非线性动力学中分叉图的特性
- 格式:ppt
- 大小:856.50 KB
- 文档页数:37
非线性动力学中的分岔理论及应用第一章前言非线性动力学是自然科学中一个重要的研究领域,其研究对象为非线性系统中存在的复杂现象及规律。
而分岔理论则是非线性动力学研究的重要分支,其研究的是非线性系统的稳定性及分岔现象。
分岔理论的研究及应用在自然科学及工程技术等领域都有广泛的应用,本文将重点介绍分岔理论的基本概念及其应用。
第二章分岔理论的基本概念1.稳定性稳定性是指系统从任何初始状态出发,其演化都会收敛至同一状态的性质。
当系统的某一初始状态发生微小变化时,系统最终演化的结果是否会发生变化,取决于系统的稳定性。
2.分岔点与分支分岔点是指系统参数变化时,系统稳定性产生转折的点。
在分岔点附近,系统的稳定性出现了剧烈变化,具体表现为单个平衡点变成多个平衡点或者周期解。
而这些由于参数变化引起的平衡点或周期解就称为分支。
3.双曲型分岔双曲型分岔是指当系统某一参数在达到阈值时,系统发生的非连续性质变化。
此时由单个平衡点变为两个平衡点,系统逐渐从一个平衡点吸引到另一个平衡点,这种分岔稳定性的变化称为双曲型分岔。
4.超分岔当系统参数发生变化时,如果发现有多个分支同时产生,其中一个分支继续从初始状态收敛至实际状态而其他分支则逐渐消失或变得不稳定,这种分岔称为超分岔。
第三章分岔理论在科学研究中的应用1.混沌现象及相关研究分岔理论在混沌现象及其相关研究中有很广泛的应用。
混沌系统因为其极其灵敏的初始条件,而表现出非常复杂、多样的行为。
分岔理论的模型可以帮助科学家更好地理解混沌现象的动力学特性。
2.电力系统的稳定性研究电力系统是典型的非线性系统,其稳定性对于发电、输电、配电等方面的问题都极为重要。
分岔理论可以帮助研究人员探索电力系统稳定性变化的原因,并提出相应的解决方案。
3.材料科学及工程中的应用分岔理论在材料科学及工程中也有广泛的应用。
例如合金的晶格相变、金属塑性变形等等。
分岔理论可以帮助科学家解决在材料科学及工程中的稳定性问题,提高材料的力学性能、抗拉强度等重要参数。
非线性动力学中的混沌与分岔现象混沌现象的介绍混沌现象是非线性动力学中一个重要的研究课题,它描述了一种似乎随机的、无规律可循的运动状态。
在混沌现象的研究中,人们发现了一些特征,如灵敏依赖于初始条件、无周期运动和封闭轨道等。
混沌现象的研究对于理解自然界中的复杂系统行为具有重要的意义。
混沌现象最早是由美国数学家Edward Lorenz于20世纪60年代发现的。
他在研究气象学中的大气运动方程时,意外地发现了不确定性的现象。
这个发现被称为“蝴蝶效应”,即当一个蝴蝶在巴西振动翅膀时,可能引发一系列的气流变化,最终导致美国得克萨斯州的一个龙卷风的形成。
这个例子说明了混沌现象中初始条件的微小变化可能引起系统运动的巨大变化。
混沌现象的数学表示混沌现象可以用一些非线性动力学方程描述。
这些方程通常包含了一些非线性项,使得系统的演化不再是简单的线性叠加。
一个经典的混沌系统方程是Lorenz方程:\\frac{{dx}}{{dt}} = \\sigma(y - x),\\frac{{dy}}{{dt}} = x(\\rho - z) - y,\\frac{{dz}}{{dt}} = xy - \\beta z其中,x、y和z是系统的状态变量,t是时间。
σ、ρ和β是一些常数,它们决定了系统的性质。
这个方程描述了一个三维空间中的运动,这种运动就是混沌现象。
分岔现象的介绍分岔现象是混沌现象的一个重要特征,它描述了系统参数发生微小变化时,系统行为的剧烈变化。
简单来说,分岔现象就是系统从一个稳定的演化状态变成多个稳定状态的过程。
分岔现象的经典例子是Logistic映射。
Logistic映射是一种常用的非线性映射,它用于描述生物种群的增长。
Logistic映射的公式为:x_{n+1} = r \\cdot x_n \\cdot (1 - x_n)其中,x_n是第n个时刻的种群密度,x_{n+1}是下一个时刻的种群密度,r是系统的参数,它决定了种群的增长速度。
