七年级数学平方根和立方根同步练习含答案
- 格式:docx
- 大小:210.48 KB
- 文档页数:5
《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
平方根、立方根综合练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.4.若一个实数的算术平方根等于它的立方根,则这个数是_________;5.算术平方根等于它本身的数有________,立方根等于本身的数有________.6.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;_______;9的立方根是_______;______的平方根是311±。
7.若一个数的平方根是8±,则这个数的立方根是 ;8.当______m 时,m -3有意义;当______m 时,33-m 有意义;9.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;10.已知0)3(122=++-b a ,则=332ab ; 11.21++a 的最小值是________,此时a 的取值是________;12.12+x 的算术平方根是2,则x =________;132的相反数是 ;绝对值是 。
14.在数轴上表示的点离原点的距离是 。
二、选择题1.9的算术平方根是( )A .-3B .3C .±3D .812.下列计算不正确的是( )A ±2B =C .=0.4 D3.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14.的平方根是( )A .±8B .±4C .±2 D5.-18的平方的立方根是( )A .4B .18C .-14 D .146.下列说法错误的是( ) A.1)1(2=- B.()1133-=-C.2的平方根是2±D.81-的平方根是9±7.2)3(-的值是( ).A .3-B .3C .9-D .98.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是()A. 1B. 9C. 4D. 59.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.110.计算3825-的结果是( ).A.3B.7C.-3D.-711.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ). A.a >b >c B.c >a >b C.b >a >c D.c >b >a12.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .313.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x 2+1 C14.若2m-4与3m-1是同一个数的平方根,则m 的值是( )A .-3B .1C .-3或1D .-115.已知x ,y +(y-3)2=0,则xy 的值是( ) A .4 B .-4 C .94 D .-9416.若一个数的平方根是2m-4与3m-1,则m 的值是( )A .-3B .1C .3D .-117.已知x ,y +(y-3)2=0,则xy 的值是( )A .4B .-4C .94 D .-94三、计算、求值1.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.2.计算:(1)(2 (3(43、解方程(1)、0252=-x (2)、8)12(3-=-x (3)、 4(x+1)2=8(4)、(2x-1)2-169=0; (5)、12(x+3)3=4. (6)、x 3 -10= 17(7)812=-x(8)5322=-x (9)12(x+3)2=8.四.比较大小,并说理由。
《立方根》同步练习1课堂作业1.下列说法正确的是()A.一个正数有两个立方根,它们的和为0B.负数没有立方根C.如果一个数没有平方根,那么它一定没有立方根D.一个数的立方根与这个数同号2的结果为()A.±2B.-2C.2D.3.有一个正方体的水晶砖,体积为100cm3,则它的棱长在()A.4~5cm范围内B.5~6cm范围内C.6~7cm范围内D.7~8cm范围内4.一个数的算术平方根与它的立方根相同,这个数是________.5.2,那么x=________.的平方根是±2,那么x=________.6.求下列各数的立方根:(1)343;(2)8 125;.7.求下列各式的值:(1)(2);课后作业8的立方根是()A.-1B.0C.1D.±19.下列等式成立的是()=±A1=B15=-C5=-D310.若x3=1000,则x=________;若x3=-216,则x=-________;若x3=-(-9)3,则11.已知 1.038≈, 2.237≈, 4.820≈,则________≈,________≈.12.若两个连续的整数a 、b 满足a b <<,则1ab的值为________. 13.求下列各式中x 的值: (1)125x 3=64; (2)(x -1)3-0.343=0: (3)398127x +=-; (4)31(23)544x +=.14.若2(2015)0x -=,求x +y 的立方根.15.某农户原计划利用现有的一面墙再修三面墙,建造如图所示的长方体池塘,用来培育鱼苗,长方体长9m 、宽8m 、高3m ,后听从建筑师的建议改为建造等体积的正方体池塘,则待建的三面墙的总长度是多少(不考虑墙的厚度)?答案[课堂作业] 1.D 2.C 3.A 4.0或1 5.64 64 6.(1)7 (2)25(3)-0.1 (4)3 7.(1)±8 (2)43 (3)54(4)1 [课后作业] 8.C 9.C10.10 -6 9 11.10.38 -0.482 12.12013.(1)45x =(2)x =1.7 (3)53x =- (4)32x =14.∵(x -2021)2≥00,2(2015)0x -=.∴(x -2021)2=0,0=.∴x =2021,y =-2021.∴x +y =-1.∴x +y 的立方根为-115.设正方体池塘的棱长为xm 由题意,得9×8×3=x 3.∴6x ===,即此正方体池塘的棱长为6m.∴待建的三面墙的总长度是6×3=18(m)《立方根》同步练习21. 的立方根是( )A.-1B.0C.1D.±12.若一个数的立方根是-3,则该数为( )A.B.-27C.D.±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15的.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.5__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216;(2)0;(3)-21027;(4)-5.8.求下列各式的值:(1(2(3)9.的值约为( )A.3.049B.3.050C.3.051D.3.05210.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间11.≈__________(精确到百分位).12.已知=1.038,=2.237,=4.820,则=__________,=__________.13.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:______________________________.(3)根据你发现的规律填空:=1.442,;0.07696,=__________.参考答案1.C2.B3.B4.0,1或-15.±26.-17.(1)∵0.63=0.216,∴0.216的立方根是0.6=0.6;(2)∵03=0,∴0的立方根是00;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43=-43;(4)-5.8.(1)0.1;(2)-75;(3)-2 3 .9.B10.C11.2.9212.10.38-0.482013.(1)0.010.1110100(2)被开方数扩大1000倍,则立方根扩大10倍(3)14.420.14427.696《立方根》同步练习31.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根D2.( )A.7B.-7C.±7D.无意义3.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )A.2倍B.3倍C.4倍D.5倍4.-27__________.5.计算:=__________=__________.6.已知2x+1的平方根是±5,则5x+4的立方根是__________.7.求下列各式的值:(1) (2)-; (3)-+; (4)-+8.比较下列各数的大小:(1 (2与-3.4.9.求下列各式中的x:(1)8x3+125=0; (2)(x+3)3+27=0.10.(b-27)2的立方根.11.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?参考答案1.D2.B3.B4.0或-65.-4 -346.47.(1)-10;(2)4;(3)-1;(4)0.8.(1;(2<-3.4.9.(1)8x3=-125,x3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.10.由题意知a=-8,b=27,5.11.(1)8倍;(2.。
