存储器扩展电路的设计与制作
- 格式:ppt
- 大小:2.19 MB
- 文档页数:43
课 堂 教 学 实 施 方 案课 题:只读存储器ROM 、主存储器的设计5.3 只读存储器ROM指在微机系统的在线运行过程中,只能对其进行读操作,而不能进行写操作的一类存储器,在不断发展变化的过程中,ROM 器件也产生了掩模ROM 、PROM 、EPROM 、EEPROM 等各种不同类型。
一、掩模ROM如图4-11所示,是一个简单的4×4位的MOS ROM 存储阵列,采用单译码方式。
这时,有两位地址输入,经译码后,输出四条字选择线,每条字选择线选中一个字,此时位线的输出即为这个字的每一位。
此时,若有管子与其相连(如位线1和位线4),则相应的MOS 管就导通,这些位线的输出就是低电表平,表示逻辑“0”;而没有管子与其相连的位线(如位线2和位线3),则输出就是高电平,表示逻辑“1”。
二、可编程的ROM掩模ROM 的存储单元在生产完成之后,其所保存的信息就已经固定下来了,这给使用者带来了不便。
为了解决这个矛盾,设计制造了一种可由用户通过简易设备写入信息的ROM器件,即可编程的ROM ,又称为PROM 。
PROM 的类型有多种,我们以二极管破坏型PROM 为例来说明其存储原理。
这种PROM 存储器在出厂时,存储体中每条字线和位线的交叉处都是两个反向串联的二极管的PN 结,字线与位线之间不导通,此时,意味着该存储器中所有的存储内容均为“1”。
如果用户需要写入程序,则要通过专门的PROM 写入电路,产生足够大的电流把要写入“1”的那个存储位上的二极管击穿,造成这个PN 结短路,只剩下顺向的二极管跨连字线和位线,这时,此位就意味着写入了“1”。
读出的操作同掩模ROM 。
除此之外,还有一种熔丝式PROM ,用户编程时,靠专用写入电路产生脉冲电流,来烧断指P +P +A lS i O 2SD浮空多晶硅栅N 基体字线EPROM(a)(b)位线实用标准文档文案大全。
习题和思考题答案习题和思考题答案第⼀章单⽚机概述1. 第⼀台电⼦数字计算机发明的年代和名称。
1946年、ENIAC。
2. 根据冯·诺依曼提出的经典结构,计算机由哪⼏部分组成?运算器、控制器、存储器、输⼊设备和输出设备组成。
3. 微型计算机机从20世纪70年代初问世以来,经历了哪四代的变化?经历了4位、8位、16位、32位四代的变化。
4. 微型计算机有哪些应⽤形式?系统机、单板机、单⽚机。
5. 什么叫单⽚机?其主要特点有哪些?单⽚机就是在⼀⽚半导体硅⽚上,集成了中央处理单元(CPU)、存储器(RAM、ROM)、并⾏I/O、串⾏I/O、定时器/计数器、中断系统、系统时钟电路及系统总线的⽤于测控领域的微型计算机,简称单⽚机。
单⽚机技术易于掌握和普及、功能齐全,应⽤⼴泛、发展迅速,前景⼴阔、嵌⼊容易,可靠性⾼。
6. 举例说明单⽚机的应⽤?略7. 当前单⽚机的主要产品有哪些?各⾃有何特点?MCS是Intel公司⽣产的单⽚机的系列符号,MCS-51系列单⽚机是Intel公司在MCS-48系列的基础上于20世纪80年代初发展起来的,是最早进⼊我国,并在我国应⽤最为⼴泛的单⽚机机型之⼀,也是单⽚机应⽤的主流品种。
其它型号的单⽚机:PIC单⽚机、TI公司单⽚机、A VR系列单⽚机。
8. 简述单⽚机应⽤系统的开发过程。
(1)根据应⽤系统的要求进⾏总体设计总体设计的⽬标是明确任务、需求分析和拟定设计⽅案,确定软硬件各⾃完成的任务等。
总体设计对应⽤系统是否能顺利完成起着重要的作⽤。
(2)硬件设计根据总体设计要求设计并制作硬件电路板(即⽬标系统),制作前可先⽤仿真软件(如Proteus软件)进⾏仿真,仿真通过后再⽤硬件实现并进⾏功能检测。
(3)软件设计软件编程并调试,⽬前⼀般⽤keil软件进⾏设计调试。
