苏教版 有理数的乘法与除法(3)
- 格式:ppt
- 大小:835.50 KB
- 文档页数:17
胜利中学教案设计学科:七年级数学教学内容:有理数乘法与除法(3) 教师姓名:金桂玉教学目标:会将有理数的除法转化成乘法;会进行有理数的乘除混合运算;会求有理数的倒数.教学重难点:正确进行有理数除法的运算,正确求一个有理数的倒数;如何进行有理数除法的运算,求一个负数的倒数.课前准备:课时安排:一课时教学过程个人研修一情景导入复习引入:1,倒数的概念;2,说出下列各数对应的倒数:1,-43,-(-4.5),|-23|3,现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如黄州市区某一周上午8时的气温记录如下:周日周一周二周三周四周五周六-30c -30c -20c -3°c 0°c -2°c -1°c问:这周每天上午8时的平均气温是多少?二自主学习探索新知:上面的问题该怎么求解呢?请大家讨论并列式计算.1,解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7,即:(-14)÷7=?(除法是乘法的逆运算)什么乘以7等于-14?因为(-2)×7=-14,所以: (-14)÷7=-2又因为:(-14)×71=-2所以:(-14)÷7=(-14)×71师生一起用实例来验证这一发现;之后一起总结这种规律.2,有理数除法法则:除以一个不等于0的数等于乘以这个数的倒数;0除以任何一个不等于0的数都等于0由此可见:“除以一个数,等于乘以这个数的倒数”,在引进负数以后同样成立.三教师导学问题1,计算:(1)36÷(-9) (2)(48)÷(-6 (3)0÷(-8) (4)(-21)÷(-32) (5)0.25÷(-0.5) (6)(-2476)÷(-6) (7)(-32)÷4×(-8) (8)17×(-6)÷5思考:我们该怎么来计算?因为乘法与除法的关系,我们可以仿照乘法来计算.试试看:算后小结:能整除时,将商的符号确定后,直接将绝对值相除;不能整除时,将除数变为它的倒数,再用乘法;有乘除混合运算时,先将除法转化为乘法,再进行乘法运算,注意运算顺序.课堂练习:计算:(1)48÷[(-6)-4] (2)(-81)÷49×94÷(-16) (3)52÷(-252)-281×(-143)-0.75 四合作探究 问题3,化简下列分数: 721-,122-,317-- 练习: 1,下列说法中,不正确的是 ( ) A.一个数与它的倒数之积为1; B.一个数与它的相反数之商为-1; C.两数商为-1,则这两个数互为相反数; D.两数积为1,则这两个数互为倒数; 2,下列说法中错误的是 ( ) A.互为倒数的两个数同号; B.零没有倒数; C.零没有相反数; D.零除以任意非零数商为03,如果两个有理数在数轴上对应的点分别在原点的两侧,则这两个数相 除所得的商是( )A.一定是负数;B.一定是正数;C.等于0;D.以上都不是;4,1.4的倒数是 ; 若a,b 互为倒数,则2ab= ; 5,若一个数和它的倒数相等,则这个数是 ;若一个数和它的相反数相等,则这个数是 .五交流反馈 1,计算: (1)(-27)÷9;(2)(-45)÷[(-13)÷(-25)]; (3)(-0.91)÷(-0.13);(4)0÷(-351719)(5)(-23)÷(-3)×13; (6)1.25÷(-0.5)÷(-212);(7)(-81)÷(+314)×(-49)÷(-1113); (8)-0.125÷83 (9)(13-56+79)÷(-118); (10)-32324÷(-112). 2,列式计算:(1)一个数的413倍是-13,则此数为多少?(2)-15的相反数与-5的绝对值的商的相反数是多少?课堂小结:有理数的乘法法则及运算律;有理数的除法法则;与小学四则运算不同,有理数的加,减,乘,除首先要确定和,差,积,商的符号,然后在确定和,差,积,商的绝对值.六巩固提升补充题: 1,若0____0,0b a b a ,则><,若0____0,0b a b a ,则>>. 2,若0____0,0b a b a ,则<=,若0____0,0b a b a ,则<>.3,mn=0,则一定有( ).A.n=0且m ≠0;B.m=0或n=0;C.m=0且n ≠0;D.m=n=04,果两个有理数的和除以它们的积,所得商是0,那么这两个有理数 ( ).A.互为相反数,但不等于0B.互为倒数;C.有一个等0;D.都等于0 5,数的相反数与这个数的倒数的和为0,则这个数的绝对值为 ( ).A.2B.1C.0.5D.06,ab ≠0,则a a +bb 的值不可能是 ( ).A.0 B.1 C.2 D.-27,a a +b b +c c =1,求(abc abc )2003÷(ab bc ×bc ac ×acab )的值.8,计算:(721+343-271-187)÷(1521+743-473-387). 9,a,b,c,d 表示4个有理数,其中每三个数之和是-1,-3,2,17,求a,b,c,d.10,2001减去它的21,再减去剩余数的31,再减去剩余数的41,…,依此类推,一直减去剩余数的20011,求最后剩余的数.教学反思。
