有理数的乘法与除法-课件ppt
- 格式:pptx
- 大小:2.38 MB
- 文档页数:26
1.4.2 有理数的除法(第一课时)课件(25张PPT)(共25张PPT)第1章有理数1.4.2 有理数的除法第一单元1.认识有理数的除法,经历除法的运算过程.(运算能力)2.理解除法法则,体验除法与乘法的转化关系.(转化思想)3.掌握有理数的除法及乘除混合运算. (运算能力)1.倒数的定义你还记得吗?乘积是1的两个数互为倒数.2.你能很快地说出下列各数的倒数吗?---1情境一:小明从家里到学校,每分钟走70米,共走了20分钟,问小明家离学校有多远?放学后,小明仍然以每分钟70米的速度回家,应该走多少分钟才会到家?70×20=1400(米)1400÷70=20(分)情境二:经统计,某商场一年共亏损3.6万元,那么该商场平均每月亏损多少万元?规定盈利为正,亏损为负. 则列式为:(-3.6)÷12=这个式子应该怎样计算呢?怎样计算8÷(-4)呢?因为___×(-4)=8所以8÷(-4)=___…………①另一方面,我们有8×( )=-2 …………②于是有8÷(-4)=8×( ) ……③-2-2③式表明,一个数除以-4可以转化为乘来进行,即一个数除以-4,等于乘-4的倒数.换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘?快速完成下边的问题:-6÷2=____,-6× =____;-12÷(-3)=____,-12×(-)=____;10÷(-5)=____,10×(-)=____;-72÷9=_____,-72× =_____.-3-344-2-2-8-8上面各组数计算结果你能得到有理数的除法法则吗?6×(-)有理数除法法则(一)用字母表示为除以一个不等于0的数,等于乘这个数的倒数.6÷(-2)== -3“÷”变“×”“除数”变“倒数”★利用法则解题示范利用上面的除法法则计算下列各题:(1)-54÷(-9);(2)-27÷3;(3)0÷(-7);(4)-24÷(-6).解:(1)-54÷(-9)=-54×(-)=6;(2)-27÷3=-27×=-9;(3)0÷(-7)=0×(-)=0;(4)-24÷(-6)=-24×(-)=4.从上面我们能发现商的符号有什么规律?两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.有理数除法法则(二)例1.计算:(1)(-144)÷(-6); (2)(-0.75)÷0.75; (3)(-12)÷; (4)0÷(-2).解:(1)原式=144÷6=24; (2)原式=-(0.75÷0.75)=-1;(3)原式=(-12)×=-20; (4)原式=0.有理数除法法则重点分析:在进行有理数除法运算时,能够整除的就选择法则二,不能够整除的就选择用法则一.互为相反数的两个数(0除外)相除得-1________________1.若“>0,则一定有( )A.a>0且b>0B.a<0且b<0C.a,b同正或同负D.a,b-正一负2.两个数的积是-其中一个是-,则,一个是_______.C3.计算:(1)(-1.2)÷0.4; (2)6÷(-); (3)1÷(-5);(4)(-)÷(-); (5)(-2)÷(-1).解:(1)原式=-(1.2÷0.4)=-3; (2)原式=6×(-3)=-18;(3)原式=1×(-)=-; (4)原式==;(5)原式==2.解:(1) =(-16)÷(-4)=4; (2) =39÷(-15)=39×(-)=-; (3) =0÷(-25)=0; (4) =(-12)÷0.8=(-12)×=-15;(5) - =-[(-9)÷(-51)]=-(9÷51)=-.化简分数重点例2.化简下列分数:(1);(2) ;(3) ;(4) ;(5) - .另解(直接约分)- =- =-15____________________________________________________________另解(直接约分)- =-1.下列分数化简结果为的是( )A. B. C. D.2.化简下列分数:(1);(2) ;(3) ;(4)- .C解:(1) =(-21)÷7=-3; (2) =-;(3) =-6÷(-)=-6×(-4)=24; (4)- ===有理数的乘除混合运算重点例3.计算:(1)(-2)÷5×; (2)1÷(-10)×3÷(-3); (3)(-)×(-1)÷0.25; (4)(-7)÷[(-)÷7].这里可不能先算乘法哟!__________解:(1)原式=-2××=-; (2)原式=×××=;(3)原式=×÷=××4=5;(4)原式=(-7)÷[(-)×]=(-7)÷(-)=(-7)×(-3)=21.计算:(1)(-)×(-)÷(-12); (2)27÷(-1)×÷(-36);(3)(-6)÷[(-0.25)÷]; (4)(-81)×÷(-2)÷(-8).解:(1)原式=-××=-; (2)原式=27×××=;(3)原式=(-6)÷(-×)=(-6)÷(-)=6×=20;(4)原式=-81×××=-2.利用转化思想进行简便运算难点例4.计算:(-2)÷( + -- )利用转化思想进行简便运算难点例4.计算:(-)÷( + -- )解:原式的倒数=(+--)÷(-)=(+--)×(-30)=×(-30)+×(-30)-×(-30)-×(-30)=-15-40+5+18=-32. 则(-)÷( + -- )=-1.用简便方法计算:-999÷(-1).解: -999÷(-1)=(1000-)×=900-=899.2.计算:(-)÷( -+ - ).解:原式的倒数=(-+-)÷(-)=(-+-)×(-42)=×(-42)-×(-42)+×(-42)-×(-42)=-7+9-28+12=-14. 则(-)÷( -+ - )=-含绝对值的分数的化简难点例5.【分类讨论思想】已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++的值.含绝对值的分数的化简难点例5.【分类讨论思想】已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++的值.解:因为abc>0,所以a,b,c中负因数的个数为偶数,即为0或2.又a+b+c<0,所以a,b,c中必有负数.所以a,b,c中有两个负数,一个正数.假设a为正数,b,c为负数,则|a|=a,|b|=-b,|c|=-c.所以++=++=1+(-1)+(-1)=-1.不管设三个数中哪两个数为负数,结果都一样.________________________1.若=1,则x____0;若=-1,则x____0.2.若有理数a,b满足ab<0,则+的值为_____.3.已知有理数a,b,c满足++=1,则=_____.<>-14.已知有理数a,b满足ab≠0,则+的值为( )A.±2B.±1C.±2或0D.±1或0【解析】因为ab≠0,所以分四种情况:①a>0,b<0,此时原式=1-1=0;②a>0,b>0,此时原式=1+1=2;③a<0,b<0,此时原式=-1-1=-2;④a<0,b>0,此时原式=-1+1=0.故选C.二、有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.三、乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.法则一:除以一个不等于0的数,等于乘这个数的倒数.一、有理数除法法则:。