函数的零点与方程的解讲义
- 格式:doc
- 大小:1.12 MB
- 文档页数:12
函数的零点与方程的解学习目标1、了解连续函数的零点存在性定理2、了解函数零点、方程之解、两函数图像交点之间的关系3、熟练掌握数形结合的方法和思想1、函数零点的概念:凡使()0f x =的实数x ,我们称其为函数()f x 的零点,严格说来,零点是一个数,而不是点。
从函数零点的定义不难发现:函数()f x 有零点⇔方程()0f x =有实数解⇔函数()f x 的图像与x 轴有交点。
事实上,()f x 之图像与x 轴交点的横坐标就是()f x 的零点,因此,求函数()f x 的零点,往往通过解方程()0f x =实现。
另外,两个函数()f x 与()g x 的图像之交点问题,往往也等价于方程()()0f x g x -=的解的问题,或者新函数()()()h x f x g x =-的零点问题。
2、连续函数的零点存在性定理。
如果函数()f x 在[,]a b 上连续(高中阶段可等价成其图像是连续不断的),且()()0f a f b ⋅≤,则函数()f x 在[,]a b 上至少存在一个零点。
【注意】如果()()0f a f b ⋅>,不能说明()f x 在[,]a b 上就没有零点。
3、重要结论(1)如函数()f x 的图像关于直线x a =对称,且()f x 有n 个零点,则这n 个零点之和为na (2)如函数()f x 与函数()g x 的图像关于直线x a =对称,且他们图像的交点为1122(,),(,),,(,)n n x y x y x y ,则1ni i x na ==∑(3)如函数()f x 与函数()g x 的图像关于点(,)a b 中心对称,且他们图像的交点为1122(,),(,),,(,)n n x y x y x y ,则1()ni i i x y na nb =+=+∑4、如果函数()f x 为单调函数,则()f x 最多只有一个零点。
例1(重庆高考)若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A 、(),a b 和(),b c 内B 、(),a -∞和(),a b 内C 、(),b c 和(),c +∞内D 、(),a -∞和(),c +∞内 【解析】由题意知:()()()0f a a b a c =-->, ()()()0f b b c b a =--< ()()()0f c c a c b =-->因此,()f x 在(),a b 和(),b c 内分别至少有一个零点,依题意,只能选A 。
函数的零点与方程的解的关系在数学中,函数的零点和方程的解是两个非常重要的概念。
函数的零点指的是函数取值为零的点,而方程的解则是使方程等号成立的数值。
在这篇文章中,我们将探讨函数的零点和方程的解之间的关系。
1. 函数的零点函数的零点是指函数在自变量取何值时,函数的取值等于零。
数学上常用符号表示函数的零点,如对于函数f(x),其零点通常表示为f(x) = 0。
求解函数的零点可以通过方程求解的方法来实现。
2. 方程的解方程的解是指使方程成立的数值。
方程是一个数学表达式,通常使用等号将两个表达式连接起来。
方程的解可以是实数或复数,取决于方程的类型和要求。
3. 函数的零点与方程的解的联系函数的零点与方程的解之间存在紧密的联系。
一方面,我们可以将函数的零点转化为方程,通过求解方程来确定函数的零点。
另一方面,方程的解也可以代入函数中,判断是否为函数的零点。
4. 使用函数的零点求解方程当我们要求解一个方程时,有时候可以将方程转化为函数的形式,并找到该函数的零点来得到方程的解。
例如,对于方程x^2 - 4 = 0,我们可以将其转化为函数f(x) = x^2 - 4,然后求解函数f(x) = 0的零点来得到方程的解。
5. 函数的零点与方程的解的示例让我们以一个简单的例子来说明函数的零点与方程的解之间的关系。
考虑方程x^2 - 9 = 0,我们将其转化为函数f(x) = x^2 - 9,然后求解函数f(x) = 0的零点。
首先,我们将函数的表达式设置为零:x^2 - 9 = 0。
然后解这个方程,我们可以得到x = 3或x = -3。
这两个数值就是方程的解,也是函数f(x) = x^2 - 9的零点。
6. 应用举例函数的零点和方程的解在许多领域都有广泛的应用。
例如,在物理学中,函数的零点可以表示系统的平衡点,而方程的解可以用来描述物理现象。
另一个例子是金融领域中的利息计算。
我们可以将某个金融问题建模为一个函数,并通过求解函数的零点来得到方程的解,从而计算出利率或其他相关的数值。
《函数的零点》讲义一、函数零点的定义在数学中,函数的零点是一个非常重要的概念。
那什么是函数的零点呢?简单来说,如果函数 y = f(x) 在某个值 x₀处,使得 f(x₀) = 0,那么 x₀就被称为函数 f(x) 的零点。
比如说,对于一次函数 y = 2x 6,令 y = 0,即 2x 6 = 0,解得 x = 3,所以 3 就是这个函数的零点。
再比如二次函数 y = x² 4x + 3,令 y = 0,即 x² 4x + 3 = 0,通过因式分解得到(x 1)(x 3) = 0,解得 x = 1 或 x = 3,那么 1 和 3就是这个二次函数的零点。
函数的零点从几何意义上看,就是函数图象与 x 轴交点的横坐标。
二、函数零点存在性定理有了函数零点的定义,接下来我们要了解一个非常重要的定理——函数零点存在性定理。
如果函数 y = f(x) 在区间 a, b 上的图象是连续不断的一条曲线,并且 f(a) 与 f(b) 的乘积小于 0,那么在区间(a, b) 内至少存在一个零点,即存在 c ∈(a, b),使得 f(c) = 0。
这个定理为我们判断函数在某个区间内是否存在零点提供了有力的工具。
举个例子,函数 f(x) = x² 2x 3 在区间-2, 4 上,f(-2) =(-2)²2×(-2) 3 = 5,f(4) = 4² 2×4 3 = 5,f(-2)×f(4) > 0,所以不能确定在区间(-2, 4) 内是否存在零点。
但如果函数 f(x) = x² 2x 8,f(-2) =(-2)² 2×(-2) 8 = 0,f(4) = 4² 2×4 8 = 0,f(-2)×f(4) = 0×0 = 0,所以可以确定在区间(-2, 4) 内存在零点。
需要注意的是,函数零点存在性定理只是说在区间内至少存在一个零点,但并不能确定零点的个数。