2024有理数的乘法与除法苏教版数学初一上册教案一、教学目标1.让学生掌握有理数的乘法和除法的概念。
2.使学生能够熟练运用有理数的乘法和除法进行计算。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点与难点1.教学重点:有理数的乘法和除法的法则。
2.教学难点:有理数乘除混合运算。
三、教学过程第一课时:有理数的乘法(一)导入新课1.复习有理数的加法和减法。
2.提问:有理数的加法和减法有什么联系和区别?(二)新课讲解1.讲解有理数的乘法法则。
2.通过实例演示有理数乘法的运算过程。
(三)课堂练习1.让学生独立完成教材P页的练习题。
2.对学生的作业进行点评,指出错误和不足。
(四)课堂小结2.强调有理数乘法在生活中的应用。
第二课时:有理数的除法(一)复习导入1.复习有理数的乘法。
2.提问:有理数的乘法和除法有什么联系和区别?(二)新课讲解1.讲解有理数的除法法则。
2.通过实例演示有理数除法的运算过程。
(三)课堂练习1.让学生独立完成教材P页的练习题。
2.对学生的作业进行点评,指出错误和不足。
(四)课堂小结2.强调有理数除法在生活中的应用。
第三课时:有理数乘除混合运算(一)复习导入1.复习有理数的乘法和除法。
2.提问:有理数的乘法和除法在运算过程中需要注意什么?(二)新课讲解1.讲解有理数乘除混合运算的法则。
2.通过实例演示有理数乘除混合运算的过程。
(三)课堂练习1.让学生独立完成教材P页的练习题。
2.对学生的作业进行点评,指出错误和不足。
(四)课堂小结2.强调有理数乘除混合运算在生活中的应用。
第四课时:综合练习与拓展(一)课堂练习1.让学生独立完成教材P页的综合练习题。
2.对学生的作业进行点评,指出错误和不足。
(二)拓展训练1.设计一些有挑战性的题目,让学生尝试解决。
2.引导学生运用所学知识解决实际问题。
(三)课堂小结2.强调有理数乘除混合运算在实际生活中的重要性。
四、课后作业1.完成教材P页的课后练习题。
有理数的乘法与除法一. 学习目标:1. 掌握有理数乘法法则。
2. 掌握乘法的运算律。
3. 掌握有理数的除法及乘方运算。
二. 重点、难点:1. 乘除法法则的运用。
2. 混和运算。
三. 教学内容:(一)有理数的乘法:前面我们已经研究过有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算。
先看这样的几个问题:(1)有理数包括哪些数?显然:有理数应包括正整数、正分数、负整数、负分数、零。
(2)小学中学过的乘法运算,属于有理数中哪些数的运算?小学时学过的乘法运算属于正有理数和零的运算。
根据小学时学过的乘法,研究下面几个问题:以上这些题目,都是对正有理数与正有理数、正有理数与零的乘法。
现在,数的X围已经扩大到有理数,出现了负数,又该怎样计算呢?先看这样一个问题:一只小虫沿东西向的跑道,以每分钟3米的速度向东爬行2分钟,那么,它现在的位置位于原来位置的哪个方向?相距几米?分析:这里,如果咱们规定向东为正,向西为负,用小学时的乘法就可以知道为即小虫在原来位置东边6米处。
但是,如果小虫以每分钟3米的速度向西爬行,又该怎样计算呢?我们知道,向西为负,因而小虫每分钟爬行的量应为-3米,而最后在西边6米。
发现:当我们把“3×2=6”中的一个因数“3”换成它的相反数“-3”时,所得的积是原来积“+6”的相反数“-6”,一般地,人们发现:把一个因数换成它的相反数,所得的积是原来积的相反数。
下面咱们来看这样几个例子:(1)将3×2中第二个因数换成它的相反数(-2),得:3×(-2),而其结果应该等于3×2的结果6的相反数-6,即有3×(-2)=-6。
(2)将上式3×(-2)=-6的第一个因数“3”换成它的相反数“-3”,得到(-3)×(-2),而它的结果也应该为“-6”的相反数“6”,即有(-3)×(-2)=6,另外,如果有一个因数是0,所得的积仍然是零。