专题09 算术平方根与立方根的综合运用【例题讲解】已知4是32a -的算术平方根,215a b --的立方根为5-.(1)求a 和b 的值;(2)求24b a --的平方根.【详解】(1)解:∵4是32a -的算术平方根,∴3216a -=,∴6a =,∵215a b --的立方根为5-,∴215125a b --=-,∴2156125b -´-=-,∴37b =.(2)解:242376464b a --=´--=,64的平方根为8±,∴24b a --的平方根为8±.【综合解答】1270-=,那么6()a b +的立方根是( )A .-1B .1C .3D .7【答案】B【解析】【分析】根据非负数的性质,得出a ,b 的值,再代入计算即可.【详解】:270-=,0=,3270b -=∴3640a +=,3270b -=,∴a=-4,b=3,∴6()a b +=1,∴6()a b +的立方根为1,故答案为:B .【点睛】本题考查了非负数的性质和立方根,掌握非负数的性质是解题的关键.2的值为( )A .114-B .114±C .154D .134【答案】A【解析】【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.【详解】原式1300.52=---++11300.524=---++324=-;故答案为:A.【点睛】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.3 1.442=0.6694=等于( )A .57.68B .115.36C .26.776D .53.552【答案】C【解析】【分析】根据立方根的运算法则即可.【详解】440.669410426.776===´´=,故答案为:C .【点睛】进行正确的拆分.4.下列计算正确的是( ).A 3B 8=±C 7=-D 13=-【答案】D【解析】【分析】根据立方根、算术平方根、绝对值等知识逐项进行计算即可求解.【详解】,故原选项计算错误,不合题意;B.8=,故原选项计算错误,不合题意;C. 7=,故原选项计算错误,不合题意;D. 13=-,故原选项计算正确,符合题意.故选:D【点睛】本题考查了立方根、算术平方根等知识,理解立方根、算术平方根的意义并正确计算化简是解题关键.5.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【答案】C【解析】【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16Q 4(2)=16-,\16的4次方根是2±,故不符合题意;B.5232=Q ,5(2)32-=-,\32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y \> 且1,1,x y >>,x y \>\当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.6.已知a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,则x 和y 分别是( )A .,1001000a x y b ==B .1000,1000b x a y ==-C .,1000100a x y b ==-D .,1000100a x yb ==【答案】C【解析】【分析】根据题意,x 的算术平方根和-b 的立方根,然后根据x 的算术平方根和a 的算术平方根即可求出x 与a 的关系,根据-b 的立方根和y 的立方根关系即可求出y 与b 的关系.【详解】解:∵a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,∴x 的算术平方根是1.23,-b 的立方根是45.6∵1.23=110×12.3,456=10×45.6∴x =2110a æöç÷èø,y=103(-b )即,1000100a x yb ==-故选C .【点睛】此题考查的是平方根、算术平方根和立方根,根据两数算术平方根的关系推出这两数的关系和两数立方根的关系推出这两数的关系是解题关键.7.实数a ___________.【答案】8【解析】【分析】先根据数轴的定义可得48a <<,从而可得20,100a a -<->,再计算算术平方根和立方根即可得.【详解】由数轴的定义得:48a <<,则20,100a a -<->,2108a a =-+-=,故答案为:8.【点睛】本题考查了数轴、算术平方根和立方根,熟练掌握算术平方根和立方根是解题关键.8.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.【答案】0.【解析】【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.9.已知21a -的平方根是±3,b +2 的立方根是2,则b a -的算术平方根是___________【答案】1【解析】【分析】先根据平方根,立方根的定义列出关于a 、b 的方程,求出a 、b 后再代入进行计算求出b a -的值,然后根据算术平方根的定义求解.【详解】解:根据题意得,2a-1=(±3)2=9,b+2 =23,∴a=5,b=6,∴b-a=1,∴b a-的算术平方根是1,故答案是:1.【点睛】本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.10.已知2a﹣1的平方根是±3,3a+b+10的立方根是3,求a+b的算术平方根___.【解析】【分析】先根据2a−1的平方根是±3,3a+b+10的立方根是3得出21931027aa b-=ìí++=î,解之求出a、b的值,再利用算术平方根定义得出答案.【详解】解:∵2a−1的平方根是±3,3a+b+10的立方根是3,∴21931027aa b-=ìí++=î,解得a=5,b=2,∴a+b=7,则a+b【点睛】本题主要考查立方根、平方根、算术平方根,解题的关键是掌握立方根、平方根、算术平方根的定义.11.已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,则a+2b+c的算术平方根为_____.【答案】4【解析】【分析】由题意首先根据平方根与立方根的概念可得2a-1与3a+b-9的值,进而可得a 、b 的大小,可得c 的值,进而可得a+2b+c ,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a-1=9,3a+b-9=8;解得:a=5,b=2;又有7<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.故答案为:4.【点睛】本题主要考查平方根、立方根、算术平方根的定义及无理数的估算能力,熟练掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法是解题的关键.12A B ,则A +B =________.【答案】【解析】【详解】===A+B=三、解答题13.()20151-.(2)已知∶2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.(3)已知a b -3是400.【答案】(1)114;(2)m +2n =13;=6【解析】【分析】(1)首先进行开方和乘方运算,再进行有理数的加减运算,即可求得;(2)根据平方根的定义得出方程,解方程即可分别求得m 、n 的值,据此即可解答;(3) 根据无理数的估算和算术平方根的定义,即可求得a 、b 的值,据此即可解答.【详解】解:(1) ()20151+-52314=+-- 114=(2)Q 2m +2的平方根是±4,3m +n +1的平方根是±5,2216m \+=,3m +n +1=25,解得m =7,n =3,272313m n \+=+´=;(3)\,13,13a \=,又Q b -3是400的算术平方根,400的算术平方根是20,320b \-=,解得b =23,6==.【点睛】本题考查了二次根式的加减混合运算,平方根和算术平方根的定义,无理数的估算,代数式求值问题,熟练掌握和运用各运算法则和方法是解决本题的关键.14.已知4是32a -的算术平方根,2+a b 的立方根是2.C 的整数部分.(1)求a ,b ,c 的值;(2)求2a b c -+的平方根.【答案】(1)6a =,1b =, 5c =(2)3±【解析】【分析】(1)根据算术平方根和立方根的定义列出式子,解出a ,b ,c 的值即可.(2)将(1)中所求数值代入,并计算平方根即可.(1)解:由题有2324a -=,322a b +=解得: 6a =;1b =.<∴5< ,∴5c =,即:6a =,1b =,5c =;(2)(2)解:把6a =,1b =,5c =,代入2a b c -+得26215a b c -+=-´+,29a b c -+=,∴2a b c -+的平方根是3±.【点睛】本题考查算术平方根,平方根,立方根的定义,无理数的整数部分,熟练理解平方根,算术平方根,立方根的定义是解题的关键.15.(1)计算:①②(2)求方程中的x 的值①()242160x +-=②()32621127x -+=【答案】(1)①12;②142)①0x =或4x =-;②23x =【解析】【分析】(1)根据算术平方根以及立方根进行计算即可;(2)根据算术平方根以及立方根解方程即可.