§2.11函数的零点与方程的解课标要求 1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.常用结论若连续不断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)f(b)<0.(×)(3)连续函数y=f(x)满足f(a)f(b)>0,则f(x)在区间(a,b)上没有零点.(×)(4)求函数零点的近似值都可以用二分法.(×)2.下列函数中,不能用二分法求零点的是()A .y =2xB .y =(x -2)2C .y =x +1x -3D .y =ln x答案B解析对于B ,y =(x -2)2有唯一零点x =2,但函数值在零点两侧同号,则不可用二分法求零点.3.(2023·太原模拟)函数f (x )=3x -log 2x 的零点所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析函数f (x )=3x-log 2x 在(0,+∞)上单调递减,又f (1)=3-log 21=3>0,f (2)=32-log 22=12>0,f (3)=33-log 23=1-log 23<0,所以f (2)f (3)<0,则f (x )有唯一零点,且在区间(2,3)内.4.函数f (x )-1,x >0,2-4,x <0的零点是________.答案1,-2解析根据题意,函数f (x )-1,x >0,2-4,x <0,若f (x )=0-1=0,>02-4=0,<0,解得x =1或x =-2,即函数的零点为1,-2.题型一函数零点所在区间的判定例1(1)(2023·宣城模拟)方程ln x x -ex+1=0的根所在的区间是(参考数据:ln 2≈0.69,ln 3≈1.10)()A .(1,2)B .(2,e)C .(e,3)D .(3,4)答案B 解析对于方程ln x x -ex+1=0,有x >0,可得x +ln x -e =0,令f (x )=x +ln x -e ,其中x >0,因为函数y =x -e ,y =ln x 均在(0,+∞)上单调递增,故函数f (x )在(0,+∞)上单调递增,因为f (1)=1-e<0,f (2)=2+ln 2-e<0,f (e)=1>0,所以f (2)f (e)<0,由函数零点存在定理可知,函数f (x )的零点在区间(2,e)内,则方程ln x x -ex +1=0的根所在的区间是(2,e).(2)用二分法求方程ln x x -ex+1=0在区间(2,3)内的根的近似值,至少经过________次二分后精确度达到0.1()A .2B .3C .4D .5答案C解析∵开区间(2,3)的长度等于1,每经过一次操作,区间长度变为原来的一半,经过n 次操作后,区间长度变为12n ,故有12n <0.1,解得n ≥4,∴至少经过4次二分后精确度达到0.1.思维升华确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续;再看是否有f (a )·f (b )<0,若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.跟踪训练1(1)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间()A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案A解析函数y =f (x )是图象开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.(2)函数f (x )=log 2x +2x -6,函数f (x )的零点所在的区间为(n ,n +1)且n ∈N ,则n =________.答案2解析函数f (x )=log 2x +2x -6的定义域为(0,+∞),且在(0,+∞)上单调递增,f (2)=log 22+22-6=-1<0,f(3)=log23+23-6=log23+2>0,即f(2)f(3)<0,因此函数f(x)的唯一零点在(2,3)内,所以n=2.题型二函数零点个数的判定例2(1)(2023·咸阳模拟)函数f(x)2-1,x≤0,-2+ln x,x>0的零点个数为()A.5B.4C.3D.2答案D解析当x≤0时,x2-1=0,解得x=-1;当x>0时,f(x)=x-2+ln x在(0,+∞)上单调递增,并且f(1)=1-2+ln1=-1<0,f(2)=2-2+ln2=ln2>0,即f(1)f(2)<0,所以函数f(x)在区间(1,2)内必有一个零点,综上,函数f(x)的零点个数为2.(2)(2023·三明模拟)已知函数f(x)是定义在R上的偶函数,且f(x-2)=f(x),当0≤x≤1时,f(x)=x,设函数g(x)=f(x)-log7|x|,则函数g(x)的零点个数为()A.6B.8C.12D.14答案C解析依题意可知,函数f(x)是定义在R上的偶函数,且f(x-2)=f(x),所以f(x)=f(-x)=f(-x-2)=f(x+2),即函数f(x)是以2为周期的偶函数,令g(x)=f(x)-log7|x|=0,即f(x)=log7|x|,在同一平面直角坐标系中分别作出y=f(x)和y=log7|x|的图象,如图所示.由图象可知,两函数图象共有12个交点,即函数g(x)共有12个零点.思维升华求解函数零点个数的基本方法(1)直接法:令f(x)=0,方程有多少个不同的实数根,则f(x)有多少个零点.(2)定理法:利用函数零点存在定理时往往还要结合函数的单调性、奇偶性等.(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)(2024·渭南模拟)函数f(x)=3x|log2x|-1的零点个数为()A.0B.1C.2D.3答案C解析函数f (x )=3x |log 2x |-1的零点,即3x |log 2x |-1=0的解,即|log 2x |的解,即y =|log 2x |与y 图象的交点,如图所示,从函数图象可知,y =|log 2x |与y 有2个交点,即函数f (x )的零点个数为2.(2)函数f (x )=36-x 2·cos x 的零点个数为________.答案6解析令36-x 2≥0,解得-6≤x ≤6,所以f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0,由36-x 2=0得x =±6,由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],所以x 的取值为-3π2,-π2,π2,3π2.故f (x )共有6个零点.题型三函数零点的应用命题点1根据函数零点个数求参数例3(2023·安阳模拟)已知函数f (x )2+2x +2,x ≤0,(x +1),x >0的图象与直线y =k -x 有3个不同的交点,则实数k 的取值范围是()-14,+∞B .