2014-2015学年度第一学期七年级数学导学案(16)2.6有理数的乘法与除法(3)编写:罗俊 审阅:高黄星 2014-9-25班级 学号 姓名【学习目标】1.使学生掌握有理数的除法法则,能熟练地进行除法运算;2.培养学生观察、归纳、概括及运算能力【重、难点】有理数的除法【新知预习】1.现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:周日 周一 周二 周三 周四 周五 周六-3℃ -3℃ -2℃ -3℃ 0℃ -2℃ -1℃问:这周每天上午8时的平均气温是多少?请用算式表示.2.计算:8×9= 72÷9=(-4)×2= (-8)÷(-4)=2×(-3)= (-6)÷2=(-4)×(-3)= 12÷(-4)=0×(-6)= 0÷(-6)=【导学过程】活动:1.小丽根据(除法是乘法的逆运算)什么乘以7等于-14?小明把小学里学习的“除以一个数等于乘以这个数的倒数”,直接应用到有理数除法运算中,由 (-14)×71求得结果。
小丽与小明的算法正确吗? 2.计算:①(-10)÷2 ②24÷(-8) ③(-12) ÷(-4)3.有理数的除法法则:除以一个 的数,等于乘这个数的 .两个 的数相除,同号得 ,异号得 ,并把 . 0除以 ,都得 .例1.计算:(1)36÷(-9)(2)(-48)÷6 (3)0÷(-8)(4)(-21)÷(-32) (5)0.25÷(-0.5) (6))25.2()833(-÷-例2.计算:(1)(-32)÷4×(-8) (2) 17×(-6)÷3 (3) (-81)÷49×94÷(-16)【反馈练习】1.填空:-1÷(-221)= ,0÷(-6)= :52÷(-4)= , 1÷(-5)= , 0÷(21-)= ,(-91)÷13= (-63)÷(-9)= . 2.选择题:(1)如果两个有理数在数轴上的对应点分别在原点的两侧,那么这两个数的商( )A 、必为正数B 、必为负数C 、为-1D 、可能为正数,也可能为负数(2)下列说法中,正确的是( )A 、任何有理数都有倒数B 、一个数的倒数一定小于这个数C 、0除以任何数都得0D 、乘积是1的两个数互为倒数3.计算:(1)(34-)÷(43-) (2)0.25÷(83-) (3)12×(-3)÷(-4)(4)(-6)÷2×(21-) (5)(-5)÷(-51)×5 (6)(-2)÷(-10)×(313-)★4.王明同学在电脑中设置了一个有理数的运算程序:输入数“a ”加“*”键,再输入b ,就可以得到运算a ﹡b =)2()2(b a b a -÷-.求31)3(*-的值.【课后作业】P 48 5 、 6 5. (1) (2) (3) 6.(1) (2) (3)(4) (5) (6) (4) (5) (6)。
2. 5有理数的乘法与除法(第3课时)【教学目标】〖知识与技能〗1、理解有理数除法的意义,能正确运用有理数除法法则进行除法运算。
2、能正确进行有理数的加减乘除混合运算。
〖过程与方法〗1、经历探索有理数除法法则的过程,培养学生观察、归纳、猜测、验等能力。
2、经历由乘法到除法的转变过程,体会有理数的乘法与除法之间的联系。
〖情感、态度与价值观〗通过有理数的乘法与除法的转换,感知数学知识具有相互转化性,熟悉转化的数学思想。
【教学重点】有理数除法法则的探索与理解。
【教学难点】有理数的加减乘除混合运算【教学过程】一、自学质疑:1、回忆小学学过的除法意义(已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法)2、在有理数范围内,如何进行除法运算?二、交流展示:〖活动一〗你能运用小学学过的除法意义计算-15÷3的结果吗?你还能运用倒数的定义进行计算吗?三、互动探究:1、根据除法的意义:∵ 3×(-5)=-15 ∴-15÷3=-52、根据倒数的定义:∵-15×31=-5 ∴-15÷3=-15×31=-5 四、精讲点拨:【点拨】1、有理数除法法则:(1) 根据交流探究,总结出法则:除以一个不为0的有理数,等于乘以这个数的倒数。
a ÷b=a ÷b1 (b ≠0) 验证:(1)10÷(-2)= (2)-21÷7=(2)有理数除法中的符号确定:由于有理数的除法可以转变为除法,因此有理数的除法还有如下法则:两个有理数相除:同号得正,异号得负,并把绝对值相除。
0除以一个不为0的有理数,都得0。
