精品立方根练习题
- 格式:docx
- 大小:119.06 KB
- 文档页数:5
立方根练习题及计算过程A.1B.C.17或 D.以上答案都不对练习一一.判断题如果b是a的三次幂,那么b的立方根是a. 任何正数都有两个立方根,它们互为相反数.负数没有立方根. 如果a是b的立方根,那么ab≥0.二.填空题如果一个数的立方根等于它本身,那么这个数是________.3?127=________,3=________64的平方根是________. 64的立方根是________.三.选择题如果a是2的平方根,那么a等于A.-3B.-C.±3D.3或-若x<0,则x2?x3等于A.xB.2xC.0D.-2x若a2=2,b3=3,则a+b的值为 A.0B.±10C.0或10D.0或-10如图1:数轴上点A表示的数为x,则x2-13的立方根是A.5-1B.-5-1C.D.-如果23=634,则x等于222四.若球的半径为R,则球的体积V与R的关系式为V=43πR3.已知一个足球的体积为6280 cm3,试计算足球的半径.练习二一、选择题1.下列说法中,不正确的是A.8的立方根是2B.-8的立方根是-2C.0的立方根是0 D.a2的立方根是a.?16164的立方根是A.?161B.?11C.114D.?114.某数的立方根是它本身,这样的数有A.1个B.2个C.3个D.4个.下列说法正确的是⑴ 正数都有平方根;⑵ 负数都有平方根,⑶ 正数都有立方根;⑷ 负数都有立方根;A.1个 B.2个 C.3个 D.4个二、填空题5.64的平方根是,64的立方根是 ..立方根是3的数是,算术平方根是3的数 ..一个数的立方根是m,则这个数是.8.-216的立方根是,立方根是-0.2的数是. 三、解答题9.求下列各数的立方根:⑴ ? ⑵ .0⑶ ?8⑷3125?10. 若a?8与?b?27?2互为相反数,求a?b的立方根.11.已知x?2的平方根是±2,2x?y?7的立方根是3,求x2?y2的平方根练习三一、选择题) A.2B.? C.12D.?122. ?73的正确结果是A.7B.-7C.±D.无意义.下列运算中不正确的是A. ?a??aB. ?27?C.23?33??1 D. ??641?44.的立方根是A.-4B.±C.±D.-25.估计68的立方根的大小在A.2与3之间B.3与4之间 C.4与5之间 D.5与6之间.一个正方体的水晶砖,体积为100cm3,它的棱长大约在A.cm~5cm之间B.cm~6cm之间C.cm~7cm之间D.cm~8cm之间二、填空题7.?27,它的倒数是,它的绝对值是;8.若5x?19的立方根是4,则3x?4的平方根是; .若8x3?27?0,则x = ;三、解答题10.⑴ 填表:⑵ 由上你发现了什么规律?用语言叙述这个规律。
立方根的考试题及答案****一、选择题1. 已知 \( a^3 = 8 \),那么 \( a \) 的值是()。
A. 2B. -2C. 4D. -4答案:A2. 计算 \( \sqrt[3]{-27} \) 的值。
A. -3B. 3C. -9D. 9答案:A3. 立方根的性质中,以下哪个说法是错误的?A. 正数的立方根是正数。
B. 负数的立方根是负数。
C. 0的立方根是0。
D. 任何数的立方根都是唯一的。
答案:D二、填空题4. 计算 \( \sqrt[3]{64} \) 的值,并填入空格:\( \sqrt[3]{64} = \_\_\_\_ \)。
答案:45. 如果 \( x^3 = -125 \),那么 \( x \) 的值是 \( \_\_\_\_ \)。
答案:-5三、计算题6. 计算 \( \sqrt[3]{-8} \) 的值。
答案:-27. 已知 \( 3x^3 = 27 \),求 \( x \) 的值。
答案:\( x = \sqrt[3]{27/3} = \sqrt[3]{9} = 3 \)四、解答题8. 证明:如果 \( a^3 = b^3 \),那么 \( a = b \)。
解答:假设 \( a^3 = b^3 \),两边同时开立方根,得到 \( a = b \)。
因为立方根函数是单调递增的,所以如果两个数的立方相等,那么这两个数必定相等。
9. 解方程 \( 2x^3 - 8 = 0 \)。
解答:首先将方程改写为 \( 2x^3 = 8 \),然后两边同时除以2,得到 \( x^3 = 4 \)。
对两边同时开立方根,得到 \( x = \sqrt[3]{4} \)。
五、应用题10. 一个立方体的体积是 \( 27 \) 立方厘米,求这个立方体的边长。
解答:设立方体的边长为 \( x \) 厘米,那么 \( x^3 = 27 \)。
对两边同时开立方根,得到 \( x = \sqrt[3]{27} = 3 \) 厘米。
立方根与方程练习题一、计算题1. 计算:$\sqrt[3]{27}$2. 计算:$\sqrt[3]{64} \sqrt[3]{125}$3. 计算:$\sqrt[3]{216} + \sqrt[3]{8}$4. 计算:$\sqrt[3]{1000} \times \sqrt[3]{1}$5. 计算:$\frac{\sqrt[3]{64}}{\sqrt[3]{27}}$二、填空题1. 已知 $\sqrt[3]{x} = 3$,则 $x$ 的值为______。
2. 已知 $\sqrt[3]{x+5} = 2$,则 $x$ 的值为______。
3. 已知 $\sqrt[3]{x2} + \sqrt[3]{x+2} = 6$,则 $x$ 的值为______。
4. 已知 $\sqrt[3]{x^2 5x + 6} = 2$,则 $x$ 的值为______或______。
5. 已知 $\sqrt[3]{x^3 3x^2 + 3x 1} = 1$,则 $x$ 的值为______。
三、解答题1. 解方程:$\sqrt[3]{x1} = 2$2. 解方程:$\sqrt[3]{x+3} \sqrt[3]{x3} = 6$3. 解方程:$\sqrt[3]{x^2 5x + 6} + \sqrt[3]{x^2 + 5x + 6} = 10$4. 解方程:$\sqrt[3]{x^3 3x^2 + 3x 1} \sqrt[3]{x^3 +3x^2 + 3x + 1} = 0$5. 解方程:$\sqrt[3]{x^2 + 4} = \sqrt[3]{x} + 2$四、应用题1. 一个立方体的体积为 $64$ 立方厘米,求其棱长。
2. 一个正方形的面积为 $81$ 平方厘米,求其边长。
3. 一个数的立方根与它的平方根之和为 $10$,求这个数。
4. 一个数的立方与它的平方之差为 $48$,求这个数。
5. 一个数的立方根与它的平方根之差为 $1$,求这个数。
立方根习题精选(二)1.-35是的立方根。
2.当x3.立方根等于本身的数有。
4.若m是a的立方根,则-m是的立方根。
56.若x3=a,则下列说法正确的是()7.-7的立方根用符号表示应为()ABCD.84a=-成立,那么a的取值范围是()A.a≤4B.-a≤4C.a≥4D.任意实数9.下列四种说法中,正确的是()①1的立方根是1;②127的立方根是±13;③-81无立方根;④互为相反数的两个数的立方根互为相反数。