(0,+∞)-14,2D .(0,2]答案D解析如图所示,作出函数f (x )的大致图象(实线),平移直线y =k -x ,由k -x =x 2+2x +2可得,x 2+3x +2-k =0,Δ=9-8+4k =0,解得k =-14,故当k =-14时,直线y =-14-x 与曲线y =x 2+2x +2(x ≤0)相切;当k =0时,直线y =-x 经过点(0,0),且与曲线y =x 2+2x +2(x ≤0)有2个不同的交点;当k =2时,直线y =2-x 经过点(0,2),且与f (x )的图象有3个不同的交点.由图分析可知,当k ∈(0,2]时,f (x )的图象与直线y =k -x 有3个不同的交点.命题点2根据函数零点的范围求参数例4(2023·北京模拟)已知函数f (x )=3x -1+axx.若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是()A.-∞,43 B.0,43C .(-∞,0) D.43,+∞答案B解析由f (x )=3x -1+ax x=0,可得a =3x -1x ,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时,g (x )=3x -1x <g (-1)=3-1+1=43,又当x ∈(-∞,-1)时,g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)因此实数a 思维升华根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式(组),再通过解不等式确定参数(范围).(2)分离参数法:先将参数分离,转化成求函数值域确定参数范围.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后利用数形结合法求解.跟踪训练3(1)(2024·邵阳模拟)已知函数f (x )2x |,x >0,x 2-4x ,x ≤0,若g (x )=f (x )-a 有4个零点,则实数a 的取值范围为()A .(0,4)B .(0,3)C .(0,2)D .(0,1)答案A解析作出y =f (x )的图象(实线),如图所示,g (x )=f (x )-a 有4个零点,即y =f (x )与y =a 的图象有4个交点,所以实数a 的取值范围为(0,4).(2)(2023·天津模拟)函数f (x )=2a log 2x +a ·4x +3a 的取值范围是()A .a <-12B .a <-32C .-32<a <-12D .a <-34答案D解析当a =0时,f (x )=3,不符合题意;当a >0时,由于函数y =2a log 2x ,y =a ·4x +3此时函数f (x )当a <0时,由于函数y =2a log 2x ,y =a ·4x +3此时函数f (x )因为函数f (x )所以f (1)<0,即3(4a +3)<0,解得a <-34.课时精练一、单项选择题1.下列函数的图象均与x 轴有交点,其中不宜用二分法求函数零点的是()答案C解析由题意知,利用二分法求函数的零点时,该函数的零点必须是变号零点,所以根据这个条件可知,不宜用二分法求函数零点的是选项C.2.(2023·临沂模拟)函数f (x )=ln x +2x -5的零点所在的区间是()A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案B解析由于y =ln x ,y =2x -5在(0,+∞)上都单调递增,故函数f (x )=ln x +2x -5在(0,+∞)上为增函数,又f (1)=-3<0,f (2)=ln 2-1<0,f (3)=ln 3+1>0,即f (2)f (3)<0,故f (x )=ln x +2x -5在(2,3)内有唯一零点.3.(2023·重庆检测)已知函数f (x )=x -e -x 的部分函数值如表所示,那么函数f (x )的零点的一个近似值(精确度为0.1)为()x10.50.750.6250.5625f (x )0.6321-0.10650.27760.0897-0.007A.0.55B .0.57C .0.65D .0.7答案B解析易知f (x )在[0,1]上单调递增,由表格得f (0.5625)f (0.625)<0,且|0.625-0.5625|=0.0625<0.1,∴函数零点在(0.5625,0.625)内,∴根据选项可知,函数f (x )的零点的一个近似值为0.57.4.(2023·濮阳模拟)设函数f (x )=log 3x +2xa 在区间(1,2)内有零点,则实数a 的取值范围是()A .(-1,-log 32)B .(0,log 32)C .(log 32,1)D .(1,log 34)答案C解析令f (x )=0得a =log 3x +2x,令h (x )=log 3x +2x=log 由复合函数单调性可知,h (x )在(1,2)上单调递减,h (2)=log 32,h (1)=log 33=1,故当x ∈(1,2)时,h (x )∈(log 32,1),要使f (x )=log 3x +2x -a 在区间(1,2)内有零点,则a ∈(log 32,1).5.(2023·东莞模拟)我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (a ,b ,c ,d ∈N *),则b +d a +c是x 的更为精确的不足近似值或过剩近似值.我们知道5=2.236067…,令115<5<125,则第一次用“调日法”后得2310是5的更为精确的过剩近似值,即115<5<2310,若每次都取最简分数,则用“调日法”得到5的近似分数与实际值误差小于0.01的次数为()A .五B .四C .三D .二答案A解析第一次用“调日法”后得115<5<2310,不符合题意;第二次用“调日法”后得115<5<3415,不符合题意;第三次用“调日法”后得115<5<94,不符合题意;第四次用“调日法”后得209<5<94,不符合题意;第五次用“调日法”后得2913<5<94,且|2913-5|<0.01,符合题意,即用“调日法”得到5的近似分数与实际值误差小于0.01的次数为五.6.(2024·安庆模拟)已知函数f (x )|ln x |,x >0,x e x ,x <0,若函数g (x )=f (x )-|x 2-kx |恰有3个零点,则实数k 的取值范围是()A .(-∞,-1)∪(1,+∞)B .(1,+∞)C .(-∞,-1]∪(1,+∞)D .