【详解】(1)①解:原式=()442-´-48=+12=②解:原式=()())563114-----+-563114=-+++14=(2)①()242160x +-=()224x +=22x +=±解得0x =或4x =-②()32621127x -+=()312127x -=1213x -=解得23x =【点睛】本题考查了算术平方根以及立方根,掌握算术平方根以及立方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.16.(1)一个正数m 的两个平方根分别为3a -和21a +,求这个正数m .(2)已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分,求3a b c -+的平方根.(3)3a =,求a b +的立方根.【答案】(1)49;(2)4±;(3)-1【解析】【分析】(1)根据一个正数的平方根互为相反数列式子求解即可;(2)根据立方根和算术平方根的定义及无理数的估算列出关于a 、b 、c 的式子求值,再计算平方根即可;(3)先根据二次根式有意义的条件求出b 的值,从而得出a 的值,再计算两数的和,从而得出立方根.【详解】解:(1)解:依题意:3210a a -++=,解得4a =-,37a -=,2m 749==.(2)解依题意:3523a +=,2314a b +-=,34<<解得5a =,2b =,3c =316a b c -+=,16的平方根是4±(3)解:依题意2020b b -³ìí-³î,得2b =,代入3a =,得3a =-1ab +=-,a b +的立方根是-1.【点睛】本题考查了平方根和立方根的综合,熟练掌握含义列出式子是解题的关键.17.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)=2.154=4.642,=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.18.观察下列各式,并用所得出的规律解决问题:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873» 1.225»»_____»______.(31=10=100=,……小数点的变化规律是_______________________.(4 2.154»0.2154»-,则y =______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2 3.873» 1.225»12.25»0.3873»;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4) 2.154»0.2154»-,0.2154»,0.2154»-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
平方根、立方根【基础巩固】1.64的平方根是( ). A .±8 B .±4C .±2D .2.9的算术平方根是( ).A .±3B .3C .-3D 3.下列语句正确的是( ). A .一个数的平方根一定有两个B .一个非负数的非负平方根一定是它的算术平方根C .一个正数的平方根一定是它的算术平方根D .一个非零数的负的平方根是它的算术平方根4.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ).A .x +1B .x 2+1C 1 D5.如果某数的一个平方根是-6,那么这个数为__________. 6.用计算器计算:,,,…,请你猜测999999+1999n n n ⨯个个个的结果为__________.【能力提升】7.若2m -4与3m -1是同一个数的平方根,则m 为( ). A .-3 B .1 C .-3或1 D .-181πx -的值是( ). A .11π- B .11π+C .11π- D .无法确定9.一个正方体的体积变为原来的8倍,它的棱长变为原来的__________倍;体积变为原来的27倍,它的棱长变为原来的__________倍;体积变为原来的 1 000倍,它的棱长变为原来的__________倍;体积变为原来的n 倍,它的棱长变为原来的__________倍.10.若|a -2|0,则a 2-b =__________. 11.求下列各式的值:;;12.已知一个正数的平方根是3x -2和5x -14,请你求出这个正数.13.一个长方体容器长20 cm ,宽15 cm ,在这个容器内放一立方体铁块,盛满水取出铁块后,水面下降了5 cm ,求这个立方体铁块的棱长.(精确到0.01 cm)参考答案1.答案:A2.答案:B 解析:∵32=9,∴9的算术平方根是3. 3.答案:B4.答案:D 解析:这个自然数是x 2,于是它后面的一个数是x 2+1,则x 2+1的算术平方根是.5.答案:36 解析:因为(-6)2=36,所以这个数为36.6.答案:10n解析:由计算器易算出:,=100=102,1 000=103999999+1999n n n ⨯个个个=10n .7. 答案:C 解析:本题分为两种情况:(1)可能这两个平方根相等,即2m -4=3m -1,解得m =-3;(2)可能两个平方根互为相反数,即(2m -4)+(3m -1)=0,解得m =1.故选C.8.答案:A 解析:0≥0,所以x =π,所以原式=π11=1ππ--.9.答案:2 3 10解析:设原来的正方体的体积是1,则其棱长为1,变化后的正方体的体积为8,所以棱长为原来的2倍,同样的方法可得体积变为27倍,1 000倍,n 倍时,它们的棱长变为原来的3倍,1010.答案:1 解析:由|a -2|0,得a -2=0,b -3=0,解得a =2,b =3.因此a 2-b =1.11.答案:解:=12+13=25.455=343⨯.=5÷0.2=25.171244-+=-1. 12. 答案:解:根据平方根的性质可知,正数的两个平方根互为相反数,于是(3x -2)+(5x -14)=0,解得x =2, 即这个正数的两个平方根为4和-4. 故这个正数为16.13. 答案:解:设立方体的棱长为x cm ,根据题意,可得x 3=20×15×5,即x 3=1 500,所以x .利用计算器,可算得x ≈11.45(cm). 故这个立方体铁块的棱长约为11.45cm.。
6.1算术平方根一、选择题1. 9的算术平方根是()A.81B.3C.±3D.−32. 下列运算正确的是()A.√−22=−2B.√(−3)33=3C.√2.5=0.5D.√23=2√23. 14的算术平方根是()A.12B.±116C.±12D.1164. √16的平方根是()A.4B.±4C.±2D.25. 下列各式中正确的是()A.√9=±3B.√83=±2 C.√−4=−2 D.√(−5)2=56. 下列说法中正确的是()A.−2是4的平方根B.算术平方根等于它本身的数一定是1C.9的立方根是3D.近似数3.06×105精确到百分位7. √16的平方根是()A.±4B.4C.±2D.+28. 下列判断正确的是( ) A.√16=±4 B.−9的算术平方根是3 C.27的立方根是±3D.正数a 的算术平方根是√a9. 下列说法正确的是( ) A.9的平方根是3B.算术平方根等于它本身的数一定是1C.−2是4的平方根D.√16的算术平方根是410. 下列说法中,正确的是( ) A.(−2)3的立方根是−2 B.0.4的算术平方根是0.2 C.√64的立方根是4D.16的平方根是411. 下列说法:①64的立方根是8,②49的算数平方根是±7,③127的立方根是13,④116的平方根是14,其中正确说法的个数是( )A.1B.2C.3D.412. 已知实数a 的一个平方根是−2,则此实数的算术平方根是 ( ) A.±2 B.−2 C.2 D.4二、填空题13. 4是________的算术平方根. 14. √9的算术平方根是________.3=________.√(−2)2=________.15. 计算:√(−2)316. √81的平方根是________.17. 64的算术平方根是________,平方根是________,立方根是________.的算术平方根是________.18. √16的平方根________,338三、解答题19. 已知:3x+y+7的立方根是3,25的算术平方根是2x−y,求:(1)x,y的值;(2)x2+y2的平方根.20. 已知2b+1的平方根为±3,3a+2b−1的算术平方根为4,求a+6b的立方根.精品文档,可编辑,仅供下载一、选择题1.【答案】B2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】A7.【答案】C8.【答案】D9.【答案】C10.【答案】A11.【答案】A12.【答案】C二、填空题13.【答案】1614.【答案】√315.【答案】−2,216.【答案】±317.【答案】8,±8,418.【答案】±2,3√64三、解答题(本题共计 2 小题,每题10 分,共计20分)19.【答案】解:(1)由题易得,{√3x+y+73=3,√25=2x−y,化简得{2x−y=5,3x+y=20,解得{x=5,y=5,故x,y的值均为5.(2)由(1)知x,y的值均为5,则x2+y2的平方根为±√(x^2+y^2 )=±√52+52=±√25+25=±√50 =±5√2.20.【答案】解:∵ (±3)2=9,∵ 2b+1=9,∵ b=4.∵ 42=16,∵ 3a+2b−1=16,∵ 3a+7=16,解得a=3,∵ a+6b=3+4×6=3+24=27.∵ 33=27,∵ 27的立方根是3,即a+6b的立方根是3.。