A.①②B .①③C .①④D .②④10.a <0,那么a 的立方根是()AB .CD11.下列各数有立方根的有()①27,②5,③0,④12,⑤-16,⑥-10-6 A .3个B .4个C .5个D .6个12.求下列各数的立方根:(1)21027; (2)-0.008(3)(-4)314)x 3<的立方根是。
15。
16.下列式子中不正确的是()A 235=B 6=±C0.4=D1 5 =17A.正数B.负数C.非正数D.非负数184=的值是()A.-3B.3C.10D.-1019.当a<0得()A.-1B.1C.0D.±120.求下列各式的值:(1(2(3)21.若x 是64。
22.求下列各式中x 的值。
(1)(x-3)3-64=0(2325x 116=-23x y的值。
(一)新型题24是一个整数,那么最大的负整数a 是多少?252a 1=-,求a 的值.(二)课本习题变式题26.(课本P103第4题变式题)一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,求这个正方体的表面积.(三)易错题27.(2)当x(四)难题巧解题28.若a 、b 互为相反数,c 、d 1的值.(五)一题多变题29的平方根是。
的平方根是±3,则a =。
的立方根是2,则a =。
[数学在学校、家庭、社会生活中的应用]30.要用体积是125cm 3的木块做成八个一样的小正方体,那么这八个小正方体的棱长是多少?[数学在生产、经济、科技中的应用]31.要用铁皮焊制正方体水箱,使其容积为1.728m3,问至少需要多大面积的铁皮?[自主探究]32.(1)观察下表,你能得到什么规律?≈(2) 2.22[潜能开发]33.请分别计算下列各式的值:,.从中你能发现什么规律?能用数学符号表示出来吗??[信息处理]34.在一次设计比赛中,两位参赛者每人得到1m3的可塑性原料,甲把它塑造成一个正方体,乙把它塑造成一个球体(损耗不计).比赛规定作品高度不超过1.1m,请你利用所学知识,分析说明哪一个人的作品符合要求?[开放实践]35.如果A a+3b的算术平方根,B=2a-1-a2的立方根,并且a、b满足关系式a-2b+3=2,求A+B的立方根.[中考链接]36.(2004·山东济宁()A.2B.-2D37.(2004·福州)如果x 3=8,那么x =。
2023中考数学立方根练习题及答案立方根是数学中的一个重要概念,它在数学运算和解题中具有广泛的应用。
为了帮助同学们更好地掌握立方根的计算方法和应用技巧,以下是一些针对2023中考数学立方根的练习题及答案。
练习题一:计算立方根1. 计算∛272. 计算∛5123. 计算∛0.0084. 计算∛1,0005. 计算∛1答案:1. ∛27 = 32. ∛512 = 83. ∛0.008 = 0.24. ∛1,000 = 105. ∛1 = 1练习题二:立方根的运算法则1. 简化表达式:∛(2^3 × 3^2 × 5)2. 简化表达式:∛(64 ÷ 4^2)3. 简化表达式:∛(8^2 × 4)4. 求 2∛(8^2) 的值答案:1. ∛(2^3 × 3^2 × 5) = ∛(8 × 9 × 5) = 6∛52. ∛(64 ÷ 4^2) = ∛(64 ÷ 16) = ∛4 = 23. ∛(8^2 × 4) = ∛(64 × 4) = ∛256 = 84. 2∛(8^2) = 2 ×∛64 = 2 × 4 = 8练习题三:立方根的应用1. 若正方体的边长为 a cm,则它的体积 V (cm³) 可表示为 V = a^3。
已知正方体的体积为 125 cm³,求它的边长。
2. 某球形鱼缸的水容积为4,096 π cm³,求其半径 r (cm)。
3. 已知 x > 0,且 x^3 = 0.001,求 x 的值。
答案:1. V = a^3,已知 V = 125,代入得 125 = a^3,两边开立方根得∛125 = a,即 a = 5。
因此,正方体的边长为 5 cm。
2. 已知V = 4,096 π,根据球体积公式 V = (4/3)πr^3,将公式与已知的 V 对比可得(4/3)πr^3 = 4,096 π。
(1) 27216 (2) 一10人第六章实数6.2立方根1. -27的立方根是A. 2B. ±2C. 72D. +724 . 一个立方体的体积为64,则这个立方体的棱长的算术平方根为A. ±4B. 4C. ±2D. 25 .下列说法正确的是A.如果一个数的立方根等于这个数本身,那么这个数一定是零8. 一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D.负数没有立方根 6・^25=.7 .如果一个数的平方根等于这个数的立方根,那么这个数是8 .若& =-7,则 4= 9 .已知,2“-1+(〃 + 3)2 =0,则10 .求下列各数的立方根:A. 3B. -3 2 .判断下列说法错误的是A. 2是8的立方根c.--是-的立方根3 273 .遮的算术平方根是C. 9D. -9 B. ±4是64的立方根 D. (-4) 3的立方根是-411.已知4是%-2的算术平方根,2-154-〃的立方根为-5.(1)求”和b的值;(2)求2b-4-4的平方根.12.求下列各式中的x:(1) 8x3+27=0;(2)64 (x+1) 3=27.13.小明买了一箱苹果,装苹果的纸箱的尺寸为50x40x30 (长度单位为厘米),在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?现小明要将这箱苹果分装(结果精确到1厘米)14 .已知一个正数的两个平方根分别为2,〃-6和3+小,则,〃-9的立方根是 _________ .15 .若x+17的立方根是3,则3x-5的平方根是 ____________ .16 .已知 丽[=102, «=0.102,则 4,已知新欣=1.558, #7=155.8,则用17 . (2018•恩施州)64的立方根为D. -4(2018•济宁)归的值是D. -3(2018•泰州)8的立方根等于(2018•常德)-8的立方根是 K 好题参考答东 1 .【答案】B【解析】因为(—3)3 = -27,所以-27的立方根是-3,故选B.2 .【答案】B 【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确:根据43=64,可知64的立方根为 4,故不正确;根据(-1)[-3,可知-2是-上■的立方根,故正确:根据立方根的意义,可知(-4尸3 27 3 27 的立方根是~4,故正确,故选B.3 .【答案】C【解析】V 版=2, 2的算术平方根是日 :.双的算术平方根是母, 故选C.4 .【答案】D【解析】•・•立方体的体枳为64, .,.它的棱长=陀=4,•••它的棱长的算术平方根为:2,故选D.B. -85 .【答案】B【解析】A.如果一个数的立方根等于这个数本身,那么这个数一定是0或±h C.一个数的立方根不 是正数就是负数,还有⑦D.负数有一个负的立方根,故选B.6 .【答案】5【解析】根据立方根的意义〉由5^=125,可知何=3,故答案为:5.7 .【答案】0【解析】根据平方根与立方根的定义,可知0的平方根等于。