(-∞,-1)∪[1,+∞)答案A解析由题意得,方程f (x )|x |=|x -k |有三个不相等的实数根.而y =f (x )|x |=x |,x >0,x ,x <0,分别作出函数y =f (x )|x |和y =|x -k |的图象,当k =1时,y =|x -1|;当x ≥1时,y =f (x )|x |=ln x ,对其求导得y ′=1x,所以y ′|x =1=1,所以曲线y =ln x 在点(1,0)处的切线方程为y =x -1,如图,直线y =x -1与曲线y =ln x 在点(1,0)相切.所以k 的取值范围是(-∞,-1)∪(1,+∞).二、多项选择题7.(2023·安康模拟)下列函数在区间(-1,3)内存在唯一零点的是()A .f (x )=x 2-2x -8B .f (x )=32(1)2x +-C.f(x)=2x-1-1D.f(x)=1-ln(x+2)答案BCD解析对于A,∵x2-2x-8=0的解为x=-2,x=4,∴f(x)在区间(-1,3)内没有零点,故A错误;对于B,∵f(x)=32(1)2x+-在[-1,+∞)上为增函数,且f(-1)=-2<0,f(3)=8-2=6>0,即f(-1)f(3)<0,∴f(x)在区间(-1,3)内存在唯一零点,故B正确;对于C,∵f(x)=2x-1-1在R上为增函数,且f(-1)=-34<0,f(3)=3>0,即f(-1)f(3)<0,∴f(x)在区间(-1,3)内存在唯一零点,故C正确;∵f(x)=1-ln(x+2)在(-2,+∞)上为减函数,且f(-1)=1>0,f(3)=1-ln5<0,即f(-1)f(3)<0,∴f(x)在区间(-1,3)内存在唯一零点,故D正确.8.设函数f(x)是定义在R上的奇函数,对任意x∈R,都有f(1-x)=f(1+x),且当x∈[0,1]时,f(x)=2x-1,若函数g(x)=f(x)-log a(x+2)(a>0且a≠1)在(-1,7)上恰有4个不同的零点,则实数a的值可以是()A.1 9log32B.13log32C.3log23D.9log23答案AD解析∵函数f(x)是定义在R上的奇函数,当x∈[0,1]时,f(x)=2x-1,∴当x∈[-1,0]时,-x∈[0,1],∴f(x)=-f(-x)=-2-x+1,即当x∈[-1,0]时,f(x)=-2-x+1,又对任意x∈R,都有f(1-x)=f(1+x),则f(x)的图象关于直线x=1对称,且f(-x)=f(2+x)=-f(x),∴f(x)=f(x+4),即函数f(x)是以4为周期的函数,又由函数g(x)=f(x)-log a(x+2)(a>0且a≠1)在(-1,7)上恰有4个不同的零点,得函数y=f(x)与y=log a(x+2)的图象在(-1,7)上有4个不同的交点,又f (1)=f (5)=1,f (-1)=f (3)=f (7)=-1,当a >1时,由图可得log a (5+2)<1=log a a ,解得a >7;当0<a <1时,由图可得log a (7+2)>-1=log a a -1,解得0<a <19.综上可得a ∈0,19(7,+∞),故选项A ,D 满足条件.三、填空题9.(2024·赣州模拟)用二分法求方程x 3+x -5=0的近似解时,已经将根锁定在区间(1,3)内,则下一步可断定该根所在的区间为________.答案(1,2)解析令f (x )=x 3+x -5,则f (2)=8+2-5=5>0,f (3)=27+3-5=25>0,f (1)=1+1-5=-3<0,由f (1)f (2)<0知根所在区间为(1,2).10.(2023·南充模拟)设正实数a ,b ,c 分别满足a ·2a =b ·log 3b =c ·log 2c =1,则a ,b ,c 的大小关系为________.答案b >c >a 解析由已知可得1a =2a ,1b =log 3b ,1c=log 2c ,作出y =1x,y =2x ,y =log 3x ,y =log 2x 的图象如图所示,则y =2x ,y =log 3x ,y =log 2x 的图象与y =1x的图象的交点的横坐标分别为a ,b ,c ,由图象可得b >c >a .11.如果关于x 的方程2x +3x +4x =a x (a ∈N *)在区间(1,2)内有解,a 的一个取值可以为________.答案6(答案不唯一)解析因为2x+3x+4x=a x在(1,2)内有解,故a>4,方程2x+3x+4x=a x可化为-1=0,令f(x)-1,因为a>4,所以f(x)在R上单调递减,1)>0,2)<0,+3a+4a-1>0,+9a2+16a2-1<0,解得29<a<9,又a∈N*,所以a=6或a=7或a=8.12.已知函数f(x)-5,x≥λ,2-6x+8,x<λ(λ∈R),若函数f(x)恰有2个零点,则实数λ的取值范围是________.答案(2,4]∪(5,+∞)解析作出函数y=x-5,y=x2-6x+8的图象,如图所示,依题意f(x)-5,x≥λ,2-6x+8,x<λ有2个零点,由图象可得实数λ的取值范围是(2,4]∪(5,+∞).四、解答题13.已知函数f(x)=ax2+bx+c,且f(1)=-a2,3a>2c>2b.求证:(1)a>0且-3<ba<-34;(2)函数f(x)在区间(0,2)内至少有一个零点.证明(1)∵f(1)=a+b+c=-a2,∴c=-32a-b.∵3a>2c=-3a-2b,∴3a>-b.∵2c>2b,∴-3a>4b.若a >0,则-3<b a <-34;若a =0,则0>-b ,0>b ,不成立;若a <0,则b a <-3,b a >-34,不成立.综上,a >0且-3<b a <-34.(2)f (0)=c ,f (2)=4a +2b +c ,f (1)=-a 2,Δ=b 2-4ac =b 2+4ab +6a 2=(b +2a )2+2a 2>0.当c >0时,f (0)>0,f (1)<0,∴f (x )在(0,2)内至少有一个零点;当c =0时,f (0)=0,f (1)<0,f (2)=4a +2b =a >0,∴f (x )在(0,2)内有一个零点;当c <0时,f (0)<0,f (1)<0,b =-32a -c ,f (2)=4a -3a -2c +c =a -c >0,∴f (x )在(0,2)内有一个零点.综上,f (x )在(0,2)内至少有一个零点.14.(2024·天水模拟)已知函数f (x )=log 2(2+x )-log 2(2-x ).(1)判断f (x )的奇偶性;(2)若关于x 的方程f (x )=log 2(a +x )有两个不同的实数根,求实数a 的取值范围.