2、例题讲解:例4 计算:(1)36÷(-9) (2)(-48)÷(-6)(3)(-32)÷4×(-8) (4)17×(-6)÷(-5)解答:(1)-4 (2)8 (3)64 (4)例5 计算:(1))32()21(-÷- (2)-81÷9449⨯÷16 解:(1))32()21(-÷-=(-21)×(-23)=2321⨯=43 (2)-81÷9449⨯÷16=-81×9494⨯×(-161)=1 3、有理数的加减乘除混合运算:法则:先乘除,后加减,有括号的先算括号里面的。
2.6 有理数的乘法与除法一.选择题(共10小题)1.计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.22.﹣2的倒数是()A.﹣B.C.2D.﹣23.下列各组数中互为倒数的是()A.﹣5和﹣B.﹣3和C.0.125和﹣8D.和﹣24.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大5.(﹣21)÷7的结果是()A.3B.﹣3C.D.6.﹣|﹣|的负倒数是()A.B.C.D.7.商店降价销售某种商品,每件降价5元,售出60件后,与原价销售同样数量的商品相比,销售额的变化情况算式表示为()A.(﹣5)×60B.5×60C.5×(﹣60)D.(﹣5)×(﹣60)8.若ab>0,a+b<0,则()A.a、b都为负数B.a、b都为正数C.a、b中一正一负D.以上都不对9.3x﹣12的值与互为倒数,则x的值为()A.3B.﹣3C.5D.﹣510.我们把2÷2÷2记作2③,(﹣4)÷(﹣4)记作(﹣4)②,那么计算9×(﹣3)④的结果为()A.1B.3C.D.二.填空题(共6小题)11.﹣2019的倒数是.12.在﹣3、4、﹣2、5四个数中,任意两个数之积的最小值为.13.若|a|=3,|b|=5,且a、b异号,则a•b=.14.下面是一种算法:输入任意一个数x,都是“先乘以2,再减去3”,进行第1次这样的运算,结果为y1,再对y1实施同样的运算,称为第2次运算,结果为y2,这样持续进行,要使第n次运算结果为0,即y n=0,则最初输入的数应该是.(用含有n的代数式表示).15.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.16.用f(n)表示组成n的数字中不是零的所有数字乘积,例如:f(5)=5,f(29)=18,f(207)=14.则f(1)+f(2)+……+f(200)=.三.解答题(共4小题)17.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.18.已知|a|=10,|b|=6,ab<0.求:(1)4a﹣2b的值;(2)ab的值.19.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b =80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?20.在1,﹣2,3,﹣4,﹣5中任取两个数相乘,最大的积是a,最小的积是b.(1)求ab的值;(2)若|x﹣a|+|y+b|=0,求(﹣x﹣y)•y的值.答案与解析一.选择题(共10小题)1.计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2【分析】根据正数与负数相乘的法则得(﹣3)×5=﹣15;【解答】解:(﹣3)×5=﹣15;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.﹣2的倒数是()A.﹣B.C.2D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.3.下列各组数中互为倒数的是()A.﹣5和﹣B.﹣3和C.0.125和﹣8D.和﹣2【分析】直接利用互为倒数的定义分析得出答案.【解答】解:A、﹣5和﹣,两数之积为1,是互为倒数,故此选项正确;B、﹣3和,两数之积为﹣1,不是互为相反数,故此选项错误;C、0.125和﹣8,两数之积为﹣1,不是互为相反数,故此选项错误;D、和﹣2,两数之积为﹣1,不是互为相反数,故此选项错误;故选:A.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.4.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.5.(﹣21)÷7的结果是()A.3B.﹣3C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选:B.【点评】本题考查有理数的除法法则,属于基础题.6.﹣|﹣|的负倒数是()A.B.C.D.