立方根练习题及答案### 立方根练习题及答案#### 一、选择题1. 立方根的定义是:如果一个数的三次方等于另一个数,那么这个数就是另一个数的______。
A. 平方根B. 立方根C. 四次方根D. 五次方根答案:B2. 计算下列哪个数的立方根是整数。
A. 8B. 27C. 64D. 125答案:B3. 立方根的符号规律是:正数的立方根是______,负数的立方根是______。
A. 正数,正数B. 正数,负数C. 负数,负数D. 负数,正数答案:B#### 二、填空题4. 计算\( \sqrt[3]{64} \)的值是______。
答案:45. 如果\( a \)是\( b \)的立方根,那么\( a^3 \)等于______。
答案:b6. 立方根\( \sqrt[3]{-1} \)的值是______。
答案:-1#### 三、计算题7. 计算下列各数的立方根:- \( \sqrt[3]{-8} \)- \( \sqrt[3]{0} \)- \( \sqrt[3]{1} \)答案:- \( \sqrt[3]{-8} = -2 \)- \( \sqrt[3]{0} = 0 \)- \( \sqrt[3]{1} = 1 \)8. 某数的立方根是2,求这个数。
答案:8#### 四、应用题9. 一个正方体的体积是27立方米,求它的棱长。
答案:棱长为3米,因为\( 3^3 = 27 \)。
10. 一个立方体的体积是64立方厘米,求它的底面积。
答案:底面积为4平方厘米,因为\( 4^3 = 64 \),底面积\( a^2 \),其中\( a = 4 \)。
#### 五、综合题11. 一个数的立方根等于它的平方根,求这个数。
答案:这个数是1或者0,因为\( 1^3 = 1 \)且\( 1^2 = 1 \),\( 0^3 = 0 \)且\( 0^2 = 0 \)。
12. 一个立方体的体积是125立方厘米,如果将其切割成两个相同的小立方体,每个小立方体的体积是多少?答案:每个小立方体的体积是\( \frac{125}{2} = 62.5 \)立方厘米。
(完整版)立方根和几何立方根练习题
前言
本练题旨在帮助学生巩固立方根和几何立方根的概念,并提供相应的练题,以帮助学生熟练运用这些概念。
立方根
立方根是指一个数的立方等于该数的算术根。
常用符号表示立方根为∛。
练题 1
计算以下数的立方根:
1. ∛8
2. ∛27
3. ∛125
4. ∛1000
练题 2
给出一个数 x,找出一个正整数 y,使得 y 的立方等于 x。
计算以下数的结果:
1. x = 64
2. x = 216
3. x = 729
4. x = 1000
几何立方根
几何立方根是指一个体积为一个数的立方体的边长。
常用符号表示几何立方根为³√。
练题 3
计算以下立方体的边长:
1. 一个体积为 8 的立方体
2. 一个体积为 27 的立方体
3. 一个体积为 64 的立方体
4. 一个体积为 125 的立方体
练题 4
给出一个数 x,找出一个边长为 y 的立方体,使得该立方体的体积等于 x。
计算以下数的结果:
1. x = 8
2. x = 27
3. x = 64
4. x = 125
总结
通过本文档提供的练习题,希望能帮助学生掌握立方根和几何立方根的概念,并加强运用能力。
练习题的答案可以自行计算,以检验自己的学习成果。
初一立方根计算题100道全文共四篇示例,供读者参考第一篇示例:初一学生学习数学时经常会遇到关于立方根的计算题,这是一个基础而重要的数学知识点。
通过计算立方根可以帮助学生加深对数字的理解,培养他们的逻辑思维能力,提高他们的计算能力。
下面我们就来来练习一下初一的立方根计算题,总共有100道题目,让我们一起来挑战吧!1. ∛8 = 22. ∛27 = 33. ∛64 = 44. ∛125 = 55. ∛216 = 66. ∛343 = 77. ∛512 = 88. ∛729 = 99. ∛1000 = 1010. ∛1331 = 11接下来是一些稍微复杂一点的计算题:通过这些题目的练习,可以帮助学生熟练掌握立方根的计算方法,提高他们的数学水平。
这些题目也可以帮助学生培养耐心和细心,提高他们的解决问题的能力。
希望各位同学都能认真对待这些计算题,努力提高自己的数学水平!在数学学习的道路上,没有捷径可走,只有不懈的努力才能取得进步。
希望各位同学都能认真对待这些题目,不断提高自己的数学水平,成为优秀的数学学习者!通过解决这些立方根计算题,学生可以不断提高自己的数学水平,锻炼自己的逻辑思维能力和计算能力。
希望大家都能从中获得提高,成为数学界的新星!数学是一门很神奇的学科,需要耐心和细心去探究其中的奥秘。
通过解决这些立方根计算题,希望学生能够提高自己的数学水平,更好地应对未来的学习挑战。
第二篇示例:初一学生学习数学时,立方根是一个比较重要的概念。
通过计算立方根,可以锻炼学生的逻辑思维能力和数学运算能力。
今天我们就来制作一份关于初一立方根计算题的练习题,共计100道题目,帮助学生巩固对立方根的理解和运用。
一、基础题1. 8的立方根是多少?2. 27的立方根是多少?3. 64的立方根是多少?4. 125的立方根是多少?5. 216的立方根是多少?二、进阶题三、综合题11. 计算64的1/3次方。
12. 计算729的1/3次方。
绝密★启用前一、单选题1)A.2 B.﹣2 C.D.±2【答案】C【解析】【分析】利用立方根定义计算即可求出值.【详解】=2,2的平方根是.故选C.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解答本题的关键.2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是()A.①②③B.①②④C.②③④D.①③④【答案】B【解析】【分析】根据立方根的定义和性质解答即可.【详解】解:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.【点睛】本题考查立方根,熟练掌握立方根的定义和性质是解题的关键.3.立方根等于它本身的有( )A.0,1 B.-1,0,1 C.0, D.1【答案】B【分析】根据立方根性质可知,立方根等于它本身的实数0、1或-1. 【详解】解:∵立方根等于它本身的实数0、1或-1. 故选B . 【点睛】本题考查立方根:如果一个数x 的立方等于a ,那么这个数x 就称为a 的立方根,例如:x 3=a ,x 就是a 的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. 4.有理数-8的立方根为( ) A .-2 B .2C .±2D .±4【答案】A 【分析】利用立方根定义计算即可得到结果. 【详解】解:有理数-8 故选A . 【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.5.比较2 )A .2<<B .2<<C .2<D 2<【答案】C 【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小. 