调试成功后将程序写⼊⽬标单⽚机芯⽚中。
(4)综合调试进⾏硬软件综合调试,检测应⽤系统是否达到设计的功能。
9. 说明单⽚机开发中仿真仪的作⽤。
【计算机组成原理】存储系统存储器的层次和结构从不同⾓度对存储器进⾏分类:1.按在计算机中的作⽤(层次)分类 (1)主存储器。
简称主存,⼜称内存储器(内存),⽤来存放计算机运⾏期间所需的⼤量程序和数据,CPU 可以直接随机地对其进⾏访问,也可以和告诉缓冲存储器(Cache)及辅助存储器交换数据,其特点是容量较⼩、存取速度较快、单位价格较⾼。
(2)辅助存储器。
简称辅存,⼜称外存储器(外存),是主存储器的后援存储器,⽤来存放当前暂时不⽤的程序和数据,以及⼀些需要永久性保存的信息,它不能与CPU 直接交换信息。
其特点是容量极⼤、存取速度较慢、单位成本低。
(3)⾼速缓冲存储器。
简称 Cache,位于主存和 CPU 之间,⽤来存放正在执⾏的程序段和数据,以便 CPU 能⾼速地使⽤它们。
Cache 地存取速度可与 CPU 的速度匹配,但存储容量⼩、价格⾼。
⽬前的⾼档计算机通常将它们制作在 CPU 中。
2.按存储介质分类 按存储介质,存储器可分为磁表⾯存储器(磁盘、磁带)、磁芯存储器、半导体存储器(MOS型存储器、双极型存储器)和光存储器(光盘)。
3.按存取⽅式分类 (1)随机存储器(RAM)。
存储器的任何⼀个存储单元的内容都可以随机存取,⽽且存取时间与存储单元的物理位置⽆关。
其优点是读写⽅便、使⽤灵活,主要⽤作主存或⾼速缓冲存储器。
RAM ⼜分为静态 RAM (以触发器原理寄存信息,SRAM)和动态 RAM(以电容充电原理寄存信息,DRAM)。
(2)只读存储器(ROM)。
存储器的内容只能随机读出⽽不能写⼊。
信息⼀旦写⼊存储器就固定不变,即使断电,内容也不会丢失。
因此,通常⽤它存放固定不变的程序、常数和汉字字库,甚⾄⽤于操作系统的固化。
它与随机存储器可共同作为主存的⼀部分,统⼀构成主存的地址域。
由ROM 派⽣出的存储器也包含可反复重写的类型,ROM 与RAM 的存取⽅式均为随机存取。
⼴义上的只读存储器已可已可通过电擦除等⽅式进⾏写⼊,其“只读”的概念没有保留,但仍然保留了断电内容保留、随机读取特性,但其写⼊速度⽐读取速度慢得多。
三进制计算机电路全文共四篇示例,供读者参考第一篇示例:三进制计算机电路是一种利用三进制数系统来进行数据处理和运算的电路。
与二进制计算机电路相比,三进制计算机电路能够实现更高的计算效率和数据存储容量。
本文将探讨三进制计算机电路的原理、优势以及应用领域。
让我们来了解一下三进制数系统。
在三进制数系统中,每一位数字可以表示0、1或2三种状态。
与二进制数系统不同的是,三进制数系统中每一位数字的权值是3的幂次方。
三进制数1002代表的十进制数值为13,计算方法为:1*3^3 + 0*3^2 + 0*3^1 + 2*3^0 = 13。
由此可见,三进制数系统在表示数字时比二进制数系统更加高效。
基于三进制数系统,三进制计算机电路采用三种状态(0、1、2)来进行数据处理和运算。
在计算机电路中,每一位数据被表示为一个逻辑门或者触发器的状态。
通过这些逻辑门和触发器的组合,计算机可以实现加法、减法、乘法、除法等基本运算,以及逻辑运算和数据处理等功能。
与二进制计算机电路相比,三进制计算机电路能够实现更高效的数据处理,因为每一位的表示范围更大。
三进制计算机电路的优势主要体现在以下几个方面:1. 高效的数据存储:三进制数系统可以表示更多的数据范围,在相同的位数下可以存储更多的数据,提高了计算机的数据存储容量。
2. 提高计算效率:在进行加减乘除等基本运算时,三进制计算机电路相对于二进制计算机电路可以减少运算的步骤,提高了计算效率。
3. 更加精确的数据处理:由于三进制数系统具有更大的数据范围,在处理数据时可以提高精度和准确性,减少计算误差。
