秩,且输出维数 m 小于1 0x0 01xx1 1 (1)2 43 ; (2) 1 x 0;011y1 1xyx12 12 1 0 4 0 0x0 20xx4 0x(3);(4)0 030 1y0 1 1x y11 4x解】:1)已知 A01 00 242-3-3 判断下列系统的能观性。
Chapter 3 Analysis of Linear System3.1 INTRODUCTION运动分析的数学实质:从数学的角度,运动分析的实质就是求解系统的状态方程。
以解析形式或数值分析形式,建立系统状态随输入和初始状态的演化规律。
(Solving the time-invariant state equation)3.2 连续时间线性时不变系统的运动分析SOLVING THE TIME-INVARIANT STATE EQUATION系统响应=系统的零输入响应+系统的零状态响应System response=a term consisting of the transition of the initial state +a term arising from the input vector零输入响应:自由运动,由系统矩阵决定,不受外输入影响。
零状态响应:强迫运动,响应稳态时具有和输入相同的函数形态。
01!k k ∞−+=∑0k k b t ∞=+=∑2012Ab Ab t Ab t +=+++b k 0)b +Equating the coefficients of the equal powers of t, we obtain By substituting this assumed solution in to Equation (1)解的说明:1.零输入响应是状态空间中由初始状态经线性变换矩阵所导出的一个变换点。
2.自由运动3.自由运动的轨迹由唯一决定。
4.当自由运动轨迹趋于平衡状态时,则系统是渐近稳定的。
At e0x Ate 0=x若初始时间取为t 0≠0则0)(,)(0t t x e t x t t A ou ≥=−00)(x t x =01!k k ∞−+=∑+232322332323332)()2!3!F F I Ft t t F t A t A Ft AF t F t ++++++0+=0,1,2,))AtAt Ae A e A ++=+=利用性质+λ)neλ)n t0000i i λλ⎤⎥⎥⎥⎥⎥⎥⎦12)l J t J tJ t e e 0i i t t e e e λλ⎤⎥⎥⎥⎥⎥⎥⎥⎦系统状态运动规律的基本表达式设系统的状态空间描述为有表达式⎰⎰≥−+=+=−t A Att t A At t d t Bu e x e d Bu e x e t x 000)(00,)(,)()(ττττττ⎰≥+=−−t t t A t t A t t d Bu e x e t x 000)(0)(,)()(τττ对初始时刻t 0=0 情形有表达式注意:物理意义解的讨论:(1)卷积特征;(2)零初始响应的几何特征;(3)可达性;(4)任意时刻的表达式00≥,=)(),(+=t t x t x t Bu Ax x3.3连续时间线性时不变系统的状态转移矩阵State-Transition Matrix设连续时间线性时不变系统,状态方程为:as To verify this, note thatWe thus confirm that Equation (2) is the solution of Equation (1))2()0()()(x t t x Φ=where )(Φt is n n ⨯Matrix and is the unique solution of)0()0()0()0(x x x =Φ=Ate t =)(Φ)(=)0()(Φ=)0()(Φ=)(t Ax x t A x t t xI t A t =)0(Φ)(Φ=)(Φ )1(=Ax x and状态转移矩阵的形式为()()()0000,0000t t e t t t t e t t t t A At ≥=−Φ≠≥=Φ=−时,时,基于状态转移矩阵的系统响应表达式()()()()()()()()()⎰⎰−Φ+−Φ=≥−Φ=−Φ=tt t t ox ou d Bu t x t t t x t t d Bu t t x x t t t x 0000000ττττττ。