【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<< 故选C . 【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键. 6.下列计算正确的是( )A .3=-B =C 6±D .【答案】D 【分析】直接利用二次根式的性质以及立方根的性质分析得出答案. 【详解】解:3=,故此选项错误;=6=,故此选项错误;D.0.6=-,正确. 故选D . 【点睛】此题主要考查了平方根和算术平方根的性质以及立方根的性质,正确掌握相关性质是解题关键.7的结果是 ( )A .±B .C .±3D .3【答案】D 【解析】∵33=27,3=.故选D . 8.64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A考点:立方根.9.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C .有意义时,0x ≤D .0.1的平方根是0.01±【答案】C 【详解】>0,故A 不正确; 根据一个数的平方为非负数,可知a≥0,故不正确; 根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确; 根据一个数的平方等于a ,那么这个数就是a 的平方根,故不正确. 故选C10.利用计算器计算时,依次按键下:,则计算器显示的结果与下列各数中最接近的一个是( ) A .2.5 B .2.6 C .2.8 D .2.9【答案】B 【分析】的近似值即可作出判断. 【详解】2.646≈,∴最接近的是2.6, 故选B . 【点睛】本题主要考查了计算器,属于基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.11.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A .4 cm ~5 cm 之间 B .5 cm ~6 cm 之间 C .6 cm ~7 cm 之间D .7 cm ~8 cm 之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.12.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分【答案】B【详解】解:-1的绝对值是1,2 的倒数是12,-2的相反数是2,1的立方根是1,-1和7的平均数是3,错一个,减去20分,得分是80,故选:B【点睛】本题考查绝对值,倒数,相反数,立方根,平均数.13.下列结论正确的是( )A.64的立方根是4±B.18-没有立方根C.立方根等于本身的的数是0 D=【答案】D【解析】选项A,64的立方根是±4;选项B,18-的立方根是12-;选项C,立方根等于本身的的数是0和±1;选项D,正确,故选D.14.下列说法正确的是()A.-64的立方根是4 B.9的平方根是±3C.4的算术平方根是16 D.0.1的立方根是0.001【答案】B【解析】【分析】依据立方根、平方根和算术平方根的性质求解即可.【详解】A.−64的立方根是−4,故A错误;B.9的平方根是±3,故B正确;C.4的算术平方根是2,故C错误;D.0.1是0.001的立方根,故D错误.故选B.【点睛】考查平方根,算术平方根以及立方根,掌握它们的概念是解题的关键.15.的值是()A.1 B.﹣1 C.3 D.﹣3【答案】B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B . 【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,16=0.1738 1.738,则a 的值为( ) A .0.528 B .0.0528 C .0.00528 D .0.000528【答案】C 【分析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案 【详解】0.528= 1.738= , ∴a=0.00528, 故选C. 【点睛】此题考查了立方根,熟练掌握立方根的变化规律是本题的关键.17.下列语句:① 4 ② 2± ③ 平方根等于本身的数是0和1 ④ )个A .1B .2C .3D .4【答案】A 【解析】试题分析:①4=,的算术平方根为2,故错误;B 2==,故错误;③、平方根等于本身的数只有0,故错误;④22==,=故正确,则本题选A .18.下列计算正确的是( )A ±3B 2C 3D =【答案】B 【分析】根据算术平方根与立方根的定义即可求出答案. 【详解】解:(A )原式=3,故A 错误; (B )原式=﹣2,故B 正确;(C3,故C错误;(D D错误;故选B.【点睛】本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键. 19.下列各组数中互为相反数的是()A.-2B.-2C.2与()2D.|【答案】A【解析】选项A. -2=2,选项B. -2=-2,选项C. 2与(2=2,选项,故选A.20.(2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或7【答案】D【分析】利用平方根及立方根的定义求出x与y的值,即可确定出x+y的值.【详解】∵(2=9,9的平方根x=±3,y=4,∴x+y=7或1.故答案为7或1.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.21.下列说法正确的是( )A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D .负数没有立方根 【答案】B 【解析】A. 如果一个数的立方根等于这个数本身,那么这个数一定是零或±1 ; C. 一个数的立方根不是正数就是负数,还有0;D. 负数有一个负的立方根故选B.22.下列说法中,不正确的是( )A .10B .2-是4的一个平方根C .49的平方根是23D .0.01的算术平方根是0.1 【答案】C 【分析】根据立方根,平方根和算术平方根的定义,即可解答. 【详解】解:A. 10,正确; B. -2是4的一个平方根,正确; C.49的平方根是±23,故错误; D. 0.01的算术平方根是0.1,正确. 故选C . 【点睛】本题考查了平方根和算术平方根,立方根,解决本题的关键是熟记立方根,平方根和算术平方根的定义.23.下列各式正确的是( )A .0.6=±B 3=±C 3=D 2=-【答案】A 【解析】3=,则B 3=-,则C 2=,则D 错,故选A . 24.下列计算中,错误的是( )A .B 34=-C 112=D .25=- 【答案】D 【解析】试题解析:A.正确. B.正确. C.正确.D.22.55⎛⎫=--= ⎪⎝⎭ 故错误. 故选D.25.若一个数的平方根是±8,那么这个数的立方根是( ) A .2 B .±4 C .4 D .±2【答案】C 【解析】 【分析】根据平方根定义,先求这个数,再求这个数的立方根. 