除了以上的优势,三进制计算机电路在一些特定的应用领域也拥有更好的适用性。
在数字信号处理、图像处理和人工智能等领域,三进制计算机电路可以更好地处理大规模的数据和复杂的运算,提高计算效率和性能。
第二篇示例:三进制计算机电路是一种利用三种不同电压信号表示数字的计算机电路。
传统的计算机采用二进制系统,即只有两种信号0和1来表示数字和字符。
SOC中MBIST结构的设计与实现作者:黄玮来源:《科技传播》2015年第12期摘要现代SOC电路中,嵌入式存储器所占规模与数量趋于变大,使得测试也越之复杂,目前常用的测试方法是通过eda软件自动生成MBIST电路进行自测试。
该设计基于一个实际的项目,对电路中存储器进行了完整的MBIST结构设计,同时加入了一个标志位移位电路,从而能够准确诊断出故障存储器,最后通过NC_verilog软件完成MBIST结构电路的仿真。
关键词存储器;MBIST;测试;SOC中图分类号TP39 文献标识码 A 文章编号 1674-6708(2015)141-0130-020 引言随着集成电路的规模越来越大,嵌入的存储器也随着变多,传统的测试方法受测试难度和测试成本所制约,已不为芯片设计厂商所接受。
目前存储器最常用的测试方法是通过内建自测试存储器电路[1](MBIST:存储器内建自测试)来实现,其通过eda软件,自动生成存储器的测试电路,根据相应的算法对存储器地址进行读写,完成存储器的测试。
该种测试方法虽然会在电路中加入一些控制逻辑,从而增加芯片的面积,但是对于大规模测试电路,其能够实现测试自动化,减小测试时间,提高测试覆盖率,很大程度上节约测试成本。
本文采用MBIST测试方法,完成对电路中存储器的测试,同时加入了标志位移位电路,能够准确判断错误存储器的位置,从而减少测试诊断时间。
1 MBIST结构介绍MBIST是以存储器为目标,通过采用特定的算法,来检测存储器中存在的某些缺陷的一种测试方法,其主要由bist控制电路,测试向量生成电路,测试响应比较电路三部分组成[2-3],其常用的结构图如图1所示。
图1 MBIST电路结构图1中bist控制电路其内部为一个状态机电路,控制bist电路对存储器进行读写操作;测试向量生成电路根据所选的算法生成不同的测试向量,不同的算法可以得到不同的存储器测试覆盖率;测试响应比较电路是通过对实际存储器输出值与控制电路生成的理想值做对比,来判断存储器是否有问题。
单片机片内存储器如何烧写几种烧写方式介绍单片机应用系统由硬件和软件组成,软件的载体是硬件的程序存储器,程序存储器采用只读存储器,这种存储器在电源关闭后,仍能保存程序,在系统上电后,CPU 可取出这些指令重新执行。
只读存储器(Read Only Memory,ROM)中的信息一旦写入,就不能随意更改,特别是不能在程序运行过程中写入新的内容,故称只读存储器。
向ROM中写入信息称为ROM编程。
根据编程方式不同,掩模ROM.在制造过程中编程,是以掩模工艺实现的,因此称为掩模ROM。
这种芯片存储结构简单,集成度高,但是由于掩模工艺成本较高,只适合于大批量生产。
可编程ROM(PROM).芯片出厂时没有任何程序信息,用独立的编程器写入。
但是PROM 只能写一次,写入内容后,就不能再修改。
EPROM.用紫外线擦除,用电信号编程。
在芯片外壳的中间位置有一个圆形窗口,对该窗口照射紫外线就可擦除原有的信息,使用编程器可将调试完毕的程序写入。
E2PROM(EEPROM).用电信号擦除,用电信号编程。
对E2PROM的读写操作与RAM存储器几乎没什么差别,只是写入速度慢一些,但断电后仍能保存信息。
Flash ROM.闪速存储器(简称闪存),是在EPROM和E2PROM的基础上发展起来的一种电擦除型只读存储器。
