人教版版七年级数学下册《立方根》精品教案
- 格式:doc
- 大小:333.50 KB
- 文档页数:7
立方根教课目的1、认识立方根的观点,初步学会用根号表示一个数的立方根,让学生领会一个数的立方根的独一性.2、认识开立方与立方互为逆运算,会用立方运算求某些数的立方根,分清一个数的立方根与平方根的差别。
3、能用有理数预计一个无理数的大概范围,使学生形成估量的意识,培育学生的估量能力,会用计算器计算立方根要点、难点要点:认识数的立方根的观点和性质,会用三次根号表示数的立方根,用立方运算求一个数的立方根.难点:用立方运算求一个数的立方根,认识平方根与立方根的差别.教课过程一、复习请同学们回想上节课我们是如何定义平方根的?它的符号怎么表示?生:假如x2a,那么x叫做a的平方根(或二次方根)。
符号表示:“a”此中a0(教师板书)师:昨天我们还学习了一种新的运算,是什么运算呢?它是怎么定义的?生:开立方:求一个数a的平方根的运算,叫做开平方。
平方(互为逆运算)师:那么平方根有什么样的性质呢?生:正数有两个平方根,它们是互为相反数;0的平方根仍是0;负数没有平方根。
设计企图:经过对平方根的复习,能够增添学生对平方根的印象,同时,教师也能经过学生复习过程的表现,间接认识学生对知识的掌握程度,也能让学生再学习完立方根的新知识后,更好的对这两个观点进行比较。
二、情形导入问题1:要制作一种容积为27m3的正方体形状的包装箱,这类包装箱的棱长应当是多少?你是怎么知道的?设这类包装箱的棱长为xm,则x3=27.这就是求一个数,使它的立方等于27.由于33=27,所以x=3.即这类包装箱的边长应为3m.三、研究新知此题是已知一个数x的立方,求这个数的值,而平方根是已知一个数的平方,求这个数,从而学生能够类比平方根的观点概括出立方根的观点。
师:对照平方根的定义,你能概括出立方根的定义是什么吗?学生讨论思虑,教师指引概括观点:观点概括:假如一个数的立方等于a,这个数叫做a的立方根(也叫做三次方根),即假如x3a,那么x叫做a的立方根(教师板书)师:所以,在上边问题中,由于3327,所以3是27近似开平方的运算,我们也能够定义出开立方运算:的立方根。
6.2 立方根一、教学目标【知识与技能】1.了解立方根的概念,会用开立方运算求一个数的立方根.2.了解立方根的性质,并学会用计算器计算一个数的立方根或立方根的近似值.3.分清一个数的立方根与平方根的区别.【过程与方法】1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.【情感态度与价值观】1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】立方根的概念、求法和性质.【教学难点】立方根的求法,立方根与平方根的联系及区别.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?(二)探索新知1.出示课件4-7,探究立方根的概念和性质教师问:如图所示,二阶魔方由几个小立方体构成呢?学生答:二阶魔方由8个小立方体构成.教师问:三阶魔方由几个小立方体构成呢?学生答:三阶魔方由27个小立方体构成.教师问:四阶魔方由几个小立方体构成呢?学生答:四阶魔方由64个小立方体构成.教师问:如果一个魔方由27个小立方体构成,它应该是几阶魔方?学生答:解:设这个魔方为x 阶,则: x3 =27. 因为33 =27, 所以x =3.即这个魔方为3阶魔方.教师问:因为3的立方等于27,那么3就叫做27的立方根.想一想:什么数的立方等于-27?学生答:(-3)3=-27,因为-3的立方等于-27,那么-3就叫做-27的立方根.总结点拨:(出示课件8)立方根的定义一般地,如果一个数的立方等于a,这个数就叫做a的立方根或三次方根.教师问:如何表示一个数的立方根?师生一起解答:一个数a的立方根可以表示为:根指数被开方数读作:三次根号 a其中a是被开方数,3是根指数,3不能省略.教师出示问题:完成下表:填一填:教师依次展示学生答案:如下表所示:总结点拨:(出示课件10)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.教师强调:1.立方根是它本身的数有1, -1, 0;2.平方根是它本身的数只有0.考点1:求一个数的立方根求下列各数的立方根.(出示课件11)(1) 27 (2)-27 (3) 1(4)-0.064 (5) 027师生共同讨论后解答: 教师依次展示学生解答过程:学生1解:(1)∵33=27,∴27的立方根是3,即 √273=3 . 学生2解:(2)∵(-3)3=-27,∴-27的立方根是-3,即 √−273=-3 . 学生3解:(3)∵(13)3=127,∴127的立方根是13,即 √1273=13.