【详解】若一个数的平方根是±8,那么这个数是82=64,4=. 故选:C 【点睛】本题考核知识点:平方根和立方根.解题关键点:理解平方根和立方根的意义. 26.下列各组数中互为相反数的一组是( )A .2--B .-4与C .与D .【答案】C 【解析】 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【详解】A、-|-2|=-2,故A错误;B、-4=B错误;C、C正确;D、不是相反数,故D错误;故选C.【点睛】本题考查了相反数,利用了相反数的意义.27.()A.2 B.-2 C.±2 D.不存在【答案】A【解析】【分析】根据立方根的定义求解即可.【详解】∵-2的立方等于-8,∴-8的立方根等于-2,=-.2=--=.∴(2)2故选A.【点睛】此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.28,则x和y的关系是().A.x=y=0 B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数, 故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y . 29.下列说法正确的是( )A .4的平方根是±2B .8的立方根是±2C 2=±D 2=-【答案】A 【解析】解:A .4的平方根是±2,故本选项正确; B .8的立方根是2,故本选项错误;C =2,故本选项错误;D =2,故本选项错误; 故选A .点睛:本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.30.下列等式正确的是( )A .712=± B .32=-C .3=-D .4=【答案】D 【分析】原式各项利用立方根及算术平方根定义计算即可得到结果. 【详解】A 、原式=712,错误; B 、原式=-(-32)=32,错误;C 、原式没有意义,错误;D、原式=4,正确,故选D.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.31的立方根是( )A.-1 B.0 C.1 D.±1【答案】C【解析】【详解】,=1,故选C.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.32.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;5=-⑤一定是负数A.1个B.2个C.3个D.4个【答案】B【分析】根据平方根、立方根的定义进行判断即可得.【详解】①负数没有平方根,但负数有立方根,正确;②一个数的立方根等于它本身,则这个数是0或1或-1,故错误;=,故错误;5,3的平方根是⑤当a=0时,,故错误;综上,正确的有2个,故选B.【点睛】本题考查了平方根、立方根的定义,熟练掌握相关的定义是解题的关键.33)A.2 B.±2 C D.【答案】C【分析】的值,再继续求所求数的算术平方根即可.【详解】,而2,故选C.【点睛】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.34)A.±2 B.±4 C.4 D.2【答案】D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.35.若a是(﹣3)2( )A.﹣3 B C D.3或﹣3【答案】C【解析】分析:由于a是(﹣3)2的平方根,则根据平方根的定义即可求得a的值,进而求得代数式的值.详解:∵a是(﹣3)2的平方根,∴a=±3,C.点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.36.8的相反数的立方根是()A.2 B.12C.﹣2 D.12【答案】C【解析】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C.【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键.37时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10-1)C.D-1【答案】B【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零. 于是,先将原来显示的结果左端的数字“1”1. 为了使该结果的整数部分不为零,再将该结果的101. 这样,位于原来显示的结果左端的数字消失小数点向右移动一位,即计算)了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.101的值.根据以上分析,为了满足要求,应该在这个计算器中计算)故本题应选B.点睛:本题综合考查了计算器的使用以及小数的相关知识. 本题解题的关键在于理解计算器显示数字的特点和规律. 本题的一个难点在于如何构造满足题目要求的算式. 解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失. 只有当整数部分不为零时,左端的零才不显示. 另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理.38的立方根是()A.2 B. 2 C.8 D.-8【答案】A【解析】=8,然后根据立方根的意义,求得其立方根为2. 故选A.39的值约为( )A.3.049 B.3.050C.3.051 D.3.052【答案】B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B.40.下列命题中正确的是()(1)0.027的立方根是0.3;(2(3)如果a是b的立方根,那么ab≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A .(1)(3)B .(2)(4)C .(1)(4)D .(3)(4)【答案】A 【解析】根据立方根的概念和性质,可知0.027的立方根为0.3,故(1)正确;根据一个负数的立方根为负数,故(2)不正确;如果a 是b 的立方根,那么ab≥0(a 、b 同号),故(3)正确;一个数的平方根与其立方根相同,则这个数是0,故(4)错误. 故选:A.点睛:本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.(a 不等于0)如果x 2=a (a≥0),则x 是a 的平方根.若a >0,则它有两个平方根,我们把正的平方根叫a 的算术平方根:若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0:负数没有平方根. 41.下列计算正确的是( ) A.﹣4 B4C﹣4D﹣4【答案】D 【解析】试题分析:根据二次根式的意义,可知被开方数为非负数,因此A 不正确;根据算术平方根是平方根中带正号的,故B{0aa a ==-(0)(0)(0)a a a =><,故C ,故D 正确. 故选D二、解答题42.