初一数学下册综合算式专项练习题平方根与立方根运算初一数学下册综合算式专项练习题:平方根与立方根运算算数是我们日常生活中必不可少的一部分,我们时常会遇到各种各样的计算问题。
在初一下学期的数学课程中,我们将学习到关于平方根和立方根的运算。
本文将重点介绍综合算式专项练习题,并对平方根和立方根进行详细的讲解和演示。
1. 平方根平方根是指一个数的平方等于这个数本身。
例如,数学符号√2表示的就是2的平方根。
计算平方根可以帮助我们解决一些与平方相关的问题。
练习题1:计算√25。
解答:√25 = 5。
因为5的平方等于25。
练习题2:计算√16。
解答:√16 = 4。
因为4的平方等于16。
练习题3:计算√36。
解答:√36 = 6。
因为6的平方等于36。
2. 立方根类似平方根,立方根是指一个数的立方等于这个数本身。
我们用符号³√来表示立方根。
练习题4:计算³√8。
解答:³√8 = 2。
因为2的立方等于8。
练习题5:计算³√27。
解答:³√27 = 3。
因为3的立方等于27。
练习题6:计算³√64。
解答:³√64 = 4。
因为4的立方等于64。
3. 平方根和立方根运算在实际运算中,我们有时需要对平方根和立方根进行一些组合运算。
下面是一些相关的练习题。
练习题7:计算√25 + ³√8。
解答:√25 + ³√8 = 5 + 2 = 7。
练习题8:计算√16 + ³√27。
解答:√16 + ³√27 = 4 + 3 = 7。
练习题9:计算√36 - ³√64。
解答:√36 - ³√64 = 6 - 4 = 2。
4. 综合题目现在让我们来解决一些综合的平方根和立方根运算题目。
练习题10:计算√(25 + 36)。
解答:首先计算括号内的算式:25 + 36 = 61。
然后计算√61。
这个数无法被简化为整数,所以我们保留√61作为答案。
平方根立方根估算基础练习一.选择题(共16小题)1.在实数0、π、、、﹣、0.1010010001中,无理数的个数有()A.1个 B.2个 C.3个 D.4个2.36的平方根是()A.±6 B.6 C.﹣6 D.±3.实数的平方根是()A.±4 B.4 C.2 D.±24.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或15.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5 D.25的平方根是56.计算的结果是()A.﹣3 B.3 C.2 D.7.下列各式化简后的结果为3的是()A.B. C. D.8.25的算术平方根是()A.5 B.±5 C.﹣5 D.259.2的算术平方根是()A.B.C.D.210.的值等于()A.4 B.﹣4 C.±2 D.211.下列等式正确的是()A.B.C.D.12.的算术平方根是()A.﹣2 B.2 C.﹣ D.13.的算术平方根是()A.B.﹣ C.D.﹣14.已知+(b+3)2=0,则(a+b)2016的值为()A.0 B.2016 C.﹣1 D.115.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<416.﹣与之间的整数个数是()A.1 B.2 C.3 D.4二.填空题(共8小题)17.的平方根是,﹣的立方根是.18.若x的立方根是﹣,则x=.19.实数﹣8的立方根是.20.计算:=.21.若一个正方体的体积是8,那么它的棱长是.22.的平方根是,(﹣5)2的算术平方根是,的立方根是﹣0.1.23.﹣的立方根为.24.立方根和算术平方根都等于它本身的数是.三.解答题(共3小题)25.比较与0.5的大小.26.先比较大小,再计算.(1)比较大小:与3,1.5与;(2)依据上述结论,比较大小:2与;(3)根据(2)的结论,计算:|﹣|﹣|﹣2|.27.比较3与2的大小.一.选择题(共16小题)1.在实数0、π、、、﹣、0.1010010001中,无理数的个数有()A.1个 B.2个 C.3个 D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π、是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.36的平方根是()A.±6 B.6 C.﹣6 D.±【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(±6)2=36,∴36的平方根是±6.故选A.【点评】此题考查了平方根的定义.此题注意一个正数的平方根有两个,且它们互为相反数.3.实数的平方根是()A.±4 B.4 C.2 D.±2【分析】直接利用算术平方根化简,进而利用平方根的定义分析得出答案.【解答】解:∵=4,∴的平方根是:±2.故选:D.【点评】此题主要考查了平方根,正确把握定义是解题关键.4.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或1【分析】依据平方根的性质列方程求解即可.【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选;D.【点评】本题主要考查的是平方根的性质,明确2m﹣4与3m﹣1相等或互为相反数是解题的关键.5.下列说法正确的是()A.﹣25的平方根是﹣5 B.﹣5是25的平方根C.﹣25的平方根是5 D.25的平方根是5【分析】根据负数没有平方根,正数有两个平方根进行分析即可.【解答】解:A、﹣25的平方根是﹣5,说法错误;B、﹣5是25的平方根,说法正确;C、﹣25的平方根是5,说法错误;D、25的平方根是5,说法错误;故选:B.【点评】此题主要考查了平方根,关键是掌握平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.计算的结果是()A.﹣3 B.3 C.2 D.【分析】算术平方根,以及有理数的平方的运算方法,求出计算的结果是多少即可.【解答】解:计算的结果是3.故选:B.【点评】此题主要考查了算术平方根,以及有理数的平方的运算方法,要熟练掌握.7.下列各式化简后的结果为3的是()A.B. C. D.【分析】根据二次根式的性质逐一化简可得.【解答】解:A、不能化简;B、=2,此选项错误;C、=3,此选项正确;D、=6,此选项错误;故选:C.【点评】本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.8.25的算术平方根是()A.5 B.±5 C.﹣5 D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.9.2的算术平方根是()A.B.C.D.2【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是,故选B.【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.10.的值等于()A.4 B.﹣4 C.±2 D.2【分析】根据表示16的算术平方根,需注意的是算术平方根必为非负数求出即可.【解答】解:根据算术平方根的意义,=4.故选A.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.11.下列等式正确的是()A.B.C.D.【分析】A、根据算术平方根的定义即可判定;B、根据负数没有平方根即可判定;C、根据立方根的定义即可判定;D、根据算术平方根的定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故答案选D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.12.的算术平方根是()A.﹣2 B.2 C.﹣ D.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故选:B.【点评】此题主要考查了算术平方根的定义,注意要首先计算=4.13.的算术平方根是()A.B.﹣ C.D.﹣【分析】首先化简,然后根据算术平方根的定义即可求出结果.【解答】解:=,的算术平方根是.故选:C.【点评】本题考查了算术平方根的定义.注意一个正数只有一个算术平方根.14.已知+(b+3)2=0,则(a+b)2016的值为()A.0 B.2016 C.﹣1 D.1【分析】根据非负数的性质列出算式,求出a、b的值,根据乘方法则计算即可.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故选:D.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.15.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4【分析】首先估算和的大小,再做选择.【解答】解:∵1<2,3<4,又∵<a<,∴1<a<4,故选B.【点评】本题主要考查了估算无理数的大小,首先估算和的大小是解答此题的关键.16.﹣与之间的整数个数是()A.1 B.2 C.3 D.4【分析】由于﹣2<﹣<﹣1,2<<3,由此确定﹣与的取值范围,再根据取值范围找出整数即可求解.【解答】解:∵﹣2<﹣<﹣1,2<<3,∴﹣与之间的整数有﹣1,0,1,2共4个.故选D.【点评】此题主要考查了无理数的估算的能力,解题时先确定﹣与的取值范围是解答本题的关键.