特点是可快速在线修改其存储单元中的数据,改写次数达一万次(ROM 都有改写次数),读写速度快,存取时间可达70ns,而成本比E2PROM低得多,因此正逐步取代E2PROM。
注意:更多存储器内容请参考,《电子技术基础》数字部分(第五版) 主编康华光. 第七章,或者电工学(第七版)(下册) 主编秦曾煌第22章.烧写器、烧录器、编程器、下载器、仿真器、调试器单片机编程器(烧写器、烧录器)是用来将程序代码写入存储器芯片或者单片机内部的工具。
编程器主要修改只读存储器中的程序,编程器通常与计算机连接,再配合编程软件使用。
如下图所示是一个典型的编程器外形。
第二章单片机系统部分组成2。
1 概述为了设计此系统,我们采用了8031单片机作为控制芯片,在前向通道中是一个非电信号的电量采集过程。
它由传感器采集非电信号,从传感器出来经过功率放大过程,使信号放大,再经过模/数转换成为计算机能识别的数字信号,再送入计算机系统的相应端口。
由于8031中无片内ROM,且数据存储器也不能满足要求,,经扩展2732和6264来达到存储器的要求,其结果通过显示器和微型打印机来进行显示输出,也可以通过上位机接口来上传PC机,对于实时检测系统我们还配备了键盘对单片机的各项工作进行管理和控制。
2。
2 8031的内部结构8031是有8个部件组成,即CPU,时钟电路,数据存储器,并行口(P0~P3)串行口,定时计数器和中断系统,它们均由单一总线连接并被集成在一块半导体芯片上.CPU中央处理器:中央处理器是8031的核心,它的功能是产生控制信号,把数据从存储器或输入口送到CPU 或CPU数据写入存储器或送到输出端口。
还可以对数据进行逻辑和算术的运算.内存:内部存储器可分做程序存储器和数据存储器,但在8031中无片内程序存储器。
定时/计数器:8031有两个16位的定时/计数器,每个定时器/计数器都可以设置成定时的方式和计数的方式,但只能用其中的一个功能,以定时或计数结果对计算机进行控制。
并行I/O口:MCS-51有四个8位的并行I/O口,P0,P1,P2,P3,以实现数据的并行输出。
串行口:它有一个全双工的串行口,它可以实现计算机间或单片机同其它外设之间的通信,该并行口功能较强,可以做为全双工异步通讯的收发器也可以作为同步移位器用。
中断控制系统:8031有五个中断源,既外部中断两个,定时计数中断两个,串行中断一个,全部的中断分为高和低的两个输出级。
8031的制作工艺为HMOS,采用40管脚双列直插DIP封装,引脚说明如下:VCC(40引脚)正常运行时提供电源。
VSS(20引脚)接地。
XTAL1(19引脚)在单片机内部,它是一个反向放大器的输入端,该放大器构成了片内的震荡器,可以提供单片机的时钟信号,该引脚也是可以接外部的晶振的一个引脚,如采用外部振荡器时,对于8031而言此引脚应该接地。
单片机原理与应用设计第一章单片机概述在一块半导体硅片上集成了中央处理单元(CPU)、存储器(RAM/ROM)、和各种I/O接口的集成电路芯片由于其具有一台微型计算机的属性,因而被称为单片微型计算机,简称单片机。
单片机主要应用于测试和控制领域。
单片机的发展历史分为四个阶段。
1974—1976年是单片机初级阶段,1976—1978年是低性能单片机阶段,1978—1983年是高性能单片机阶段,期间各公司的8位单片机迅速发展。
1983至现在是8位单片机巩固发展及16位、32位单片机推出阶段。
单片机的发展趋势将向大容量、高性能、外围电路内装化等方面发展。
单片机的发展非常迅速,其中MCS-51系列单片机应用非常广泛,而在众多的MCS-51单片机及其各种增强型、扩展型的兼容机中,AT89C5x系列,尤其是AT89C51单片机成为8位单片机的主流芯片之一。