已知某正数的两个平方根分别是a ﹣3和2a +15,b 的立方根是﹣2.求﹣2a ﹣b 的算术平方根. 【答案】4【解析】试题分析:根据正数的平方根有两个,且互为相反数,得出a-3+2a+15=0,求出a,再根据b的立方根是-2,求出b,再求-2a-b的算术平方根.解:由题意得a-3+2a+15=0,解得a=-4,由b的立方根是-2,得b=(-2)3=-8.则-2a-b=-2×(-4)-(-8)=16,则-2a-b的算术平方根是4.43.计算下列各题:(1(2.【答案】(1)1 (2)11 4 -【解析】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -44.已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c 的平方根.【答案】±4.【解析】【分析】根据题意分别求得a,b,c的值,然后代入式子求解即可.【详解】解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c ﹣3的平方根是±2, ∴c ﹣3=4,即c=7; ∴a+b+c=0+9+7=16, 则a+b+c 的平方根是±4. 【点睛】本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键. 45.求出下列x 的值: (1)4x 2﹣81=0; (2)8(x+1)3=27.【答案】(1)92x =±.(2)12x =【分析】(1)先整理成x 2=a ,直接开平方法解方程即可; (2)先整理成x 3=a 的形式,再直接开立方解方程即可. 【详解】解:(1)24x 810-=,∴2814x =, 9x 2∴=±;(2)()38x 127+=, ∴327(1)8x +=, ∴312x +=, ∴12x =【点睛】本题考查算术平方根和立方根的相关知识解方程,属于基础题..关键是熟练掌握相关知识点,要灵活运用使计算简便.46.已知x ﹣2的一个平方根是﹣2,2x +y ﹣1的立方根是3,求x +y 的算术平方根.【解析】 【分析】根据x ﹣2的一个平方根是﹣2,可以得到x 的值,根据2x +y ﹣1的立方根是3,可以得到y 的值,从而可以求得x +y 的算术平方根. 【详解】∵x ﹣2的一个平方根是﹣2,∴x ﹣2=4,解得:x =6. ∵2x +y ﹣1的立方根是3,∴2x +y ﹣1=27.∵x =6,∴y =16,∴x +y =22,∴x +y .即x +y 【点睛】本题考查了立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.47.已知某正数的平方根是2a ﹣7和a+4,b ﹣12的立方根为﹣2. (1)求a 、b 的值; (2)求a+b 的平方根.【答案】(1)1a =,4b =;(2)【解析】试题分析:利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据平方根的定义求出+a b 的平方根.试题解析:(1)由题意得,2a −7+a +4=0, 解得:a =1, b −12=−8, 解得:b =4; (2)a +b =5,a +b 的平方根为48.已知x 的两个不同的平方根分别是a +3和2a -15,且 4=,求x ,y的值.【答案】x=49,y=17 【解析】试题分析:根据平方根的性质,一个正数平方根有两个,它们互为相反数,因此可列方程求出a 的值,然后根据立方根的意义,求出y 的值. 试题解析:∵x 的两个不同的平方根分别是a +3和2a -15 ∴a +3+2a -15=0解之,得a =4∴x =(a +3)2=494=∴49+y -2=64解之,得y =1749.已知 2x-y 的平方根为 ±3, -2是 y 的立方根,求 -4xy 的平方根.【答案】±4 【解析】试题分析:首先根据平方根和立方根的性质列出关于x 和y 的二元一次方程组,从而得出x 和y 的值,然后求出-4xy 的平方根.试题解析:根据题意得:298x y y -=⎧⎨=-⎩ , 解得:128x y ⎧=⎪⎨⎪=-⎩, 则-4xy=16 ,∴4==±.点睛:本题主要考查的是平方根和立方根的性质,属于简答题型.正数的平方根有两个,他们互为相反数;零的平方根为零;负数没有平方根;每个数的立方根只有一个,正数有一个正的立方根,负数有一个负的立方根.立方根等于本身的数有0和±1;平方根等于本身的数只有0;算术平方根等于本身的数为0和1.50.计算:201811--【答案】【解析】分析:收下根据立方根、算术平方根、绝对值、立方根的性质求出各式的值,然后进行求和得出答案.详解:原式15123=-++-=.点睛:本题主要考查的是实数的计算,属于基础问题.解决这个问题的核心就是要明确各种计算法则.51.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.【答案】2.【分析】根据平方根与算术平方根的定义得到3a -b +2=16,2a -1=9,则可计算出a =5,b =1,然后计算a +b 后利用立方根的定义求解.【详解】∵2a -1的平方根是±3∴2a -1=9,即a =5∵3a -b +2的算术平方根是4,a=5∴3a -b +2=16,即b =1∴a +3b =8∴a +3b 的立方根是252.已知m M =是m 3+的算术平方根,2m 4n N -=n 2-的立方根,求:M N -的值的平方根.【答案】2【详解】解:因为m M =是m+3的算术平方根,2m 4n N -=n ﹣2的立方根,所以可得:m ﹣4=2,2m ﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n ﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M ﹣N=3﹣1=2.53.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.【答案】(1)魔方的棱长6cm ;(2)长方体纸盒的长为10cm .【解析】试题分析:(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.试题解析:(1)设魔方的棱长为xcm ,可得:x 3=216,解得:x=6,答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,6y 2=600,y 2=100,y=10,答:该长方体纸盒的长为10cm .54.解方程:()2116(2)9x -= ()3227(1)640x +-=.【答案】()11114x =,254x =,()123x =. 【解析】分析:(1)根据平方根的定义进行计算即可;(2)根据立方根的定义进行计算即可.详解:(1)(x ﹣2)2=916,x ﹣2=±34,x =±34+2,x 1=114,x 2=54; (2)(x +1)3=6427 x +1=43 x =43﹣1=13. 点睛:本题考查了立方根和平方根,掌握平方根和立方根的定义是解题的关键.55.