【分析】根据相反数,倒数的定义,负倒数是相反数的倒数.【解答】解:﹣|﹣|=﹣,﹣的负倒数是.故选:B.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.7.商店降价销售某种商品,每件降价5元,售出60件后,与原价销售同样数量的商品相比,销售额的变化情况算式表示为()A.(﹣5)×60B.5×60C.5×(﹣60)D.(﹣5)×(﹣60)【分析】根据一件减少的销售额×件数=售出60件后销售额减少量,列式计算.【解答】解:依题意,每售出一件,销售额减少了5元,则售出60件后,与原价销售同样数量的商品相比,销售额的变化情况算式表示为(﹣5)×60.故选:A.【点评】本题考查了乘法在生活中的应用.熟知负数的意义是解答本题的关键.8.若ab>0,a+b<0,则()A.a、b都为负数B.a、b都为正数C.a、b中一正一负D.以上都不对【分析】根据有理数的加法,有理数的乘法,可得答案【解答】解:∵ab>0,∴a、b同时为正数或同时为负数,又∵a+b<0,∴a、b同时为同时为负数故选:A.【点评】本题考查了有理数的乘法,熟记法则并根据法则计算是解题关键.9.3x﹣12的值与互为倒数,则x的值为()A.3B.﹣3C.5D.﹣5【分析】由倒数的定义得到:(3x﹣12)×(﹣)=1,通过解该方程可以求得x的值.【解答】解:∵代数式3x﹣12的值与﹣互为倒数,∴(3x﹣12)×(﹣)=1,即﹣x+4=1,解得,x=3.故选:A.【点评】考查了倒数的定义:乘积是1的两数互为倒数.10.我们把2÷2÷2记作2③,(﹣4)÷(﹣4)记作(﹣4)②,那么计算9×(﹣3)④的结果为()A.1B.3C.D.【分析】根据新定义列出算式9×[(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)],再根据有理数的乘除运算法则计算可得.【解答】解:9×(﹣3)④=9×[(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)]=9×=1,故选:A.【点评】本题主要考查有理数的除法,解题的关键是理解并掌握新定义及有理数乘除运算法则.二.填空题(共6小题)11.﹣2019的倒数是.【分析】直接利用倒数的定义进而得出答案.【解答】解:﹣2019的倒数是.故答案为:.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.12.在﹣3、4、﹣2、5四个数中,任意两个数之积的最小值为﹣15.【分析】首先求出任意两个数的积是多少,然后根据有理数的大小比较法则比较即可.【解答】解:(﹣3)×4=﹣12,(﹣3)×(﹣2)=6,(﹣3)×5=﹣15;4×(﹣2)=﹣8,4×5=20,(﹣2)×5=﹣10,∵﹣15<﹣12<﹣10<﹣8<6<20,∴在﹣3、4、﹣2、5四个数中,任意两个数之积的最小值为﹣15.故答案为:﹣15.【点评】此题主要考查了有理数的乘法的运算方法,要熟练掌握.13.若|a|=3,|b|=5,且a、b异号,则a•b=﹣15.【分析】根据绝对值的性质可知;a=±3,b=±5,由a、b异号确定出a、b的取值情况,然后可求得a•b的值.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a、b异号,∴a=3,b=﹣5或a=﹣3,b=5.∴ab=﹣15.故答案为:﹣15.【点评】本题主要考查的是绝对值、有理数的乘法,根据题意确定出a、b的取值情况是解题的关键.14.下面是一种算法:输入任意一个数x,都是“先乘以2,再减去3”,进行第1次这样的运算,结果为y1,再对y1实施同样的运算,称为第2次运算,结果为y2,这样持续进行,要使第n次运算结果为0,即y n=0,则最初输入的数应该是3﹣.(用含有n的代数式表示).【分析】根据题意列出式子即可.【解答】解:根据题意得:最初输入的数应该是3﹣,故答案为:3﹣【点评】此题考查了有理数的乘法,减法,熟练掌握运算法则是解本题的关键.15.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=4.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.16.用f(n)表示组成n的数字中不是零的所有数字乘积,例如:f(5)=5,f(29)=18,f(207)=14.则f(1)+f(2)+……+f(200)=2116.