二.填空题(共8小题)17.的平方根是±2,﹣的立方根是﹣2.【分析】先找出、的值,再根据平方根与立方根即可得出结论.【解答】解:∵=4,∴的平方根是±2;∵=8,∴﹣的立方根是﹣2.故答案为:±2;﹣2.【点评】本题考查了平方根以及立方根,解题的关键是熟练掌握平方根与立方根的求法.18.若x的立方根是﹣,则x=﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣,故答案为:﹣.【点评】本题考查了立方根的应用,主要考查学生的计算能力.19.实数﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案﹣2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.20.计算:=0.2.【分析】直接利用立方根的定义分析得出答案.【解答】解:==0.2.故答案为:0.2.【点评】此题主要考查了立方根,正确把握定义是解题关键.21.若一个正方体的体积是8,那么它的棱长是2.【分析】根据立方根解答即可.【解答】解:若一个正方体的体积是8,那么它的棱长是2;故答案为:2.【点评】本题考查了立方根的定义的应用,主要考查学生的计算能力.22.的平方根是±,(﹣5)2的算术平方根是5,﹣0.001的立方根是﹣0.1.【分析】根据立方根以及平方根和算术平方根的定义分别分析得出答案即可.【解答】解:=3,3的平方根是±,(﹣5)2=25,25算术平方根是5,﹣0.001的立方根是﹣0.1.故答案为:±,5,﹣0.001.【点评】此题主要考查了立方根、平方根和算术平方根等定义,熟练掌握其定义是解题关键.23.﹣的立方根为﹣.【分析】根据立方根的定义即可求出﹣的立方根.【解答】解:﹣的立方根为﹣.故答案为:﹣.【点评】此题主要考查了立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.24.立方根和算术平方根都等于它本身的数是0和1.【分析】首先设出这个数为x,根据立方根是它本身列式为x3=x,由算术平方根是它本身列式为=x,联立两式解得x.【解答】解:设这个数为x,根据题意可知,,解得x=1或0,故答案为:0和1【点评】本题主要考查立方根和平方根的知识点,注意一个正数有两个平方根,它们互为相反数,正数是它的算术平方根;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.三.解答题(共3小题)25.比较与0.5的大小.【分析】利用<得到2<,则﹣1>1,即可得到与0.5的大小关系.【解答】解:∵,∴,∴,∴>0.5.【点评】本题考查了实数的大小比较,运用算术平方根的性质估算无理数的大小是解答此题的关键.26.先比较大小,再计算.(1)比较大小:与3,1.5与;(2)依据上述结论,比较大小:2与;(3)根据(2)的结论,计算:|﹣|﹣|﹣2|.【分析】(1)利用平方根的概念进行比较;(2)先比较2和3的大小,由3与的关系得到答案;(3)根据绝对值的性质解答.【解答】解:(1)∵7<9,∴<3,∵1.52=2.25<3,∴1.5<;(2)∵>1.5,∴2>3,又3>,∴2>;(3)原式=﹣﹣2+=2﹣3.【点评】本题考查的是实数的大小比较,掌握有理数的乘方法则、绝对值的性质是解题的关键.27.比较3与2的大小.【分析】先把根号外边的数移到根号里面,再比较被开方数的大小即可.【解答】解:∵3=,2=,18>12,∴>,即3>2.【点评】本题考查的是实数的大小比较,熟知正数比较大小的法则是解答此题的关键.。
1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。
课题: 6.1 平方根讲课种类:新授 执笔人: 改正人: 审查人学习目标:1.掌握平方根的观点,明确平方根和算术平方根之间的联系和差别;2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;3.培育学生的研究能力和概括问题的能力 .学习要点:平方根的观点和求数的平方根.学习难点:平方根和算术平方根的联系与差别 .教课过程:一 、复习引入:1. 什么叫算术平方根?2. 求以下各数的算术平方根: ( 1) 400;(2)1;(3)49 ; (4)0.0001(5)064二、新授:问题: 假如一个数的平方等于 9,这个数是多少? 又如: x24,则 x 等于多少呢?25填表 :x 21163649925x1.平方根的观点:假如一个数的平方等于 a ,那么这个数就叫做 a 的____________. 即:假如 x 2a ,那么 x 叫做 a 的平方根.记作:± a , 读作“正、负根号 a ” .2. 开平方的观点 :求一个数 a 的平方根的运算,叫做 _____________.比如: 3 的平方等于 9, 9 的平方根是 3,因此平方与开平方互为逆运算.例 2:求以下各数的平方根 : (1) 100( 2)9(3) 0.25(4)0 16思虑:正数的平方根有什么特色?0 的平方根是多少?负数有平方根吗?概括:正数有 ____ 个平方根,它们 ____________________; 0的平方根是 _________;负数.引入符号:正数 a 的算术平方根可用 a 表示;正数a的负的平方根可用- a 表示,正数a 的平方根能够用 a 表示.例 3:求以下各式的值 :121( 4) 562,(5)56(1)144,(2)-0.81,(3),(6)(6)2.2196三、讲堂练习:课本第 75 页练习 1、2、31.下边说法正确的选项是()A 、0 的平方根是 0; ()B、 1 的平方根是 1; ()C 、﹣1的平方根是﹣;)D、(﹣1)2平方根是﹣ 1.( )1 (2.求以下各数的平方根:(1)0.49 (2)49(3)81 (4)0 (5)-10036四、讲堂检测:1. 算术平方根等于它自己的数是__________________. 2.以下各数没有平方根的是()A、64B、0C、(﹣2)3D、(﹣3)43.(-3) 2 的平方根是( )A、3B、-3C、±3D、±94.以下各数有平方根吗?假如有,求出它的平方根;假如没有,说明原因.⑴256⑵ 0⑶ (-4)2⑷1⑸ -641005. 求以下各式的值 . (1) 1.44 =________.(2)-81 =________.(3)±9=________. 100-(7)2=_______.± 52 =______,a2 =________.★6. x+2 和 3x-14 是同一个数的平方根,则x 等于 ()A.-2B.3或 4C.8D.36.2《立方根》同步练习知识点:立方根:一般地,假如一个数的立方等于a ,那么这个数是 a 的立方根立方根性质:正数的立方根是正数0 的立方根是 0负数的立方根是负数3- a = — 3 a同步练习:【模拟试题】(共 60 分钟 ,满分 100 分)一、认认真真选 (每题 4 分 ,共 40 分 )1.以下说法不正确的选项是()A.-1 的立方根是 -1B.-1 的平方是 1C.-1 的平方根是 -1D.1 的平方根是± 12.以下说法中正确的选项是( ) A.-4 没有立方根B.1 的立方根是± 1113C.36的立方根是6D.-5 的立方根是 53 2 10 43 (27)33.在以下各式中: 27=3, 30.001 =0.1, 3 0.01=0.1,-=-27,此中正确的个数是 ()A.1B.2C.3D.4 ﹡4.若 m<0,则 m 的立方根是()A. 3 mB.- 3 mC.± 3 mD.3m﹡5.假如 36x是 x -6 的三次算术根,那么 x 的值为()A.0B. 3C.5D.66.已知 x 是 5 的算术平方根,则 x2-13 的立方根是()A.5-13B.-5-13C.2D.-28 1 26 17.在无理数 5 , 6 ,7,8中,此中在2 与2之间的有()A.1 个B.2 个C.3 个D.4 个﹡8.一个正方体的体积为 28360 立方厘米,正方体的棱长预计为( )A.22 厘米B.27 厘米C.30.5 厘米D.40 厘米﹡9.已知 23.64.858 , 2.361.536 ,则 0.00236 的值等于 ()A .485.8B .15360C .0.01536D . 0.0485811 xx3x 的值是 (﹡﹡ 10.若8 +8存心义,则)1 11A.0B.2C.8D.16二、仔认真细填 (每题 4 分 ,共 32 分 )111.- 8的立方根是 , 125 的立方根是 。