已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4 cm.【解析】试题分析:于个正方体的体积是1000cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm 3,设截得的每个小正方体的棱长xcm ,根据已知条件可以列出方程,解方程即可求解.试题解析:设截去的每个小正方体的棱长是xcm ,则由题意得310008488x -=,解得x =4.答:截去的每个小正方体的棱长是4厘米.点睛:此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.56.已知一个正数的平方根是a+3和2a﹣15,b的立方根是﹣2,求﹣b﹣a的平方根.【答案】±2.【解析】由一个数的平方根互为相反数,有a+3+2a﹣15=0,可求出a值,又b的立方根是﹣2,可求出b值,然后代入求出答案.解:∵一个数的平方根互为相反数,∴a+3+2a﹣15=0,解得:a=4,又b的立方根是﹣2,∴b=﹣8,∴﹣b﹣a=4,其平方根为:±2,即﹣b﹣a的平方根为±2.57.已知M2m n+=m+3的算术平方根,N2m=是n﹣2的立方根.求(n﹣m)2008.【答案】1【解析】【分析】由于算术平方根的根指数为2,立方根的根指数为3,由此可以列出关于m、n的方程组,解方程组求出m和n,进而代入所求代数式求解即可.【详解】∵M2m n+=m+3的算术平方根,N2m=n﹣2的立方根,∴2m+n﹣3=2,2m﹣n=3,∴m=2,n=1,∴(n﹣m)2008=1.【点睛】本题考查了算术平方根、立方根的定义.解决本题的关键是利用根的指数知识得到未知字母的值.58.已知a是16的算术平方根,b是9的平方根,c是﹣27的立方根,求a2+b2+c3+a ﹣c+2的值.【答案】7【分析】根据算术平方根的定义,平方根的定义,立方根的定义,求出a、b、c的值,然后代入求解即可.【详解】解:因为a是16的算术平方根,所以a=4,所以a2=16,又因为b是9的平方根,所以b2=9,因为c是﹣27的互方根,所以c3=﹣27,c=﹣3,所以a2+b2+c3+a﹣c+2=16+9﹣27+4+3+2=7.【点睛】此题主要考查了算术平方根,平方根,立方根,熟记概念并列式求出a、b、c的值是解题关键.59.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c的整数部分,∴c=3,(2)由(1)可知a=5,b=2,c=3∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值是解题关键.60.我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若1的值.【答案】(1)成立;(2)-1【解析】【试题分析】举例:8和-8的立方根分别为2和-2. 2和-2互为相反数,则8和-8也互为相反数;(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.【试题解析】(1)8和-8的立方根分别为2和-2;2和-2互为相反数,则8和-8也互为相反数(举例符合题意即可),成立.(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.故答案为-1.【方法点睛】本题目是一道关于立方根的拓展题目,根据立方根互为相反数得到这两个数互为相反数;反之也成立.运用了从特殊的到一般的数学思想.61.已知2a 一1的平方根是531a b ±+-,的立方根是4,求210a b ++的平方根.【答案】 ±【解析】试题分析:由平方根的定义和列方程的定义可求得2a-1=25,3a+b-1=64,从而可求得a 、b 的值,然后可求得代数式a+2b+10的值,最后再求其平方根即可.试题解析:∵2a 一1的平方根是±5,3a+b ﹣1的立方根是4,∴2a ﹣1=25,3a+b ﹣1=64.解得:a=13,b=26.∴a+2b+10=13+52+10=75.∴a+2b+10的平方根为(或±)62.正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【答案】(1) a=﹣10;(2) 4-x的立方根是﹣5【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3﹣a+2a+7=0,∴a=﹣10,(2)由(1)可知x=169,则44-x=﹣125,∴44-x的立方根是-5.【点睛】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.63.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根.【答案】a-b的平方根是±4.【解析】分析:根据算术平方根和立方根的定义得出2a-1=9,3a+b+4=8,求出a、b的值,求出3a+b=4,根据平方根定义求出即可.详解:∵2a-1的算术平方根是3,3a+b+4的立方根是2,∴2a-1=9,3a+b+4=8,解得a=5,b=-11,∴a-b=16,∴a-b的平方根是±4.点睛:本题考查了算术平方根和立方根的定义、平方根定义等知识点,能理解平方根、立方根、算术平方根定义是解此题的关键.64.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3 900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?【答案】(1)0.9h (2)9.7km【解析】【分析】(1)根据t 2=3900d ,其中d=9(km )是雷雨区域的直径,开立方,可得答案; (2)根据t 2=3900d ,其中t=1h 是雷雨的时间,开立方,可得答案. 【详解】(1)当d =9时,则t 2=3900d ,因此t 0.9. 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(2)当t =1时,则3900d =12,因此d 答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.65.已知x+12平方根是2x+y ﹣6的立方根是2,求3xy 的算术平方根.【答案】6.【分析】由题意可知:x+12=13,2x+y ﹣6=8,分别求出x ,y 的值即可求出3xy 的值.【详解】由题意可知:x+12=13,2x+y ﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为6【点睛】本题考查了平方根和立方根的综合.66.已知5a ﹣1的算术平方根是3,3a+b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a+4b 的平方根.【答案】(1)a=2,b=3(2)±4 【分析】(1)根据算术平方根与立方根定义得出5a ﹣1=32,3a+b ﹣1=23,解之求得a 、b 的值;。
立
方根练习题一
一、填空题: 1.1的立方根是________.