混沌动力学中的分岔现象与稳定性分析混沌动力学是一门研究非线性系统行为的学科,它揭示了许多复杂系统中的混沌现象。
其中一个重要的研究方向是分岔现象与稳定性分析,它们对于理解系统的演变和控制具有重要意义。
一、分岔现象的基本概念分岔现象是指系统在参数变化过程中,由于参数的微小变化,系统的行为发生了剧烈的变化。
简单来说,就是系统在某个特定参数值附近,出现了多个稳定状态或周期解。
这种现象在混沌动力学中被广泛研究。
分岔现象的典型例子是一维映射系统的Feigenbaum分岔图。
在这个图中,横轴表示参数的变化,纵轴表示系统状态的变化。
当参数在某个特定值附近变化时,系统的状态从一个稳定状态突然变为两个稳定状态,然后又变为四个、八个,以此类推。
这种分岔现象呈现出一种分形的结构,即在不同尺度上都有相似的形态。
二、分岔现象的机理分岔现象的机理可以通过动力学方程的稳定性分析来解释。
在分岔点附近,系统的稳定性发生了变化,从而导致了系统行为的剧烈变化。
稳定性分析是研究系统平衡点或周期解的稳定性的方法。
通过计算系统方程的雅可比矩阵的特征值,可以判断系统的稳定性。
当特征值的实部为负时,系统为稳定状态;当特征值的实部为正时,系统为不稳定状态;当特征值有一对纯虚数时,系统为周期解。
在分岔点附近,系统的雅可比矩阵的特征值发生了变化,从而导致了系统稳定性的改变。
当参数变化超过某个临界值时,特征值的实部从负数变为正数,系统从稳定状态变为不稳定状态,从而引发了分岔现象。
三、分岔现象的应用分岔现象在许多领域都有广泛的应用。
在自然科学中,分岔现象可以用来解释生物体的形态变化、气候系统的变化等。
在工程领域中,分岔现象可以用来设计新型的控制系统,实现系统的稳定性和可控性。
例如,在电力系统中,分岔现象可以用来研究电力系统的稳定性和可靠性。
通过对电力系统的分岔现象进行分析,可以找到系统的临界点,从而实现对系统的控制。
这对于提高电力系统的稳定性和可靠性具有重要意义。
非线性动力学中的分岔现象研究随着科学技术的不断发展,自然界和社会现象更加复杂多变,人们对这些问题的认识也日益深入。
分岔现象作为非线性动力学中的重要研究领域,吸引着众多学者和研究者的关注。
一、什么是分岔现象?分岔现象是指在非线性系统中,当参数或初始状态发生微小变化时,系统的行为会发生质的变化。
常见的分岔现象包括恰克诺夫分岔、亚谷分岔、亚哈分岔等。
分岔现象的研究不仅在理论上具有重要意义,而且在实践应用中也有广泛的应用。
二、恰克诺夫分岔恰克诺夫分岔是指在不连续的动态系统中,当参数值小范围地改变时,系统从周期运动向非周期运动转变的现象。
这种现象最早由俄罗斯数学家恰克诺夫在20世纪初提出,并被广泛应用于物理学、化学、天文学、生物学、经济学等领域的研究中。
三、亚谷分岔亚谷分岔是指在某些连续动态系统中,在参数值超过某一临界值时,系统从一个稳定的定态运动状态向另一个稳定状态转换的现象。
这种现象在生物学、医学、环境科学等领域的研究中具有重要意义。
四、亚哈分岔亚哈分岔是一种特殊的分岔现象,指的是在系统接受周期性外部激励时,当激励的频率和系统本身的特征频率发生某种比例关系时,系统状态将发生质的变化。
这种现象在通信领域中得到广泛的应用。
五、分岔现象的应用分岔理论的研究和应用在现代科学中具有重要的意义。
在物理学、化学和材料科学中,分岔理论被用于研究物质的相变和相转移过程。
在生物学和医学中,分岔理论可以用于研究生物系统的稳态和稳定性。
在经济学和金融学中,分岔理论可以用于预测市场和股票价格的变化。
此外,在控制工程、模式识别和计算机科学中,分岔理论也有着广泛的应用。
六、结论分岔现象作为非线性动力学研究领域的一个重要方向,在现代科学中具有广泛的应用和重要的意义。
未来,我们可以预见,随着科学技术的不断发展,分岔现象的研究将会得到更加深入和广泛的发展。
非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。
非线性动力学中的混沌与分岔现象研究在物理学和自然科学领域里,非线性动力学是一个十分重要的研究领域。