学生4解:(4)∵(-0.4)3=-0.064,∴-0.064的立方根是-0.4,即 √−0.0643=-0.4 . 学生5解:(5)∵03=0,∴0的立方根是0,即 √03=0 . 出示课件13,学生自主练习后口答,教师订正. 2.出示课件14-15,探究立方根的性质 教师出示问题:完成下面的问题: 因为√−83= _______;-√83=_________. 学生答:√−83= __-2_____;-√83=____-2_____. 教师问:所以可以得到:√−83和-√83有何关系呢? 学生答:√−83= -√83. 教师问:完成下面的问题:因为√−273= _______;-√273=_________. 所以√−273______ -√273.学生答:因为√−273= __-3_____;-√273=___-3______. 所以√−273___=___ -√273.教师问:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗? 学生答:互为相反数的数的立方根也互为相反数.即:√−a 3= -√a 3. 教师问:完成下面的问题:√233= _______;√(−2)33=_________. √433= _______;√(−3)33=_________.√033= _______.教师依次展示学生答案: 学生1答:√233= ___2____;√(−2)33=___-2______. 学生2答:√433= ___4____;√(−3)33=___-3______.学生3答:√033= ___0____.教师总结如下:√233= ___2____;√(−2)33=___-2______.√433= ___4____;√(−3)33=___-3______. √033= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有√a 33=a. 教师出示问题:完成下面的问题:(√83)3= _______;(√−83)3==_________. (√273)3= _______;(√−273)3==_________. (√03)3= _______. 教师依次展示学生答案:学生1答:(√83)3= ___8____;(√−83)3=___-8______. 学生2答:(√273)3= __27_____;(√−273)3==___-27____. 学生3答:(√03)3= ___0____. 教师总结如下:解答如下:(√83)3= ___8____;(√−83)3=___-8______. (√273)3= __27_____;(√−273)3==___-27______. (√03)3= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有(√a 3)3=a. 3.出示课件16,探究立方根的有关计算教师问:类似开平方运算,求一个数的立方根的运算叫作“开立方”.观察下面的问题,开立方和立方是什么关系呢?学生答:“开立方”与“立方”互为逆运算. 考点2:立方根的计算求下列各式的值:(出示课件17) (1)√643;(2)-√183;(3)√−27643学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√643=4; 学生2解:(2)-√183 =-12; 学生3解:(3)√−27643=-34.出示课件18,学生自主练习后口答,教师订正.教师总结:平方根与立方根的区别和联系(出示课件19)4.出示课件20,探究利用计算器求立方根教师问:由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.请同学们完成下面的题目:用计算器求下列各数的立方根:343,-1.331.教师依次展示学生解答过程: 学生1显示:7所以:√3433=7.学生1显示:-1.1所以:√−1.3313=-1.1.教师强调:不同的计算器的按键方式可能有所差别! 出示课件21,学生自主练习,教师给出答案。
人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。
本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。
但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。
三. 教学目标1.了解立方根的概念,掌握求立方根的方法。
2.能够应用立方根解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.立方根的概念和求法。
2.负数的立方根的理解。