人教版七年级下 第六章 实数 “平方根、立方根"习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(1)=; (2= ; (3)|2.5= ;(4= ; (5)n =; (6)= .2的立方根是;的平方根是.3.28y x =-,且y 的立方根是2,求x 的值 .4=,其中x 的取值范围 ;=,其中y 的取值范围.5 1.289====462.6=,则x =;;= ;若 5.981=,则y =.6.已知21a -与5a -是m 的平方根,那么m =.二、单选题7.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列等式不一定成立的是( ).A=B a=C a=D .3a=9.下列说法错误的是( ).A .4是16的算术平方根B .37-是949的一个平方根C .0的平方根与算术平方根都是0D .2(9)-的平方根是9-10.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数11.若01x <<,则2x 、x 这四个数中( ).A 2x 最小B .x 最小C .2x 小D .x 最大,2x 最小12xy的值为( ).A .23B .32C .23-D .32-三、解答题13.计算:(1- (214.(1)已知5b =,求35a b +的立方根;(2)已知2(3)0x -=,求4x y +的平方根.15.已知3既是5a +的平方根,也是721a b -+的立方根,解关于x 的方程()2290a x b --=.参考答案:1.6-0.2 2.54π- 1a-【分析】(1)根据算术平方根的定义进行求解即可;(2)根据立方根的定义进行求解即可;(3 2.9的大小,然后化简绝对值即可;(4)根据算术平方根的定义进行求解即可;(5)根据立方根的定义进行求解即可;(6)根据立方根的定义进行求解即可.【详解】解:(1)6=-;(20.2=;(3)∵332.515.6259=>=,∴2.9>∴|2.5 2.9-=(44π=-;(5)n 1=;(6a =-.故答案为:-6;0.2;2.9;4π-;1;a -.【点睛】本题主要考查了算术平方根和立方根,绝对值化简,解题的关键在于能够熟练掌握相关计算法则.2.22±【分析】根据立方根,平方根的定义进行解答即可得.【详解】解:8=,∴82=,4=,又∵2(2)4±=,2=±,故答案为:2;2±.【点睛】本题考查了立方根,平方根,解题的关键是熟记立方根和平方根的定义.3.4±【分析】根据算术平方根和立方根的定义求出x 、y 的值即可.【详解】解:∵y 的立方根是2,∴y =8,∴288y x =-=.∴216x =∴4x =± 故答案为:±4.【点睛】本题考查了对平方根和立方根的应用,主要考查学生的计算能力.4.任意数1y =【分析】根据算术平方根和立方根的定义进行求解即可得到答案.0==,其中x 的取值范围是任意数;0=,其中y 的取值范围为1y =,∵1010y y -≥⎧⎨-≥⎩,∴11y ≤≤,∴1y =,0=,故答案为:0,任意数;0,1y =.【点睛】本题主要考查了算术平方根和立方根的定义,解题的关键在于能够熟练掌握相关知识进行求解.5.2140000.1463±0.1289-214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:462.6= 4.626=,∴214000x =,1.463=,∴0.1463±,1.289=,0.1289=-,5.981=0.5981=,∴214y =,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.6.81或9【分析】分当21a -与5a -是m 的同一个平方根时和当21a -与5a -是m 的两个平方根时,两种情况讨论求解即可.【详解】解:当21a -与5a -是m 的同一个平方根时,∴215a a -=-,解得4a =-,∴219a -=-,∴()2981m =-=;当21a -与5a -是m 的两个平方根时,∴2150a a -+-=,解得2a =,∴213-=a ,∴239m ==,故答案为:81或9.【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握相关知识进行求解.7.C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A 4=,此项错误;B、4=±,此项错误;C 3=-,此项正确;D 4==,此项错误;故选:C .【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.8.B【分析】根据算术平方根的性质,立方根的性质逐一判断选项即可.【详解】解:A. =,一定成立,不符合题意,B.C.a =,一定成立,不符合题意,D. 3a =,一定成立,不符合题意.故选B .【点睛】本题主要考查算术平方根的性质,立方根的性质,熟练掌握上述性质是解题的关键.9.D【分析】根据算术平方根、平方根的定义判断即可.【详解】解:A 、16,故该选项的说法正确;B 、949的平方根是37±,则37-是949的一个平方根,故该选项的说法正确;C 、0的平方根与算术平方根都是0,故该选项的说法正确;D 、2(9)-的平方根是9==±,故该选项的说法错误;故选:D .【点睛】此题考查算术平方根、平方根的问题,关键是根据算术平方根、平方根的定义分析.10.B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B .【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.11.A【分析】可取164x =进行求解即可.【详解】解:∵01x <<,∴可取164x =,18==14=,214096x =,∵111140966484<<<,∴2x x <<<,故选A .【点睛】本题主要考查了算术平方根和立方根,解题的关键在于能够熟练掌握相关知识进行求解.12.A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:是相反数,∴3x -1=2y -1,整理得:3x =2y ,即23x y = ,故选A .【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.13.(1)558;(2)112-.【分析】直接利用立方根的性质及平方根的性质分别化简,然后根据实数的运算法则求得计算结果【详解】(1)原式=519384-⨯- ,=152988-- ,=558(2)原式514- ,=1134-+ ,=112-【点睛】此题主要考查了实数运算,正确化简各数是解题关键.14.(1)3;(2)4±【分析】(1)先根据题意可得320230a a -≥⎧⎨-≥⎩,由此求出a 、b 的值,即可求解;(2)先根据非负性的性质求出x 、y 的值,然后根据平方根的性质求解即可.【详解】解:(1)∵5b =++,∴320230a a -≥⎧⎨-≥⎩,解得2233a ≤≤,∴23a =,∴5b =,∴235355273a b +=⨯+⨯=,∵27的立方根为3,∴35a b +的立方根为3;(2)∵2(3)0x -+=,2(3)0x -≥0≥,∴3040x y -=⎧⎨-=⎩,∴34x y =⎧⎨=⎩,∴443416x y +=⨯+=,∵16的平方根为±4,∴4x y +的平方根为±4.【点睛】本题主要考查了平方根,立方根,非负数的性质,解不等式组,代数式求值,解题的关键在于能够熟练掌握相关知识进行求解.15.72x =或12x =【分析】由平方根和立方根的定义可得关于a 、b 的方程组,解方程组即可求出a 、b 的值,然后利用平方根解方程即可.【详解】解:∵3既是5a +的平方根,也是721a b -+的立方根,∴5972127a a b +=⎧⎨-+=⎩,解得:41a b =⎧⎨=⎩,∴方程()2290a x b --=即为()22904x --=,∴()2924x -=,∴322x -=±,∴72x =或12x =.【点睛】本题考查了平方根和立方根的定义、二元一次方程组的解法以及利用平方根解方程等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.。
初中数学平方根立方根实数运算练习题一、单选题1.若一个数的平方根与它的立方根完全相同,这个数是( )A.1B.1-C.0D.1,0±2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.若a 是2(4)-的平方根,b 的一个平方根是2,则a b +的立方根为( ).A.0B.2C.0或2D.0或2-4.4a =-成立,那么a 的取值范围是( )A.4a ≤B.4a ≤-C.4a ≥D.—切实数 5.对于实数a,b,下列判断正确的是( )A.若|a|=|b|,则a=bB.若a 2>b 2,则a>bC.b =,则a=bD.=则a=b二、解答题6.已知51a -的算术平方根是3,31a b +-的立方根为2.(1)求a 与b 的值;(2)求24a b +的平方根.7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.已知第一个正方体纸盒的棱长是6厘米,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127立方厘米,试求第二个正方体纸盒的棱长.9.已知2x -的平方根是2±,532y +的立方根是2-.1.求33x y +的平方根.2.计算: 2--的值. 三、计算题10.计算:1123-⎛⎫-+ ⎪⎝⎭11.计算: 01(2016)--;四、填空题12.827-的立方根为______. 13.若一个数的立方根是4,则这个数的平方根是______.14.已知21x +的平方根是5±,则54x +的立方根是 .参考答案1.答案:C解析:任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:C解析:4.答案:D解析:5.答案:D解析:6.答案:(1)由题意,得2513a -=,3312a b +-=,解得2a =,3b =.(2)∵24224316a b +=⨯+⨯=,∴24a b +的平方根4±.解析:7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:第二个正方体纸盒的棱长是7厘米.解析:9.答案:1.无平方根; 2. 132-解析:10.答案:1解析:11.答案:0解析:12.答案:23-解析:a 827-的立方根是23-. 故答案为23-. 13.答案:8±解析:14.答案:4解析:根据题意,得()2215x +=±,解得12x =.所以54512464x +=⨯+=.因为64的立方根是4,所以54x +的立方根是4。