2.8
33-________. 3.2是________的立方根.
4.________的立方根是1.0-.
5.立方根是6
5的数是________ 6.64
27-是________的立方根. 7.=-3)3(________.
8.3)3(-的立方根是________
9.5
3-是________的立方根. 10.若a 与b 互为相反数,则它们的立方根的和是________.
11.0的立方根是________.
12.36的平方根的绝对值是________.
13. 的立方根是729
14.327=_______.15.立方根等于它本身的数是_______.
16.109)1(-的立方根是______.
17.008.0-的立方根是________.
18.10
3-是________的立方根. 19.当x 为________时,3
33
-+x x 有意义; 当x 为________时,
385+-x x 有意义. 20.6)2(-的平方根是________,立方根是________.
二、判断题:
1.81-的立方根是2
1±;( ) 2.5-没有立方根;( )
3.2161的立方根是6
1;( ) 4.92-是7298-的立方根;( ) 5.负数没有平方根和立方根;( )
6.a 的三次方根是负数,a 必是负数;( )
7.立方根等于它本身的数只能是0或1;( )
8.如果x 的立方根是2-,那么8-=x ;( )
9.5-的立方根是35-;( )
10.8的立方根是2±;( )
11.2161-
的立方根是没有意义;( ) 12.271-的立方根是3
1-;( ) 13.0的立方根是0;( )
14.53是125
27±的立方根;( ) 15.33-是3-立方根;( )
16.a 为任意数,式子
a ,2a ,3a 都是非负数.( ) 三、选择题:
1.36的平方根是( ).
A .6±
B .6
C .6-
D .不存在
2.一个数的平方根与立方根相等,则这个数是( ).
A .1
B .1±
C .0
D .1-
3.如果b -是a 的立方根,那么下列结论正确的是( ).
A .b -也是a -的立方根
B .b 也是a 的立方根
C .b 也是a -的立方根
D .b ±都是a 的立方根
4.下列语句中,正确的是( ).
A .一个实数的平方根有两个,它们互为相反数
B .一个实数的立方根不是正数就是负数
C .负数没有立方根
D .如果一个数的立方根是这个数本身,那么这个数一定是1-或0或1
5.8的立方根是( ).
A .2
B .2-
C .4
D .4-
6.设n 是大于1的整数,则等式211=--n n 中的n 必是( ).
A .大于1的偶数
B .大于1的奇数
C .2
D .3
7.下列各式中正确的是( ).
A .416±=
B .
3)3(2-=- C .38-2-= D .5)4()3(22-=-+-
8.下列运算正确的是( ). A .
3333--=- B .3333=- C .3333-=- D .33
33-=- 四、解答题:
1.求下列各数的立方根.
(1)8515 (2)8
27- 2.求下列各式的值. (1)38- (2)327-
(3)3125.0--
(4)33)001.0(-- (5)3512 (6)36427--
3.x 取何值时,下面各式有意义?
(1)x x -+ (2)3
1-x (3)3
1--x x (4)32x 4.求下列各式中的x .
(1)27000)101.0(3-=+x (2)2523=+x
(3)12142=x (4)05121253=+x
(5)625164=x (6)19-=x
(7)871)
2(3=++x 5.化简3)1)(1(a a a a +-+. 五、计算4332381)2
1()4()4()2(--⨯-+-⨯-. 六、已知01134=+++y x ,其中x ,y 为实数,求3x -1998y -的值.
七、一个比例式的两个外项分别是和,两个内项是相等的数,求这两个内项各是多少?
八、一个长方体木箱子,它的底是正方形,木箱高米,体积立方米.求这个木箱底边的长.(精确到米)
九、一个圆形物体,面积是200平方厘米,半径r 是多少平方厘米?(??取,r 精确到厘米)
十、如果球的半径是r ,则球的体积用公式3π3
4r V =来计算.当体积500=V 立方厘米,半径r 是多少厘米?(??取,r 精确到厘米) 十一.若373-x 和343+y 互为相反数,求3y x +的值。
十二.已知0133223=+-++y c y x ,求32244y xy x --的值。
十三.已知0102622=+--+b a b a ,求322b a -的值。
十四、设x 为正整数,若1+x 是完全平方数,则它前面的一个完全平方数是(
)
A .x
B .12+-x x
C .112++-x x
D .212++-x x
参考答案
一、
1.1
2.23
-
3.8
4.-
5.216125
6.43
-
7.-27
8.-3
9.12527
-
10.0
11.0
12.6
14.3
15.-1,0,+1
16.-1
17.-
18.100027-
19.3>x ,5≤x 且8-≠x 20.±8,4
二、1.×2.×3.√4.√5.×6.√7.×8.√
9.√10.×11.×12.√13.√14.×15.√16.×
三、1.A2.C3.C4.D5.A6.B 7.C 8.D 9.C
四、1.(1)-1 (2) 101 (3)-7 (4) 25 (5)8 (6) 2
3- (7)0 (8)- 2.(1)-2 (3)-3 (3) (4) (5)8 (6)64
(7)- (8)75
(9)-a(10)a (11)34 (12)27
3.(1)0=x (2)x 取全体实数(3) 1≥x 且3≠x (4)x 取任何实数
4.(1)-400 (2)23
(3)211
± (4)58
- (5)25
± (6)-1
(7)25- 5.a
五、-33 六、2726
-
七、084.0±
八、米
九、厘米
十、厘米。