解(1)f (x )为奇函数,理由如下:+x >0,-x >0,解得-2<x <2,即函数f (x )的定义域为(-2,2),故定义域关于原点对称.又f (-x )=log 2(2-x )-log 2(2+x )=-f (x ),故f (x )为奇函数.(2)由f (x )=log 2(a +x ),得log 2(2+x )-log 2(2-x )=log 2(a +x ),所以2+x 2-x =a +x ,所以a =2+x 2-x -x =4-(2-x )2-x-x =42-x +(2-x )-3,故方程f (x )=log 2(a +x )有两个不同的实数根可转化为方程a =42-x +(2-x )-3在区间(-2,2)上有两个不同的实数根,即函数y =a 与y =42-x+(2-x )-3在区间(-2,2)上的图象有两个交点.设t =2-x ,x ∈(-2,2),则y =4t+t -3,t ∈(0,4).作出函数y =4t+t -3,t ∈(0,4)的图象,如图所示.当1<a <2时,函数y =a 与y =4t+t -3,t ∈(0,4)的图象有两个交点,即关于x 的方程f (x )=log 2(a +x )有两个不同的实数根,故实数a 的取值范围是(1,2).15.(2023·南通模拟)函数f (x )=x 2023|x |,若方程(x +sin x )f (x )-ax 2=0只有三个解x 1,x 2,x 3,且x 1<x 2<x 3,则sin x 2+2023x 1x 3的取值范围是()A .(0,+∞)B .(2023,+∞)C .(-∞,-2023)D .(-∞,0)答案D 解析因为(x +sin x )f (x )-ax 2=0,f (x )=x 2023|x |,所以(x +sin x )x 2023|x |-ax 2=0,①当x =0时,方程成立;②若x ≠0,(x +sin x )x 2023|x |-ax 2=0可化为(x +sin x )x 2021|x |-a =0⇔(x +sin x )x 2021|x |=a ,令F (x )=(x +sin x )x 2021|x |,因为定义域关于原点对称,且F (-x )=[-x +sin(-x )](-x )2021|-x |=(x +sin x )x 2021|x |=F (x ),所以F (x )为偶函数,图象关于y 轴对称,所以F (x )与y =a 的两个交点对应的横坐标关于y 轴对称,即方程(x +sin x )x 2021|x |=a 的另外两解一定一正一负,又x 1<x 2<x 3,所以x 1<0,x 2=0,x 3>0,且x 1=-x 3≠0,所以sin x 2+2023x 1x 3=-2023x 21<0.16.(2023·永州模拟)已知函数f (x )-ln (1-|x +1|),-2<x <0,|ln x |,x >0,若关于x 的方程f (x )=m有4个不同的根,记为x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),且λx 3x 4>x 1-x 2+32λ的取值范围是______.答案(2,+∞)解析f(x)ln(1-|x+1|),-2<x<0,x|,x>0ln(x+2),-2<x≤-1,ln(-x),-1<x<0,ln x,0<x≤1,x,x>1,作出函数的图象如图所示,则可得-2<x1<-1<x2<0<x3<1<x4,因为f(x1)=f(x2)=f(x3)=f(x4)=m,所以-ln(x1+2)=-ln(-x2)=-ln x3=ln x4,所以x1+2=-x2=x3=1x4,所以x1=x3-2,x2=-x3,x4=1x3,因为λx3x4>x1-x2+32恒成立,所以λx23>2x3-12,所以λ>2x3-12x23=-12x23+2x3=-+2,对任意x3∈(0,1)恒成立,即λ>-+2max,所以当x3=12时,函数y+2取到最大值2,所以λ>2,即λ的取值范围为(2,+∞).。
方程的解与函数的零点优秀的讲授教案(比赛课)方程的解与函数的零点优秀的讲授教案(比赛课)教案目标本教案旨在通过有趣和交互式的研究方式,帮助学生理解方程的解与函数的零点的概念,并掌握求解方程和函数的零点的方法。
教案内容1. 引入:通过一个生活实例或问题引入方程的解与函数的零点的概念,引发学生思考和讨论。
2. 方程的解概念讲解:- 解释方程的定义和意义;- 通过示例演示如何求解一元一次方程;- 引入更复杂的方程,如一元二次方程,并介绍其求解方法;- 给予学生一定练机会,巩固概念和方法的研究。
3. 函数的零点概念讲解:- 介绍函数的定义和性质;- 解释函数的零点定义和意义;- 展示如何从函数图像中找到函数的零点;- 给予学生一定练机会,加深对函数的零点的理解。
4. 方程与函数的零点关系:- 对比方程的解与函数的零点的概念和求解方法的异同之处;- 强调方程与函数零点之间的联系;- 通过实例让学生练并理解方程与函数零点的关系。
5. 综合练:- 设计一些综合性的方程和函数的零点求解题目,让学生巩固知识和技能;- 提供实践机会,让学生将所学应用于解决实际问题。
教学方法1. 启发式教学:通过提出问题、引导思考和交流的方式,让学生自主发现和理解方程的解和函数的零点的概念。
2. 演示与实践结合:通过示例演示和实践练相结合的方式,丰富学生的研究经验,提高研究效果。
3. 小组合作研究:组织小组讨论和合作研究,激发学生的研究兴趣和团队合作能力。
教学评估1. 参与度观察:观察学生在课堂上的积极参与程度。
2. 书面作业:布置与教学内容相关的书面作业,检验学生对方程的解与函数的零点的理解程度。
3. 综合性评估:设计一些综合性的题目或项目,考察学生对方程和函数零点求解方法的综合运用能力。
拓展活动安排学生进行综合性拓展活动,例如:- 调查常见实际问题对应的方程与函数,了解方程和函数零点求解的实际应用;- 设计一个小游戏,让学生通过求解方程和函数的零点来解锁关卡。