6.1 平方根立方根一、基础训练1.9的算术平方根是()A.-3 B.3 C.±3 D.812.下列计算不正确的是()A±2 B=C=0.4 D3.下列说法中不正确的是()A.9的算术平方根是3 B 2C.27的立方根是±3 D.立方根等于-1的实数是-14的平方根是()A.±8 B.±4 C.±2 D5.-18的平方的立方根是()A.4 B.18C.-14D.146_______;9的立方根是_______.7______________(保留4个有效数字) 8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)234二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-112.已知x,y(y-3)2=0,则xy的值是()A.4 B.-4 C.94D.-9413.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小铁球的半径是多少厘米?(球的体积公式为V=43πR3)三、综合训练15.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;(3)274x3-2=0;(4)12(x+3)3=4.参考答案1.B2.A .3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±23 7.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x+4=0且y-3=0.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.14.解:设小铁球的半径是rcm ,则有43πr 3×8=43π×123,r=6, ∴小铁球的半径是6cm .点拨:根据溶化前后的体积相等.15.解:(1)(2x-1)2=169,2x-1=±13,2x=1±13,∴x=7或x=-6.(2)4(3x+1)2=1,(3x+1)2=14, 3x+1=±12,3x=-1±12, x=-12或x=-16. (3)274x 3=2,x 3=2×427, x 3=827,x=23. (4)(x+3)3=8,x+3=2,x=-1.。
第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。
公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。
2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。
《平方根立方根》课时同步练习一、选择题1.4的算术平方根是( ) A .2B .–2C .±2D .±√22.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 3.9的平方根是( ) A .±3 B .3C .±4.5D .4.54.已知一个正数的两个平方根分别为3a −5和7−a ,则这个正数的立方根是( ) A .4B .3C .2D .15.下列式子:①√93=3;②√(−3)33=3;③(−√5)2=25;④√(−4)2=4,其中正确的有( ) A .4个 B .3个 C .2个 D .1个 6.正方形的面积为6,则正方形的边长为( ) A .√2B .√6C .2D .47.下列各数中,没有平方根的是( ) A .65B .(−2)2C .−22D .128.下列各式中,正确的是( ) A .√16=±4B .±√16=4C .√−273=−3D .√(−4)2=−49.下列各组数中互为相反数的是( ) A .-2与√(−2)2 B .-2与√−83 C .2与(−2)2D .|–√2|与√210.已知x ,y 为实数,且√x −3+(y +2)2=0,则y x 的立方根是( ) A .3√6 B .-8C .-2D .±2二、填空题11.11的平方根是__________.12.一个数的立方根是4,则这个数的算术平方根是_________.13.已知√a +2+|b −3|=0,则a +b =____________. 14.若实数m ,n 满足(m +1)2+√n −5=0,则√m +n =__.15.若一个有理数的平方根与立方根是相等的,则这个有理数一定是_______ 16.已知一个正数的两个不同的平方根是3x -2和4-x ,则这个数是________三、解答题17.求满足下列各式的未知数x .(1)4x 2−25=0; (2)(x −3)3=64.18.已知一个数的平方根是±(2a −1),算术平方根是a +4,且a >12,求这个数.19.已知一个正数的两个平方根分别为a 和3a ﹣8 (1)求a 的值,并求这个正数; (2)求1﹣7a 2的立方根.20.计算:(1)√−273+√(−3)2-√−13(2)√−273−√0−√14+√0.1253+√1−63643.21.(1)求式子(x −2)3–1= –28中x 的值.(2)已知有理数a 满足|2019–a|+√a −2020=a ,求a–20192的值.22.已知2x–1的算术平方根是3,12y +3的立方根是–1,求代数式2x +y 的平方根.23.已知,x ﹣1的平方根是±2,2x +y +5的立方根是3,求x 2+y 2的算术平方根.参考答案一、选择题1.A 2.B 3.A 4.A 5.D6.B 7.C 8.C 9.A 10.C二、填空题11.±√11 12.813.114.215.0 16.25三、解答题17.(1)x=±52;(2)x=7.18.当a+4=+(2a−1)时,则a+4=2a−1,a=5>12,符合.则此时(a+4)2=92=81,当a+4=−(2a−1)时,a+4=−2a+1,a=−1<12,不符合. 19.(1)根据题意,得:a+3a﹣8=0,解得:a=2,所以这个正数为4;(2)当a=2时,1﹣7a2=−27,则1﹣7a2的立方根为﹣3.20.(1)原式=−3+3+1=1;(2)原式=−3−0−12+0.5+14=−11421.(1)∵(x−2)3–1= –28∴(x−2)3= –27∴x−2=−3∴x=−3+2=−1;(2)∵|2019−a|+√a−2020=a①∴a−2020≥0,即a≥2020∴2019−a<0∴①式可变形为a−2019+√a−2020=a ∴√a−2020=2019∴a−2020=20192∴a−20192=2020.22.∵2x–1的算术平方根为3,∴2x–1=9,解得:x=5,y+3的立方根是–1,∵12y+3=−1,∴12解得:y=–8,∴2x+y=2×5–8=2,∴2x+y的平方根是±√2.23.∵x﹣1的平方根是±2,∴x﹣1=4,∴x=5,∵2x+y+5的立方根是3,∴2x+y+5=27,把x的值代入解得:y=12,∴x2+y2=52+122=169,∴x2+y2的算术平方根为√169=13.。
初中数学平方根立方根综合练习题一、单选题1.一个数的立方根是它本身,则这个数是( )A.0B.1,0C.1,-1D.1,-1或02.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.下列各式中,正确的是( )A.2(9= 2=- 3=- D.3=±4.下列命题:①过一点有且只有一条直线与已知直线平行;②一个实数的立方根不是正数就是负数;③如果一个数的平方根是这个数本身,那么这个数是1或0;④两条直线被第三条直线所截,同位角相等.其中假命题的个数有( )A.4个B.3个C.2个D.1个5.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有( )A.1个B.2个C.3个D.4个( )A.8B.4C.2D.-2二、解答题7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.观察以下各式:①2=3=4=④5=,. 1. 请写出第5个等式;2. 用n(n 为大于1的整数)表示出你所发现的规律.三、计算题9.实数计算:1. ()239627----; 2. ()3238231-++-; 10.计算: 0318(2016)--+-;四、填空题11.-27的立方根是________.12.若x ,y 满足()323|94|0x y ++-=,则xy 的立方根为 .13.用教材中的计算器进行计算,开机后依次按下. 把显示结果输人下侧的程序中,则输出的结果是__________. 14.设实数x,y,z 适合333987x y z ==,9871x y z ++=,则2223(9)(8)(7)x y z ++=4449(9)(8)(7)x y z ++=__________.参考答案1.答案:D解析:立方根是它本身有3个,分别是±1,0.故选D.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:D解析:A.原式3=,错误;B.原式22=-=,错误;3399-=-D.原式3=±,正确,故选:D.4.答案:A解析:5.答案:C解析:6.答案:C64=8,即8的立方根等于2,故选C7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:1.6=2.n =解析:9.答案:1.0; 2. 解析:10.答案:0解析:11.答案:-3解析:-27的立方根是-3,故答案为-3.12.答案:32-解析:()323|94|0x y ++-=39230,940,,24x y x y ∴+=-==-=解得 3927248xy ∴=-⨯=- 32xy ∴-的立方根是13.答案:34+解析:14.答案:; 解析:。