非线性动力学理论的出现使得我们对自然界中不规则的复杂现象有了更深的认识。
混沌和分岔现象的出现是非线性动力学的一个重要研究方向。
在本文中,我们将讨论非线性动力学中混沌和分岔现象的基本概念和研究现状。
一、混沌现象混沌现象是一种表现为无规律、无周期、既不平凡又不完全随机的复杂动力学现象。
混沌出现的背景通常是一组非线性微分方程,因此它的发生与目标系统的非线性特性有关。
混沌作为物理学发现的一个新现象,引起了科学家们的广泛关注。
通常情况下,混沌现象是由一组微小的变化引起的,因此混沌现象也被称为蝴蝶效应。
经典的三体问题就是一个混沌的例子。
对于混沌现象,其最主要的特征是对初始条件的依赖,也就是所谓的敏感依赖性。
这意味着如果我们的实验或者计算开始时的初值稍有 variations,结果可能会相差很大。
在混沌理论中,不同的初始条件可以导致截然不同的运动的形态,这种敏感依赖性表现得深入人心,深刻地提示我们要了解物理世界中的微小变化是多么的重要。
此外,混沌现象还表现在期望不规律性上,也就是说,目标系统的演化不能用周期性或规则性过程去描述。
混沌经常被认为是对确定性的“不确定性”的表现。
混沌现象的研究可以将我们的认识推向新的领域,对于深入理解天文学、流体物理、生物学等领域都有重要的意义。
二、分岔现象分岔现象通常被认为是从一个稳定平衡状态到另一个稳定平衡状态过程中的一个突变性变化。
发生分岔的原因通常是由非线性动力学系统结构的变化所引起的。
分岔现象是非线性动力学系统中的一种普遍现象,在分岔研究领域有着极为重要的地位。
分岔的一个重要性质是其可以导致同样初始条件下发生系统演化的不同结果,与混沌现象类似。
分岔现象最早的研究源自于对恒星爆发的研究,目前这项研究产生的成果对于预测和防范太阳风暴等等事件都有很重要的意义。
此外,分岔现象在复杂系统和混沌理论中也有广泛的应用,是现代科学研究的一个重要组成部分。
非线性电路系统的动力学行为及其分岔分析非线性电路系统的动力学行为及其分岔分析摘要:非线性电路系统在动力学行为方面具有丰富的特性,它们可能表现出稳定、震荡、混沌等不同的动态行为。
本文将介绍非线性电路系统的动力学行为,并采用分岔分析方法对其进行研究。
一、引言在电子工程领域,非线性电路系统是一类重要的研究对象。
相比于线性电路系统,非线性电路系统的特点是输入与输出之间的关系不是简单的比例关系,而是更为复杂的非线性关系。
由于非线性关系的存在,非线性电路系统在动力学行为方面具有较为丰富的特性。
因此,了解非线性电路系统的动力学行为对于电子工程领域的研究和应用具有重要意义。
二、非线性电路系统的动力学行为非线性电路系统的动力学行为往往表现为稳定、震荡和混沌等不同的行为模式。
1. 稳定行为当非线性电路系统中的稳定解存在且稳定时,系统的输出将收敛到该稳定解。
这种行为模式常见于放大器、滤波器等电路系统中。
稳定解的存在为非线性电路系统的正常工作奠定了基础。
2. 震荡行为在一些特定的条件下,非线性电路系统可能表现出震荡行为。
震荡行为是指系统的输出在一定的时间范围内呈现周期性变化的特征。
震荡行为常见于振荡器电路系统中,如LC振荡电路、RC相移振荡电路等。
震荡行为的存在为电子工程中的时钟电路、无线电收发系统等提供了基础。
3. 混沌行为非线性电路系统在某些特定的条件下还可能表现出混沌行为。
混沌行为是指系统的输出呈现出无规律、无确定性的变化特征。
混沌行为往往需要较复杂的非线性元件和电路结构才能产生,具有一定的应用价值。
例如,混沌发生器可用于保密通信、随机数生成等领域。
三、非线性电路系统的分岔分析分岔分析是一种研究非线性系统动力学行为的重要工具。
它通过改变系统中的某个参数,观察系统响应的变化,从而揭示系统的稳定性和动态特性。
1. 变量选择在分岔分析中,需要选择适当的变量来描述系统的动力学行为。
常用的变量选择包括电压、电流、相位差等。
非线性微分方程的分岔和混沌现象非线性微分方程是自然科学中经典的研究对象之一。
在广泛的自然现象和实验研究时,非线性微分方程都是用来描述这些现象的数学工具。