4.5.1函数的零点与方程的解(基础知识+基本题型)知识点一 函数的零点1.函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.2.函数零点与方程的根之间的关系方程()0f x =有零点⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.由此可知,求()0f x =的实数根,就是确定函数()y f x =的零点,一般地,对于不能用公式求根的方程()0f x =来说,我们可以将它与函数()y f x =联系起来,利用函数的性质找出零点,从而求出方程的根. 提示:(1)并不是所有的函数都有零点,如函数1()f x x=就没有零点. (2)方程不同实数根的个数⇔函数图象与x 轴交点的个数⇔函数零点的个数.(3)函数的零点不是点:我们把使()0f x =的实数x 叫做函数()y f x =的零点,因此,函数的零点不是点,是函数()y f x =的图象与x 轴交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.知识点二 函数零点存在性定理1. 零点存在性定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也是方程()0f x =的根.2. 零点存在性定理的适用条件(1)判断零点是否存在是存在闭区间[,]a b 上进行的.(2)函数()y f x =在[,]a b 上的图象应是连续无间断的一条曲线.(3)()()0f a f b ⋅<是关键条件,即两端点的函数值必须异号.(4)如果函数()y f x =在两端点处的函数值(),()f a f b 异号,则函数()y f x =的图象至少穿过x 轴一次,即方程()0f x =在区间(,)a b 内至少有一个实根c .3. 零点存在性定理的使用范围(1)此定理只能判断出零点的存在性,而不能判断出零点的个数。
第17讲函数的零点与方程的解1.了解函数的零点、方程的解与图象交点三者之间的关系;2.结合具体连续函数及其图象的特点;3.会借助函数零点崔仔定理判断函数的零点所在的大致区间;4.能借助函数单调性及图象判断零点个数。
一、函数的零点与方程的解1、定义:如果函数()=y f x 在实数a 处的值等于零,即()0=f a ,则a 叫做这个函数的零点.2、注意事项:(1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零;(2)函数的零点也就是函数)(x f y =的图象与x 轴交点的横坐标;(3)函数)(x f y =的零点就是方程0)(=x f 的实数根.3、方程、函数、图象之间的关系方程()0=f x 有实数根⇔函数()=y f x 的图象与x 轴有交点⇔函数()=y f x 有零点.二、零点存在定理及其推论1、定理:如果函数()f x 在区间[],a b 上的图象是一条连续不断的曲线,且()()0⋅<f a f b ,那么,函数()=y f x 在区间().a b 内至少有一个零点,即存在().∈c a b ,使得()0=f c ,这个c 也就是方程()0=f x 的解。
【注意】(1)定义不能确定零点的个数;(2)不满足定理条件时依然可能有零点;(3)定理中的“连续不断”是必不可少的条件;(4)定理反之是不成立的.2、重要推论:(1)推论1:函数()f x 在区间[],a b 上的图象是一条连续不断的曲线,()()0⋅<f a f b ,且()f x 具有单调性,则函数()f x 在区间().a b 内只有一个零点.(2)推论2:函数()f x 在区间[],a b 上的图象是一条连续不断的曲线,函数()f x 在区间().a b 内有零点,且函数()f x 具有单调性,则()()0⋅<f a f b 三、零点个数的判断方法1、直接法:直接求零点,令()0=f x ,如果能求出解,则有几个不同的解就有几个零点.2、定理法:利用零点存在定理,函数的图象在区间[],a b 上是连续不断的曲线,且()()0⋅<f a f b ,结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.3、图象法:(1)单个函数图象:利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;(2)两个函数图象:将函数()f x 拆成两个函数()h x 和()g x 的差,根据()()()0=⇔=f x h x g x ,则函数()f x 的零点个数就是函数()=y h x 和()=y g x 的图象的交点个数4、性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数四、判断函数零点所在区间的步骤第一步:将区间端点代入函数求函数的值;第二步:将所得函数值相乘,并进行符号判断;第三步:若符号为正切在该区间内是单调函数,则函数在该区间内无零点;若符号为负且函数图象连续,则函数在该区间内至少一个零点。
《函数的零点》讲义一、函数零点的定义在数学中,函数的零点是一个非常重要的概念。
那什么是函数的零点呢?简单来说,如果函数 y = f(x) 在 x = a 处的函数值 f(a) = 0,那么x = a 就叫做函数 y = f(x) 的零点。
比如说,对于函数 f(x) = x 1,当 f(x) = 0 时,也就是 x 1 = 0,解得 x = 1。
所以 1 就是函数 f(x) = x 1 的零点。
再比如函数 f(x) = x² 4,令 f(x) = 0,即 x² 4 = 0,通过求解可得x = 2 或 x =-2,所以 2 和-2 都是函数 f(x) = x² 4 的零点。
二、函数零点存在性定理有了函数零点的定义,我们来看看函数零点存在性定理。
如果函数 y = f(x) 在区间 a, b 上的图象是连续不断的一条曲线,并且有 f(a)·f(b) < 0,那么函数 y = f(x) 在区间(a, b) 内至少有一个零点。
这个定理非常有用,它为我们判断函数在某个区间内是否存在零点提供了依据。
比如说,函数 f(x) = x² 2x 3 在区间 1, 4 上,f(1) =-4,f(4) = 5,因为 f(1)·f(4) < 0,所以函数在区间(1, 4) 内至少有一个零点。
但要注意,函数在区间内有零点,不一定只有一个零点。
三、函数零点与方程根的关系函数的零点与方程的根有着密切的关系。
方程 f(x) = 0 的根就是函数 y = f(x) 的零点。
例如,方程 x² 5x + 6 = 0 的根为 x = 2 和 x = 3,这两个值就是函数 f(x) = x² 5x + 6 的零点。
反过来,如果知道函数的零点,也就得到了相应方程的根。
通过求函数的零点来解方程,是一种重要的数学方法。
四、求函数零点的方法接下来,我们看看怎么求函数的零点。