3.应用立方根解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。
六. 教学准备1.PPT课件。
2.练习题和实际问题。
3.教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。
”引导学生思考和讨论,引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。
同时,讲解如何求一个数的立方根,以及负数的立方根。
3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。
练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。
4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。
如“一个立方体的体积是-8立方米,求这个立方体的棱长。
”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。
引导学生思考和讨论,培养学生的数学思维能力。
《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。
人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。
本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。
但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。
三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。
2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。
2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。
3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。
六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、直尺等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”让学生思考并讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。
同时,引导学生回顾平方根的知识,对比二者之间的异同。
部编⼈教版数学七年级下册《⽴⽅根》省优质课⼀等奖教案《⽴⽅根》教案⼀、教学⽬标1.知识⽬标:掌握⽴⽅根、开⽴⽅的概念,⽴⽅根的表⽰⽅法,⽴⽅根的特征。
2.能⼒⽬标:会运⽤⽴⽅根概念求⼀个完全⽴⽅数的⽴⽅根.能⽤⽴⽅根解决⼀些实际问题。
3.情感、态度与价值观⽬标:探索⽴⽅根的变化规律,提⾼学⽣学习数学的兴趣。
⼆、教学重点与难点教学重点:⽴⽅根的概念.,求某些数的⽴⽅根教学难点:了解⽴⽅根的性质,区分⽴⽅根与平⽅根的不同。
三、学情分析(1)教学对象是新丰县第三中学七(8)班学⽣,这个班采取⼩组合作学习的⽅式,从整体看,学⽣基础参差不齐,但思维活跃,课堂参与意识较强,有良好的学习习惯,学⽣间相互评价,相互提问的互动活动氛围初步形成。
(2)学习⼩组内互背1-20的平⽅,互背1-10的⽴⽅,学会⼈与⼈合作,并能与他⼈交流思维,建⽴⾃信⼼,提⾼学习热情。
四、教学过程12=34.0 ; 351;2.正⽅体的边长为a ,它的体积是 . 3.要制作⼀个容积为273m 的正⽅体形状的包装箱,这种包装箱的边长应该是多少?设这种集装箱的边长为x m ,依题意,得:,⽅程的意义就是:要求⼀个数,使它的⽴⽅等于27. ∵ 2733=∴ 3=x即这种包装箱的边长为3m .活动⼆:阅读课本P49内容,理解、掌握⽴⽅根概念和开⽴⽅概念⼀般地,如果,那么 .这就是说:如果,那么. 求的运算,叫开⽴⽅. ⽴⽅与开⽴⽅运算是运算.1.完成下列填空:∵ 823=,∴ 8的⽴⽅根是;∵()125.03=,∴ 125.0的⽴⽅根是;∵()03=,∴ 0的⽴⽅根是;∵()83-=,∴ 8-的⽴⽅根是;∵()2783-=,∴ 278-的⽴⽅根是;2.观察上⾯各数及其⽴⽅根,归纳数的⽴⽅根的特征:正数的⽴⽅根是数;负数的⽴⽅根是数;0的⽴⽅根是 . 3.数的平⽅根与数的⽴⽅根有什么不同?活动三:阅读课本P50内容,掌握⼀个数的⽴⽅根的表⽰⽅法4.完成下列填空:∵ =-38 , =-38 ,∴ 38- 38-;∵ =-327 , =-327 ,∴327- 327-;5.