专题01 平方根及立方根专题测试一、单选题1.(2019·阜阳市第九中学初一期中)平方根和立方根都是本身的数是( )A .0B .0和1C .±1D .0和±1【答案】A【解析】平方根和立方根都是本身的数是0.故选A .2.(2019·重庆市永川区第五中学校初二期中)下列各式中,正确的是A 4=±B .4=C 3=-D 4=-【答案】C【解析】A . 原式=4,所以A 选项错误;B . 原式=±4,所以B 选项错误;C . 原式=−3,所以C 选项正确;D . 原式=|−4|=4,所以D 选项错误;故选:C .3.(2019·广东初二期中)-8的立方根与4的平方根之和是( )A .0B .4C .0或4D .0或-4【答案】D【解析】∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.故选:D .4.(2019·安徽初一期末)下列语句中正确的是( )A .9-的平方根是3-B .9的平方根是3C .9的算术平方根是3±D .9的算术平方根是3【答案】D【解析】A 选项:-9没有平方根,故是错误的;B 选项:9的平方根有3和-3,故是错误的;C 选项:9的算术平方根是3,故是错误的;D 选项:9的算术平方根是3,故是正确的;故选D 。
5.(2019·金寨县天堂寨镇暖流中学初一期中)下列各式中,正确的是( )A . 2.50.5-=-B .2(5)5-=-C .366=±D .93=【答案】D【解析】∵0.250.5-=-,故A 错误;2(5)5-=,故B 错误;366=,故C 错误;93=,故D 正确;故选:D6.(2017·安徽初一期中)327-的绝对值是A .3B .-3C .13 D .13-【答案】A【解析】3.-3的绝对值是3.故选A .7.(2019·81 )A .9B .±9C .±3D .3【答案】D【解析】81,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.813.故选:D .8.(2019·阜阳市第九中学初一期中)若2m -4与3m -1是同一个数的两个不等的平方根,则这个数是( ) A .2 B .一2 C .4 D .1【答案】C【解析】解:由题意可知:2m-4+3m-1=0,解得:m=1,∴2m-4=-2所以这个数是4,故选:C.9.(2019·+|b﹣1|=0,那么(a+b)2019的值为( ) A.﹣1 B.1 C.32019D.﹣32019【答案】A【解析】∵|a+2|+(b-1)2=0,∴a+2=0,b-1=0,∴a=-2,b=1,∴(a+b)2019=(-2+1)2019=-1.故选A.10.(2019·,则x和y的关系是().A.x=y=0 B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】,=∴x=-y,即x、y互为相反数,故选:B.二、填空题11.(2018·_____.【答案】2【解析】,4的算术平方根是2,∴16的算术平方根是2.12.(2019·淮南实验中学初一期中)﹣3是_____的立方根,81的平方根是_____.【答案】-27 ±9【解析】﹣3是﹣27的立方根,81的平方根是±9,故答案为:﹣27;±9.13.(2019·浙江初一期中)64立方根是__________.【答案】2;【解析】∵64=8,38=2,∴64的立方根是2.故答案为:2.14.(2019·安徽初二期中)观察下列各式:①111233+=;②112344+==3;③113455+=,…请用含n(n≥1)的式子写出你猜想的规律:____________.【答案】1 (1)2 nn++【解析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即12nn++=1(1)2nn++.故答案为1 (1)2 nn++.15.(2019·辽宁初二期中)已知x,y都是实数,且y=3x-+3x-+4,则y x=________. 【答案】64【解析】由题意得x=3,y=4, 则=43=64三、解答题16.(2019·丹东市第七中学初二期中)已知一个正数的两个平方根分别为a和3a﹣8(1)求a的值,并求这个正数;(2)求1﹣7a2的立方根.【答案】(1)4, (2)-3.【解析】(1)根据题意,得:a+3a﹣8=0,解得:a=2,所以这个正数为22=4;(2)当a=2时,1﹣7a2=﹣27,则1﹣7a2的立方根为﹣3.17.(2018·合肥市第四十五中学初一期中)已知a+3和2a﹣15是某正数的两个平方根,b的立方根是﹣2,c算术平方根是其本身,求2a+b﹣3c的值.【答案】当a=4,b=﹣8,c=0,2a+b﹣3c=0;当a=4,b=﹣8,c=1,2a+b﹣3c=﹣3.【解析】∵某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.c算术平方根是其本身∴a+3+2a﹣15=0,b=﹣8,c=0或1,解得a=4.当a=4,b=﹣8,c=0,2a+b﹣3c=8﹣8﹣0=0;当a=4,b=﹣8,c=1,2a+b﹣3c=8﹣8﹣3=﹣3.18.(2019·安徽初一期中)已知3既是x-1的平方根,又是x-2y+1的立方根,求x2-y2的平方根.【答案】±6【解析】解:根据题意得192127xx y-⎧⎨-+⎩=①=②,由①得:x=10,把x=10代入②得:y=-8,∴108 xy⎧⎨-⎩==,∴x2-y2=102-(-8)2=36,∵36的平方根是±6,∴x2-y2的平方根是±6.19.(2019·阜阳市第九中学初一期中)已知a是-64的立方根,b的算术平方根为2.(1)写出a,b的值;(2)求3b-a的平方根,【答案】(1)a=-4,b=4;(2) ±4.【解析】解(1)因为a是-64的立方根,b的算术平方根为2,所以a=-4,b=4 (2)因为a=-4,b=4,所以3a-3b=16.所以3a-3b的平方根为士4。
七年级数学平方根和立
方根同步练习含答案 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
一、基础训练
1.9的算术平方根是()
A.-3 B.3 C.±3 D.81
2.下列计算不正确的是()
A.=±2 B=
C.
3.下列说法中不正确的是()
A.9的算术平方根是3 B 2
C.27的立方根是±3 D.立方根等于-1的实数是-1
4.的平方根是()
A.±8 B.±4 C.±2 D
5.-1
8
的平方的立方根是()
A.4 B.1
8
C.-
1
4
D.
1
4
6._______;9的立方根是_______.
7.用计算器计算:≈______________(保留4个有效数字) 8.求下列各数的平方根.
(1)100;(2)0;(3)9
25
;(4)1;(5)1
15
49
;(6)0.09.
9.计算:
(1)234
二、能力训练
10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()
A.x+1 B.x2+1 C
11.若2m-4与3m-1是同一个数的平方根,则m的值是()
A.-3 B.1 C.-3或1 D.-1
12.已知x,y是实数,且(y-3)2=0,则xy的值是()
A.4 B.-4 C.9
4
D.-
9
4
13.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小铁
球的半径是多少厘米(球的体积公式为V=4
3
πR3)
三、综合训练
15.利用平方根、立方根来解下列方程.
(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;
(3)27
4
x3-2=0;(4)
1
2
(x+3)3=4.
参考答案 1.B
2.A 点拨:=2.
3.C
4.C 点拨:=4,故4的平方根为±2.
5.D 点拨:(-18)2=164,故164的立方根为14
.
6.±23 7.,
8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87
(6)± 9.(1)-3 (2)-2 (3)14
(4)± 10.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,
则x 2+1.
12.B 点拨:3x+4=0且y-3=0.
13.10,12,14 点拨:23<这个数<42,即8<这个数<16.
14.解:设小铁球的半径是rcm ,
则有43πr 3×8=43
π×123,r=6, ∴小铁球的半径是6cm .
点拨:根据溶化前后的体积相等.
15.解:(1)(2x-1)2=169,2x-1=±13,
2x=1±13,∴x=7或x=-6.
(2)4(3x+1)2=1,(3x+1)2=
14, 3x+1=±
12,3x=-1±12
, x=-12
或x=-16. (3)274x 3=2,x 3=2×427
, x 3=827,x=23. (4)(x+3)3=8,x+3=2,x=-1.。