高中数学总复习考点知识讲解课件第七节函数的应用第1课时函数的零点与方程的解、二分法【课程标准】1.会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.2.根据具体函数的图象,能够借助计算工具利用二分法求相应方程的近似解.【必备知识·精归纳】1.函数的零点与方程的解(1)函数的零点对于一般函数y=f(x),使f(x)=0的实数x.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理①条件:函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0.②结论:函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.点睛连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.【常用结论】有关函数零点的三个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.【基础小题·固根基】1.(结论)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个【解析】选B.依题意,f(2)>0,f(3)<0,f(4)>0,f(5)<0,根据函数零点存在定理可知,f(x)在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y=f(x)在区间[1,6]上的零点至少有3个.2.(教材变式)函数f(x)=e x+3x的零点个数是()A.0B.1C.2D.3【解析】选B.由f'(x)=e x+3>0,所以f(x)在R上单调递增,又f(-1)=-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.3.(教材提升)已知函数f(x)=--则f(x)的零点为.【解析】由题意,知-或-解得x=-2或x=e.答案:-2,e4.(忽视区间端点值)函数f(x)=kx+1在[1,2]上有零点,则k的取值范围是.【解析】依题意函数f(x)=kx+1在[1,2]上有零点,所以k≠0 函数f(x)在定义域上是单调函数,所以f(1)·f(2)≤0 即(k+1)(2k+1)≤0解得-1≤k≤-.答案: [-1,-]5.(应用零点和奇函数的概念不准确)设函数f(x)是定义在R上的奇函数且当x>0时,f(x)=x-1+lg x,则在R上f(x)的零点为.【解析】因为f(x)是R上的奇函数,所以f(0)=0,且f(-x)=-f(x).又当x>0时,f(1)=0,所以当x<0时,奇函数f(x)还有一个零点-1.答案:0,-1,1【题型一】函数零点所在区间的判定[典例1](1)(多选题)(2022·菏泽质检)函数f(x)=e x-x-2在下列哪个区间内必有零点()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)【解析】选AD.f(-2)=>0,f(-1)=-1<0,f(0)=-1<0,f(1)=e-3<0,f(2)=e2-4>0,因为f(-2)·f(-1)<0,f(1)·f(2)<0,所以f(x)在(-2,-1)和(1,2)内存在零点.(2)设f(x)=0.8x-1,g(x)=ln x,则函数h(x)=f(x)-g(x)的零点一定位于下列哪个区间()A.(0,1)B.(1,2)C.(2,e)D.(e,3)【解析】选A.h(x)=f(x)-g(x)的零点等价于方程f(x)-g(x)=0的根,即为函数y=f(x)与y=g(x)图象的交点的横坐标,其大致图象如图,从图象可知它们仅有一个交点A,横坐标的范围为(0,1).【方法提炼】——自主完善,老师指导确定函数零点所在区间的常用方法(1)定理法:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(2)图象法:通过画函数图象,观察图象与x轴在给定区间上是否有公共点来判断.【对点训练】1.已知函数f(x)=-log2x.在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4 +∞)【解析】选C.因为f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4)=-log24=-<0,且f(x)在定义域内单调递减,所以函数f(x)的零点所在区间为(2,4).2.设函数f(x)=x-ln x,则函数y=f(x)()A.在区间(,1),(1,e)内均有零点B.在区间(,1),(1,e)内均无零点C.在区间(,1)内有零点,在区间(1,e)内无零点D.在区间(,1)内无零点,在区间(1,e)内有零点【解析】选D.方法一(定理法):当x∈(,e)时,函数图象是连续的,且f'(x)=-=-<0,所以函数f(x)在(,e)上单调递减.又f()=+1>0,f(1)=>0,f(e)=e-1<0,所以函数在区间(1,e)内有唯一的零点.方法二(图象法):令f(x)=0,得x=ln x.作出函数y=x和y=ln x的图象,如图,显然y=f(x)在(,1)内无零点,在(1,e)内有零点.【加练备选】1.(2022·白银模拟)函数f(x)=ln x-的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B. (定理法)由题意知函数f(x)是增函数,因为f(1)<0,f(2)=ln 2-=ln 2-ln>0,所以函数f(x)的零点所在的区间是(1,2).2.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)·(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞ a)和(a,b)内C.(b,c)和(c +∞)内D.(-∞ a)和(c +∞)内【解析】选A.函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0.所以f(a)f(b)<0,f(b)f(c)<0,即f(x)在区间(a,b)和区间(b,c)内各有一个零点.【题型二】函数零点个数的判定[典例2](1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是()A.0B.1C.2D.3【解析】选B.方法一:因为f(0)f(1)=(-1)×1=-1<0,且函数在定义域上单调递增且连续,所以函数f(x)在区间(0,1)内有且只有1个零点.方法二:设y1=2x,y2=2-x3,在同一坐标系中画出两函数的图象如图所示,在区间(0,1)内,两图象的交点个数即为f(x)的零点个数.故函数f(x)在区间(0,1)内有且只有1个零点.(2)已知函数f(x)=-则函数y=f(x)+3x的零点个数是()A.0B.1C.2D.3【解析】选C.(方程法)令f(x)+3x=0,则或-解得x=0或x=-1,所以函数y=f(x)+3x的零点个数是2.(3)函数f(x)=2x|log0.5x|-1的零点个数为()A.1B.2C.3D.4【解析】选B.