观察上⾯的填空,归纳3a -与3a -的关系: 3a - 3a -6.阅读课本P50例,掌握⼀个数的⽴⽅根式⼦表⽰的意义.活动四:1.判断下列说法是否正确:(1)5是125的⽴⽅根;()(2)4±是64的⽴⽅根;()(3)5.2-是625.15-的⽴⽅根;()(4)3)4(-的⽴⽅根是4-. () 2.填表:43.求下列各式的值:(1)31-;(2)3008.0-;(3)3271;(4)312564-. 4.求下列各式中x 的值:(1)8333=-x ;(2)8)1(3=-x5、计算下表中各式的值,并填⼊相应表中:(2)你能归纳出被开⽅数与它的⽴⽅根之间⼩数点的变化关系吗?x4 6 9 3x1253435121 000(3)000001.03001.0 31 31000 31000000 ………5五、板书设计【知识回顾】板书 113= =328 2733= 6443= 12553= 21663= 34373= 51283= 72993= 1000103= 1.计算下列各式的值:2 ; =33 ; =34.0 ; 351??;2.正⽅体的边长为a ,它的体积是 .3.要制作⼀个容积为273m 的正⽅体形状的包装箱,这种包装箱的边长应该是多少?设这种集装箱的边长为x m ,依题意,得:,⽅程的意义就是:要求⼀个数,使它的⽴⽅等于27. ∵ 2733=∴ 3=x即这种包装箱的边长为3m .【⾃主学习】阅读课本P49内容,理解、掌握⽴⽅根概念和开⽴⽅概念6⼀般地,如果,那么 . 这就是说:如果,那么 . 求的运算,叫开⽴⽅. ⽴⽅与开⽴⽅运算是运算. 【⾃主探究】6.完成下列填空:∵ 823=,∴ 8的⽴⽅根是;∵()125.03=,∴ 125.0的⽴⽅根是;∵()03=,∴ 0的⽴⽅根是;∵()83-=,∴ 8-的⽴⽅根是;∵()2783-=,∴ 278-的⽴⽅根是;7.观察上⾯各数及其⽴⽅根,归纳数的⽴⽅根的特征:正数的⽴⽅根是数;负数的⽴⽅根是数;0的⽴⽅根是 . 8.数的平⽅根与数的⽴⽅根有什么不同?阅读课本P 50内容,掌握⼀个数的⽴⽅根的表⽰⽅法9.完成下列填空:∵ =-38 , =-38 ,∴ 38- 38-;∵=-327 , =-327 ,∴ 327- 327-;10.观察上⾯的填空,归纳3a -与3a -的关系: 3a - 3a -11.阅读课本P50例,掌握⼀个数的⽴⽅根式⼦表⽰的意义. 【基本训练】2.判断下列说法是否正确:(1)5是125的⽴⽅根;()(2)4±是64的⽴⽅根;()(3)5.2-是625.15-的⽴⽅根;()(4)3)4(-的⽴⽅根是4-. ()2.填表:【能⼒提升】 3.求下列各式的值:(1)31-;(2)3008.0-;(3)3271;(4)3125 64-.4.求下列各式中x 的值:(1)8333=-x ;(2)8)1(3=-x5.(1) 计算下表中各式的值,并填⼊相应表中:x4 6 9 3x1253435121 0000000013001.08。
《立方根》精品教案
教学目标:
了解立方根和开立方的概念;掌握立方根的性质;会求一个数的立方根. 重点:
立方根的运算 难点:
立方根的概念及其运算 教学流程: 一、知识回顾
问题1:什么叫做平方根?
如果一个数的平方等于a ,那么这个数叫做a 的平方根(也叫二次方根). 即:x 2=a ,那么x 叫做a 的平方根
a 的平方根记作:_______ 9的平方根记作:_______ 144的平方根记作:_______ 答案:a ±,9±,144± 追问:怎么求一个数的平方根? 填空:
(1)2的平方根是________; (2)0的平方根是________; (3)-16的平方根是____________. 答案:2±,0,没有平方根 问题2:平方根具有什么性质呢?
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 二、探究1
问题:要制作一种容积为27m 3的正方体形状的包装箱,这种包装箱的棱长应该是多?
追问1:你还记得正方体的体积与棱长有什么关系吗? 答案:V =a 3
追问2:谁的立方等于27呢?
解:设这种包装箱的棱长为x m,则
x3=27
∵33=27
∴x=3
定义:如果一个数的立方等于a,那么这个数叫做a的立方根(也叫三次方根).即:x3=a,那么x叫做a的立方根
∵33=27
∴____是27的立方根
答案:3
练习1:求下列各数的立方根:
解:(1)∵(-3)3=-27
∴-27的立方根是-3
(2)∵(3
2
)3=
3
3
8
∴
3
3
8
的立方根是
3
2
(3)∵(-4)3=-64
∴-64的立方根是-4
填空:
答案:1,-8,27,-27,1,-2,3,-3
定义:求一个数的立方根的运算,叫做开立方.追问:左右两图中的运算有什么关系?