【分析】根据题意可以得到规律:一位数结果为个位数,两位数结果为十位数×个位数,三位数为百位数×个位数.据此规律解决此题即可.【解答】解:f(1)+f(2)+f(3)+…+f(200)=(1+2+3…+9)+1×(1+2+3…+9)+2×(1+2+3…+9)+3×(1+2+3…+9)+…+9×(1+2+3…+9)+(1+2+3…+9+1)=(1+2+3…+9)×(1+1+2+3…+9)+46=45×46+46=2116.故答案为:2116.【点评】本题考查了数字变化类问题,解题的关键是仔细地观察题目并从中总结规律,利用总结的规律进行计算即可.三.解答题(共4小题)17.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.18.已知|a|=10,|b|=6,ab<0.求:(1)4a﹣2b的值;(2)ab的值.【分析】(1)先根据绝对值的性质得出a,b的值,再由ab<0知a,b异号,从而确定a,b的值,代入计算可得;(2)将以上所得a,b的值代入计算即可得.【解答】解:(1)∵|a|=10,|b|=6,∴a=±10,b=±6,又∵ab<0,∴a=10,b=﹣6或a=﹣10,b=6,当a=10,b=﹣6时,4a﹣2b=40+12=52;当a=﹣10,b=6时,4a﹣2b=﹣40﹣12=﹣52;综上,4a﹣2b的值为±52;(2)当a=10,b=﹣6时,ab=﹣60;当a=﹣10,b=6时,ab=﹣60;综上,ab=﹣60.【点评】本题主要考查有理数的乘法,解题的关键是掌握绝对值的性质与有理数的乘法法则.19.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b =80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?【分析】(1)根据题意可以a、b的符号相反、可得a=﹣10,根据a+b=80可得b的值,本题得以解决;(2)①根据题意可以求得两只电子蚂蚁在数轴上的点C相遇是点C对应的数值;②根据题意和分类讨论的数学思想可以解答本题.【解答】解:(1)∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0,∴a=﹣10,b=90,即a的值是﹣10,b的值是90;(2)①由题意可得,点C对应的数是:90﹣[90﹣(﹣10)]÷(3+2)×2=90﹣100÷5×2=90﹣40=50,即点C对应的数为:50;②设相遇前,经过m秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)﹣20]÷(3+2)=80÷5=16(秒),设相遇后,经过n秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)+20]÷(3+2)=120÷5=24(秒),由上可得,经过16秒或24秒的时间两只电子蚂蚁在数轴上相距20个单位长度.【点评】本题考查有理数的乘法、绝对值、数轴、有理数的加法,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.20.在1,﹣2,3,﹣4,﹣5中任取两个数相乘,最大的积是a,最小的积是b.(1)求ab的值;(2)若|x﹣a|+|y+b|=0,求(﹣x﹣y)•y的值.【分析】(1)根据有理数的乘法法则得出a,b的值,代入计算可得;(2)将a,b的值代入|x﹣a|+|y+b|=0,根据非负数的性质得出x,y的值,继而代入计算可得.【解答】解:(1)根据题意知a=(﹣4)×(﹣5)=20,b=3×(﹣5)=﹣15,所以ab=20×(﹣15)=﹣300;(2)由题意知|x﹣20|+|y﹣15|=0,则x﹣20=0且y﹣15=0,解得x=20,y=15,∴(﹣x﹣y)•y=(﹣20﹣15)×15=﹣35×15=﹣525.【点评】本题主要考查有理数的乘法,解题的关键是熟练掌握有理数的乘法法则和绝对值的性质.。
2.6 有理数的乘法和除法(3)【学习目标】1、会将有理数的除法转化成乘法;2、会进行有理数的乘除混合运算;3、会求有理数的倒数。
【学习重点】正确进行有理数除法的运算,正确求一个有理数的倒数.【学习难点】如何进行有理数除法的运算,求一个负数的倒数。