第二章89C51单片机的硬件结构89C51单片机的功能部件组成如下:8位微处理器,128B数据存储器片外最多可外扩64KB,4KB程序存储器,中断系统包括5个中断源,片内2个16位定时器计数器且具有4种工作方式。
1个全双工串行口,具有四种工作方式。
4个8位并行I/O口及特殊功能寄存器。
89C51单片机的引脚分为电源及时钟引脚、控制引脚及I/O口。
电源为5V 供电,P0口为8位漏极开路双向I/O口,字节地址80H,位地址80H—87H。
可作为地址/数据复用口,用作与外部存储器的连接,输出低8位地址和输出/输入8位数据,也可作为通用I/O口,需外接上拉电阻。
P1、P2、P3为8位准双向I/O 口,具有内部上拉,字节地址分别为90H,A0H,B0H。
其中P0、P2口可作为系统的地址总线和数据总线口,P2口作为地址输出线使用时可输出外部存储器的的高8位地址,与P0口输出的低8位地址一起构成16位地址线。
P1是供用户使用的普通I/O口,P3口是双向功能端口,第二功能很重要。
编著蔡骏安徽电子信息职业技术学院二00七年九月前言本实验指导书结合单片机实验教学和高职生的学习特点,引入较为先进的单片机与嵌入式系统仿真与开发平台——Proteus仿真软件,对传统的单片机实验方法和实验内容进行充实和完善。
全书共分5章,各章内容的编排顺序基本上与理论课教材相近。
第1章介绍Proteus 仿真软件,第2、3章分别介绍单片机硬件、指令系统和程序设计,第4、5章分别介绍单片机定时器/计数器、中断技术和系统扩展。
各项实验提供的参考程序均通过ProteusV7.1版调试。
在本书编写过程中,主要突出以下几个特点:1.以培养应用技术性人才为目标,突出基本技能训练,加强对指令系统的理解和输入输出口控制应用的训练,培养学生的编程能力。
2. 考虑到各系电类及相关专业对单片机课程的要求不同,各专业学生的基础不同,每章安排的实验数量较多,难易程度也有所不同,各专业可以根据各自的专业要求和学生的学习能力选择实验项目。
3. 在各章节的参考程序中,都给出了与汇编语言对应的机器码,使学生对机器码有一定的了解。
4. 实验内容的编排顺序基本上与理论课教学一致,努力做到理论与实践相结合,互相补充。
单片机硬件结构学习过程中即可安排实验课程。
由于编者水平有限,书中难免会有错误和不妥之处,恳请广大读者给予批评指正。
蔡骏2007年9月目录第1章单片机仿真软件概述 (1)1.1 Proteus软件仿真系统的构成与功能 (1)1.2 Proteus软件仿真系统的使用方法 (4)第2章单片机硬件和指令系统实验 (13)2.1 数据存储器实验 (13)2.2 数据传送指令实验 (19)2.3 算术运算指令实验 (21)2.4 逻辑运算指令实验 (23)2.5 控制转移指令实验 (25)2.6 位操作指令实验 (28)第3章单片机程序设计实验 (30)3.1 流水灯实验 (30)3.2 步进电机实验 (34)3.3 汽车转向信号灯控制实验 (38)3.4 步进电机控制实验 (41)第4章单片机定时与中断实验 (47)4.1 外部中断实验 (47)4.2 交通信号灯控制实验 (50)4.3 广告灯实验 (55)4.4 脉冲计数实验 (58)4.5 电子音乐实验 (61)4.6 直流电动机控制实验 (66)第5章单片机系统扩展实验 (70)5.1 数据存储器扩展实验 (70)5.2 简单I/O口扩展实验 (73)5.3 8255扩展I/O口实验 (76)附录一 MCS-51指令表 (80)第1章单片机仿真软件概述Proteus是英国Labcenter Electronics公司开发的多功能EDA软件。
硬件设计方案项目背景在计算机科学与技术领域中,硬件设计是指根据特定需求,通过电路设计、PCB布局与布线、器件选型等步骤,完成创新型硬件产品的设计与实现。