但是,非线性微分方程的动力学特性非常复杂,包括分岔、混沌等现象。
这些现象对于科学家而言是非常重要而且有很多有趣的数学理论成果与实际应用。
在本文中,我们将探讨非线性微分方程的分岔和混沌现象的一些基本概念与数学理论。
一、非线性微分方程的分岔现象分岔现象是指一个系统中的某些参数发生变化时,该系统的稳定性质发生变化。
特别是当这些参数逐渐变化到一定的“临界点”时,系统的稳定性质突然发生改变,这种现象叫做分岔。
通常,这个临界点称为临界参数值。
分岔现象是非线性微分方程的一个根本动力学现象,在自然科学中有着广泛的应用。
1. 常见的分岔类型非线性微分方程的分岔有许多类型,其中比较常见的有:鞍点分岔、极小极大分岔、超过阈值分岔、分支分岔等。
鞍点分岔是指由一个稳定的状态发生分裂从而出现两个不同状态的现象。
这种分岔是由一个简单稳定节点与一个鞍点相遇时产生的。
极小极大分岔是指当参数发生微小的变化时,极小值点和极大值点突然出现的现象。
超过阈值分岔是指当参数超过某些阈值时,系统从一个极限环突变到一个新的解的现象。
分支分岔是指在参数空间中出现分支条件,这通常在响应系统行为的外部变量出现周期性变化时会发生。
2. 分岔的重要性分岔现象对于非线性微分方程而言是非常重要的,因为它可以揭示系统的稳定性和动力学性质。
而且,正是由于分岔现象才使得非线性微分方程在自然科学领域中有着广泛的应用。
例如,在物理领域中,分岔现象可以帮助我们研究光学、空气动力学、气象学等领域中的不同系统。
在生物学领域中,分岔现象可以帮助我们研究細胞過程中的周期性行为、神经行为、化學反應等。
在经济学领域中,分岔现象可以帮助我们理解市場泡沫、动态平衡等问题。
二、非线性微分方程的混沌现象混沌现象是指某些动力学系统(如非线性微分方程)的随时间演化的状态具有无限的、不可预测的细节。
分叉理论和方法对于含参数的系统,当参数变化并经过某些临界值时,系统的定性性态(如平衡态和或周期运动的数目和稳定性等)会发生突然变化,这种变化称为分叉。
分叉是重要非线性现象,与其它非线性现象(如混沌、突变、分形、拟序结构等)紧密相关。
主要研究:(a)相空间中轨线的集合;(b)控制参数空间中分叉集的性态。
分叉包括两类:(a)静态分叉:讨论平衡态数目和稳定性的变化,常见有:极限点分叉(鞍结分叉)、叉形分叉、跨临界分叉、滞后分叉、孤立点分叉等;(b)动态分叉:讨论系统在相空间中轨线拓扑结构的变化,常见有:Hopf分叉、次谐和超谐分叉、概(准)周期分叉(不变环面分叉)、同异宿轨线分叉等。
分叉问题起源于力学失稳现象的研究。
18世纪中叶,D.Bernoulli和L.Euler等人研究了杆件在纵向压力下的屈曲问题。
1834年C.G.J.Jacobi在研究自引力介质的椭球形旋转液体星的平衡图形时,首次引进“分叉”术语。
1885年,Poincare提出旋转液体星平衡图形演化过程的分叉理论。
1883年,O.Reynods发现在临界雷诺数时层流转变为湍流的现象,从此开创了流动稳定性的研究。
本世纪20年代,van der Pol 和安德罗诺夫等在非线性振动研究中即已发现大量分叉现象。
本世纪70年代形成分叉的数学理论和方法。
分叉揭示系统不同运动状态之间的联系和转化,且与失稳和混沌密切相关,是非线性动力学重要组成部分。
主要应用于:非线性振动、结构力学、流体力学、非线性波、飞行器动力学、机器人动力学、化学动力学、控制、非线性电学、非线性光学、生态学、经济学、交通动力学、转子动力学等等。
主要研究方法有:(1) 奇异性方法奇异性研究可微映射的退化性和分类,首先将分叉问题化为较简单的GS范式进行识别和分类,再通过“普适开折”得到一般扰动下可能出现的所有分叉性态,随后讨论分叉图的保持性和转迁集等。
可以处理:静态分叉、Hopf分叉和退化Hopf分叉。
非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换定义(或直接假设)及d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。