【学习过程】【预习引领】1.有理数的减法法则是什么?2.两个有理数的乘法法则是什么?3.在小学我们已经学习了除法运算,小学数的运算范围是怎样的?4.在有理数范围内又怎样进行除法运算呢?这节课共同研究有理数的除法.5.怎样计算8÷(-4)呢?【要点梳理】知识点一:有理数的除法法则∵(-2)×(-4)=8∴8÷(-4)=-2∵8⎪⎭⎫ ⎝⎛-⨯41=-2 ∴8÷(-4)=8⎪⎭⎫ ⎝⎛-⨯41 同样可得:-9÷23=-9×32 (-12)÷(-4)=(-12)⎪⎭⎫ ⎝⎛-⨯41 换其他数的除法进行类似讨论,是否仍有除以a (≠a 0)可以转化为乘a1 归纳有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.因为一个数与它的倒数的符号相同,所以有理数的除法法则还有另一种说法:两个不等于0的数相除,同号得 ,异号得 ,并把绝对值相 .0除以任何一个不等于0的数,都得 .例1 计算:注:一般被除数的绝对值能整除除数的绝对值时用第二个除法法则较简便. 练习:计算:例2 化简下列分数:(1)312- (2)1545-- (3)3612- 练习:化简下列分数: (1)1854- (2)147-- (3)80- 知识点二: 乘除混合运算乘除混合运算先将除法化成乘法,然后确定积的符号,最后求出结果.⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-352512例3 计算:(1)-313÷213⨯(-2) (2)-34×(-112)÷(-214) 练习:(1)()()⎪⎭⎫ ⎝⎛-÷-÷-511412 (2)()25.05832-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)()74431165156⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯- 例4 化简b b a a +(ab ≠0)的所有可能的值有 ( ) A .1个 B .2个 C .3个 D .4个点拨:本题含有绝对值符号,故要考虑a 、b 的正负情况.当a >0时,a 1a a=;当a <0时,1a a=-. 小结:本节课大家一起学习了有理数除法法则.有理数的除法有2种方法,•一是根据除以一个数等于乘以这个数的倒数,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种.【课堂操练】1.有理数的除法法则是:_______________ ________ _____.2.两数相除,同号得________,异号得________,并把绝对值_________.3.计算:(1) 0÷(-3)=_________ ;(2) )89(1-÷-=_________ ;(3) -5÷(-5)=_________ ;(4) -43)34(-÷=_________ . 4.化简: (1)721-=___ ; (2) -824=___ ; (3)()824---=___ ; (4) 25.075.0-=___ ; (5)1527-=___ ; (6) 3432-=___ . 5.倒数等于它本身的数是:________;零________倒数.(填“有”或“没有”).6.如果甲数除以乙数的商为0,那么一定是( )A.甲、乙两数都为零B.乙数为零,而甲数不为零C.甲数为零,而乙数不为零D.乙数为零,而甲数不一定为07.下列说法中错误的是 ( )A.小于-1数的倒数大于它本身B.大于1的数的倒数小于它本身C.一个数的倒数不能等于它本身D.a (a ≠0)的倒数是a 18.计算:(5)()723628÷-⨯ (6)341121353÷⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-【课后盘点】1.两个有理数的商是正数,这两个数( )A.都是负数B.都是正数C.至少有一个是正数D.两数同号2.如果()()110x y +÷-=,那么( )A.0=xB.0=yC.1-=x 或1≠yD. 1-=x 且1≠y3.若0<ac ,c ab≥0,则有( )A.b ≥0B.b >0C.b ≤0D.b <04.⎪⎭⎫ ⎝⎛-522÷3×31= .5.下列说法中不正确的是( )A.零不能作除数B.互为倒数的两数乘积等于1C.零没有倒数D.1除以一个数,等于这个数的倒数6. 的倒数等于本身, 的相反数等于本身, 的绝对值等于本身,•一个数除以 等于本身,一个数除以 等于这个数的相反数.7.计算题:8.计算题⑸ (-2)313()5(21-⨯-÷)a19.计算:10.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为1,求3x -(a +b +cd )-x .11.