硬件设计方案涉及到电子元器件和电路板的设计与布局,主要考虑电路的稳定性、功耗、尺寸等要素。
设计目标本硬件设计方案旨在实现一款高性能、低功耗的电子设备,满足以下设计目标:•提供稳定的电路性能,确保设备能够长时间运行。
•降低功耗,延长设备的续航时间。
•尺寸小巧,方便携带和安装。
•硬件设计灵活,具备扩展性和多样性。
系统架构设计方案的系统架构如下:•主控芯片:采用高性能、低功耗的ARM处理器作为主控芯片,具备良好的处理能力和低功耗特性,可以满足设备的运行需求。
•电源管理:通过对电源进行管理和优化,降低设备功耗,延长电池寿命,在设备使用时间上提供更长的续航能力。
•存储器:选择高容量、高速度的存储器,用于存储数据和程序。
•传感器:根据设备的功能需求,选择合适的传感器,例如温度传感器、光线传感器等,用于采集环境数据。
•通信模块:集成Wi-Fi、蓝牙等通信模块,实现设备与其他设备或云平台的无线通信。
•外围接口:提供各类外围接口,如USB接口、HDMI接口等,以满足设备的扩展性。
设计流程硬件设计方案的设计流程包括以下几个步骤:1.需求分析:明确设备的功能需求和性能指标,进行初步的系统框架设计。
2.电路设计:根据系统框架设计,选取合适的芯片和电子元器件,进行电路设计和布局。
在设计过程中,需要考虑电路的稳定性、功耗等因素。
3.PCB设计与布线:根据电路设计结果,进行PCB(Printed Circuit Board)布局与布线。
合理布局电路板,确保信号传输畅通,减小电磁干扰。
4.器件选型与采购:根据电路设计和PCB布局结果,选取合适的电子元器件,并进行采购。
5.样机制作:根据PCB布局与布线结果,制作硬件样机。
通过测试和调试,验证硬件设计的稳定性和可靠性。
6.验证与调试:对硬件样机进行功能验证和调试,确保设备正常运行。
计算机组成原理课程设计第一篇:CPU设计计算机中心处理器(Central Processing Unit, CPU)是计算机的心脏,它负责执行指令,完成计算和控制计算机的所有运算和数据传输。
在计算机组成原理课程设计中,设计一块CPU是非常重要的一步。
CPU的设计与制作需要有一定的基础和经验。
首先,需要了解CPU的工作原理和基本组成,包括寄存器、ALU、控制器和数据通路等。
其次,需要掌握数字逻辑、硬件描述语言和电子工艺制作等知识和技能,以实现CPU的具体功能。
设计一块CPU可分为以下几个步骤:1.确定CPU的整体架构和指令集。
根据需求和实际应用,确定CPU的整体架构和指令集。
可以参考现有的CPU设计,并根据实际情况进行优化和改进。
2.编写CPU的硬件描述语言代码。
使用硬件描述语言(如VHDL)编写CPU的硬件描述语言代码,包括寄存器、ALU、控制器和数据通路等。
3.使用仿真工具进行验证。
使用仿真工具模拟CPU的运行过程,验证硬件描述语言代码的正确性和功能实现。
4.设计和制作PCB电路板。
将CPU的硬件描述语言代码转换为PCB电路板设计,并制作出实际的电路板。
5.测试CPU的性能和功能。
对制作出的CPU进行测试,验证其性能和功能可靠性。
CPU的设计和制作是计算机组成原理课程设计中非常关键的一步,它直接影响到完成整个计算机系统的可靠性和性能。
因此,设计和制作一块优秀的CPU需要耐心和实践经验的积累。
第二篇:存储器设计存储器是计算机系统中重要的组成部分,用于存储数据和程序。
存储器需要具有读、写、删等常见操作,设计一块性能良好和容量适中的存储器是计算机组成原理课程设计的核心内容之一。
存储器的设计和制作需要掌握数字电路设计、电子工艺制作和人机交互等知识和技能。
下面是存储器设计的主要步骤:1.确定存储器的类型和容量。
根据实际需要和使用场景,确定存储器的类型和容量,包括SRAM、DRAM、FLASH等。
2.设计存储器的电路和控制线路。