想一想:到现在我们学了哪些运算?
答案:加、减、乘、除、乘方、开方.
三、探究2
根据立方根的意义填空.
∵( 2 )3=8,∴8的立方根是();
∵()3=0.064 , ∴0.064的立方根是();
∵()3=0,∴0的立方根是();
∵()3=-8 ,∴-8的立方根是();
∵()3=
8
27
-,∴
8
27
-的立方根是().
答案:2,0.4,0.4,0,0,-2,-2,
2
3
-,
2
3
-
追问:你能发现正数、0和负数的立方根各有什么特点吗?
立方根的性质:
(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0的立方根是0.
一个数a
读作:“三次根号a”,
被开方数:a;根指数:3;根指数3,不能省略!
8的立方根,表示为:__________的立方根
8
的根指数是2,根指数2,可以省略!
思考:你能归纳出平方根和立方根的异同点吗?
练习2
(1)8
27
的立方根是
2
3
±()
(2) 25的平方根是5 ()
(3)-64没有立方根()
(4)-4的平方根是±2()
(5) 0的平方根和立方根都是0 ()
答案:×,×,×,×,√
追问1:立方根是它本身的数有那些? 答案:0,±1
追问2:算术平方根是它本身的数有那些? 答案:0,1 四、探究3
填空,你能发现其中的规律吗?
______,______ ,
=______,______ ,
______ 答案:-2,-2,=,-3,-3,=
规律:=. 例:求下列各式的值 :
123.();(
解:
14(;122-=-();334
-(
练习3:求下列各式的值 :
3123.-();()
解:12;
3
25
=-();339=-() 五、探究4
问题1:用计算器求下列各式的值:
(1(20.001).
解:(1) 8 、=,
显示:2.
2=.
(2) 1845、=,
显示:12.264 940 81.
12.265≈.
强调:有些计算器要用到第二功能键来求一个数的立方根.
答案:如第(1)问中,按键顺序为:2nd F 8 、=
问题2:利用计算器计算,并将计算结果填在表中,你发现了什么规律?
规律:被开方数的小数点向右(或向左)移动3位,其算术平方根的小数点向右(或向左)移动1位.
问题3:0.001)吗?并利用刚才的得到规律说出
4.624≈0.4624≈0.04624≈46.24≈
想一想: 答:不能
六、应用提高
1. 你能比较3,4 解:∵33=27,
∴ 3=
∵ 43=64 ,
∴4=
3
3
50
64
∴3
3
504
强调:被开方数越大,对应的立方根也越大. 2. 求下列各式中的 x :
(1)9x 3+72=0; (2)2(x -1)3=54. 解: (1) 9x 3+72=0 9x 3=-72 x 3=-8 ∵(-2)3=-8
∴x=-2
(2) 2(x-1)3=54
(x-1)3=27
∵33=27
∴x-1=3
x=4
七、体验收获
今天我们学习了哪些知识?
1.什么是立方根?
2.如何求一个数的立方根?
3.立方根有什么性质?
八、达标测评
1. 8的立方根是()
A.2
B.±2
C.4
D.±4
答案:A
2.的绝对值是()
A.-27
B. 27
C.-3
D. 3
答案:D
3. 1的平方根是_______;1立方根是_______.
答案:1;±1
=
4______
答案:-2
5.现在要做一个体积为64cm3的立方体魔方,它的棱长要取多长?
解:设魔方的棱长为x cm, 则
x3=64
x=4
答:这个魔方的棱长为4cm.
6.比较下列各组数的大小.
(12.5; (2与32
. 解: (1)∵9 < 2.53,
2.5 (2)∵ 4>3
3()2
,
>32
九、布置作业
教材52页习题6.2第3、5题.。