非线性动力学非线性系统之一瞥——Lorenz系统2013-01-300 前言非线性系统动力学线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。
非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。
非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。
研究的对象主要有分叉、混沌和孤立子等。
洛伦兹方程洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。
可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。
这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。
本文借助洛伦兹系统对非线性进行简单的介绍。
洛伦兹方程如下。
方程中,、和都为实参数。
实参不同,系统的奇点及数目也是不同的。
1 奇点和稳定性奇点洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。
首先,一定是系统的奇点。
时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。
下面仅解时的两个非原点奇点。
令方程第一式得,第三式可得,将两式代入第二式得即,。
奇点稳定性判别下面根据Liapunov稳定性判别方法,找出系统在原点处大范围渐进稳定的条件,取Liapunov函数。
考虑,的情况。
则有将洛伦兹方程代入上式,可得变换为二次型,系数矩阵为已知,,则系数矩阵负定的条件是。
所以该系统是大范围渐进稳定的条件是,前提是,。
Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。
有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。
六、平衡点的静态分叉1. 分叉概念分叉:当任意小的参数变化使结构不稳定的动力系统相轨迹拓扑结构发生突然的变化,这种变化称为分叉。
结构稳定性:若动力系统受到小扰动后产生的新动力系统与原动力系统拓扑轨道等价,则称此系统具有结构稳定性(1973年由Andronov A A 和Pontryagin L S 首先研究)。
说明:(1)由于动力系统仅仅是物理模型的一个精确的近似,若一个系统是结构不稳定的,则一个小的扰动将显著改变系统的解的结构。
若系动力系统是结构稳定的,则由近似或实验误差造成的小误差可以全然不管,此时,模型系统的解等价或拓扑共轭于实际解;(2)古典动力系统大多是结构不稳定的,如研究气象学的Lorent 系统。
拓扑轨道等价:以同胚变换将一动力系统相轨迹变换为另一动力系统的相轨迹,则这两个动力系统称为拓扑轨道等价。
若稳定焦点拓扑等价于稳定结点;而结点、中心、鞍点之间不是拓扑等价的。
同胚:单值连续且其逆也单值连续的变换。
静态分叉:研究0),(=p u f 解的数目和稳定性随参数的变化。
平衡点静态分叉:研究平衡点的产生(或消失)、时变状态(如周期轨线、同宿或异宿轨线)的出现等,属于局部分叉范畴。
动态分叉:静态分叉之外的分叉,如闭轨分叉。
(1)一维动力系统11),(R P p R U u p u f u⊆∈⊆∈=,, (1)平衡点0),(00=p u f ,下面研究平衡点附近解对参数的关系。
对参数求导数得到0=+p uf dpduf (2)若0),(00≠p u f u ,则可解出),(),(000010p u f p u f dpdu p u p p -=-=(3)由隐函数定理知,在00=p 的邻域中存在唯一解。
隐函数定理结论:只要函数f 连续且u f 在),(00p u 非奇异,则方程0),(=p u f 的解在),(00p u 附近存在且唯一,而且解)(p u 曲线局部可以用p 作为参数表示。
[定义1] 设n n R R R f →⨯:连续且0),(00=p u f 。