已知a 、b 、c 在数轴上的位置如图所示:(1)求||a ab +1||b -2||bc bc (2)比较a +b ,b +c ,c -b 的大小,并用“〈”将它们连接起来.【课外拓展】1.联欢会上,小红按照4个红气球,3个黄气球,2•个绿气球的顺序把气球串起来装饰会场,第52个气球的颜色是 .2.已知 abc <0,a <c ,ac <0,则下列结论中正确的是( )A. a >0, b >0 ,c <0B. a <0 ,b <0,c >0C. a <0 ,b >0, c >0D. a >0,b <0,c <03.绝对值不大于5的所有整数的积等于 .4.n 个不等于0的有理数的积是负数,那么负因数的个数是( )A. n 个B.奇数个C.偶数个D.1个5.若2019个有理数相乘,其积为0,则这2019个数中( )A .最多有一个数为0B .至少有一个数为0C .恰好有一个数为0D .均为06.计算下列各式:(1)你发现了什么规律?(2)你能直接写出11111111111111 的结果吗?【趣味数学】以前有一个农民,他有17只羊,临终前,他嘱咐把羊分给三个儿子,他说:“大儿子分一半,二儿子分13,小儿子分14,但是不允许把羊杀死或者卖掉”.三个儿子感到很为难,不知怎么分,你能他们分吗?一家公司为了开发某种产品,需要每年向银行存款或取款,到今年,•存取款结果正好为零.如果把向银行的存款数(万元)记为正数,那么向银行的取款数(万元)就应当记为负数;如果把现在起向后的时间(年)记为正数,那么把现在起向前的时间(年)记为负数,在这个问题中,(1)(-100)÷4的实际意义是___________;(2)(-100)÷(-4)的实际意义是_____________.仿照上题,请你举一个实例,使问题的数量为:(1)16÷(-2)(2)(-10)÷(-2)参考答案【预习引领】【要点梳理】知识点一:有理数的除法法则答案:正;负;除;0例3计算:答案:⑴原式=-4;⑵原式=36 125;⑶原式=233316-⨯=2316-;⑷原式=23489⨯=2318注:一般被除数的绝对值能整除除数的绝对值时用第二个除法法则较简便. 练习:计算:答案:⑴原式=9;⑵原式=0;⑶原式=-25;⑷原式=1 2例4化简下列分数:答案:⑴原式=-4;⑵原式=3;⑶原式=1 3 -练习:化简下列分数:答案:⑴原式=-3;⑵原式=12;⑶原式=0知识点二: 乘除混合运算例3计算:答案:⑴原式=103237⨯⨯=207;⑵原式=334 429-⨯⨯=12-练习:答案:⑴原式=3115⎛⎫÷-⎪⎝⎭=-52;⑵原式=28435-⨯⨯=6415-⑶原式=2144561677-⨯⨯⨯=-24例4答案:C【课堂操练】1.答案:除以一个数等于乘以这个数的相反数2. 答案:正;负;除3.计算:答案:⑴原式=0;⑵原式=89;⑶原式=1;⑷原式=9 164.化简:答案:⑴原式=-3;⑵原式=-3;⑶原式=3;⑷原式=-3;⑸-95;⑹-125、答案:±1;没有;6.答案:C;7.答案:C 8.计算:答案:⑴原式=99810-÷=-8180;⑵原式=233316-⨯=2316-;⑶原式=2743892⨯=;⑷原式=-2227;⑸原式=-14;⑹原式=374114 525325 -⨯⨯⨯=-【课后盘点】1. 答案:D2. 答案:D3.答案:A4. 答案:4 15 -5. 答案:D6.答案:±1;0;非负数;1;-17.计算题:答案:⑴原式=6;⑵原式=787278-⨯⨯=-3.5⑶原式=-35;⑷原式=359;⑸原式=1511041 8103156 -⨯⨯⨯=-;⑹原式=-11;⑺原式=4;⑻原式=2⑼原式=74714 2373627⨯⨯⨯=8.计算题答案:⑴原式=143798 38864 -⨯⨯=-;⑵原式=7491519547-⨯⨯⨯⨯=-;⑶原式=-1+0-4.2=-5.2;⑷原式=1413()18666÷+-=113186⨯=; ⑸原式=511052533-⨯⨯=-; ⑹原式=286443515-⨯⨯=-; ⑺原式=94572204918⨯⨯⨯=; ⑻原式=543752335475-⨯⨯⨯⨯⨯=23- 9.计算:答案:⑴原式=125144=; ⑵原式=12; ⑶原式=551004339-⨯⨯=-; ⑷原式=2211477931233-⨯⨯⨯=-; ⑸原式=167; ⑹原式=8144118992⨯⨯⨯=; ⑺原式=1311(4)3(1)12435⎡⎤-÷÷-⨯⎢⎥⎣⎦ 10.答案:解:根据题意得0a b +=,1cd =,1x =±,当1x =时,原式=3111--=;当1x =-时,原式=-3113-+=-,所以原式的值为-1或-3。