(图象法)令f(x)=2x|log0.5x|-1=0,可得|log0.5x|=()x,设g(x)=|log0.5x|,h(x)=()x,在同一平面直角坐标系下分别画出函数g(x),h(x)的图象如图,可以发现两个函数图象一定有2个交点,因此函数f(x)有2个零点.【方法提炼】——自主完善,老师指导函数零点个数的判定方法(1)方程法:令f(x)=0,如果能求出解,那么有几个解就有几个零点.(2)定理法:利用该定理不仅要求函数在[a,b]上是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:画出两个函数的图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.【对点训练】1.函数f(x)是R上最小正周期为2的周期函数,当0≤x<2时f(x)=x2-x,则函数y=f(x)的图象在区间[-3,3]上与x轴的交点个数为()A.6B.7C.8D.9【解析】选B.令f(x)=x2-x=0,所以x=0或x=1,所以f(0)=0,f(1)=0.因为函数的最小正周期为2,所以f(2)=0,f(3)=0,f(-2)=0,f(-1)=0,f(-3)=0.所以函数y=f(x)的图象在区间[-3,3]上与x轴的交点个数为7.2.函数f(x)=--的零点个数是.【解析】当x≤0时,令x2-2=0,解得x=-(正根舍去),所以在(-∞ 0]上,f(x)有一个零点;当x>0时,f'(x)=2+>0恒成立,所以f(x)在(0 +∞)上是增函数.又因为f(2)=-2+ln 2<0,f(3)=ln 3>0,所以f(x)在(0 +∞)上有一个零点.综上,函数f(x)的零点个数为2.答案:2【加练备选】函数f(x)=x cos 2x在区间[0,2π]上的零点的个数为()A.2B.3C.4D.5【解析】选D.(方程法)借助余弦函数的图象求解.f(x)=x cos 2x=0⇒x=0或cos 2x=0,又cos 2x=0在[0,2π]上有4个根,即,,,,故原函数有5个零点.【题型三】函数零点的应用角度1根据函数零点个数求参数[典例3](1)已知函数f(x)=--(a∈R),若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1 +∞)C.(0,1)D.(-∞ 1]【解析】选A.画出函数f(x)的大致图象如图所示.因为函数f(x)在R上有两个零点,所以f(x)在(-∞ 0]和(0 +∞)上各有一个零点.当x≤0时,f(x)有一个零点,需0<a≤1;当x>0时,f(x)有一个零点,需-a<0,即a>0.综上,0<a≤1.(2)函数f(x)=-kx2有两个零点,则实数k的值为.【解析】由f(x)=-kx2=x(-kx),函数f(x)=-kx2有两个零点,即函数y=-kx只有一个零点x0,且x0≠0.即方程-kx=0有且只有一个非零实根.显然k≠0 即=x2+2x有且只有一个非零实根.即二次函数y=x2+2x的图象与直线y=有且只有一个交点(横坐标不为零).作出二次函数y=x2+2x的图象,如图.因为≠0 由图可知,当>-1时,函数y=x2+2x的图象与直线y=有两个交点,不满足条件.当=-1,即k=-1时满足条件.当<-1时,函数y=x2+2x的图象与直线y=无交点,不满足条件.答案:-1角度2根据函数零点范围求参数[典例4](1)(2023·北京模拟)已知函数f(x)=3x-.若存在x0∈(-∞ -1),使得f(x0)=0,则实数a的取值范围是()A. (-∞ )B. (0,)C.(-∞ 0)D.( +∞)【解析】选B.由f(x)=3x-=0,可得a=3x-,令g(x)=3x-,其中x∈(-∞ -1),由于存在x0∈(-∞ -1),使得f(x0)=0,则实数a的取值范围即为函数g(x)在(-∞ -1)上的值域.由于函数y=3x,y=-在区间(-∞ -1)上均单调递增,所以函数g(x)在(-∞ -1)上单调递增.当x∈(-∞ -1)时,g(x)=3x-<3-1+1=,又g(x)=3x->0,所以函数g(x)在(-∞ -1)上的值域为(0,).因此实数a的取值范围是(0,).(2)若函数f(x)=(m-2)x2+mx+2m+1的两个零点分别在区间(-1,0)和区间(1,2)内,则m的取值范围是.【解析】依题意,结合函数f(x)的图象分析可知,m需满足(-)·()即()·()()()()·[()]解得<m<.答案:(,)角度3求函数多个零点(方程根)的和则方程(x-1)f(x)=1的所有实根[典例5]已知函数f(x)=-(-)的和为()A.2B.3C.4D.1【解析】选A.当x>1时,2-x<1,所以f(2-x)=-ln[2-(2-x)]=-ln x=-f(x);当x<1时,2-x>1,所以f(2-x)=ln(2-x)=-f(x);当x=1时,f(1)=0,所以函数f(x)的图象关于点(1,0)对称.显然x=1不是方程(x-1)f(x)=1的根.,当x≠1时,原方程可变为f(x)=-的图象的交点故求方程(x-1)f(x)=1的所有实根的和即为求y=f(x)和y=-的横坐标之和.的图象,如图所示.作出函数y=f(x)和y=-由图象得,两个函数的图象有2个交点,分别设为A(x1,y1),B(x2,y2)(x1<x2).的图象都关于点(1,0)对称,所以A,B也关于点(1,0)因为函数y=f(x)和y=-对称,所以=1,即x1+x2=2.【方法提炼】已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求已知函数零点情况的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.【对点训练】1.函数f(x)=x2-ax+1在区间(,3)上有零点,则实数a的取值范围是()A.(2 +∞)B.[2 +∞)C. [2,)D. [2,)【解析】选D.由题意知方程ax=x2+1在(,3)上有解,即a=x+在(,3)上有解,设t=x+,x∈(,3),则t的取值范围是[2,),所以实数a的取值范围是[2,).2.设函数f(x)的定义域为R,f(-x)=f(x)且f(x)=f(2-x),当x∈[0,1]时,f(x)=x3,则函数g(x)=|cos(πx)|-f(x)在区间(-,]上的所有零点的和为()A.1B.2C.3D.4【解析】选C.由f(-x)=f(x),知函数f(x)是偶函数,由f(x)=f(2-x),可知函数f(x)的图象的对称轴为直线x=1.由于函数f(x)与函数y=|cos(πx)|均为偶函数,所以在(-,]上g(x)的零点之和为0,只需求在(,]上的零点和.在同一个直角坐标系中画出函数y=|cos(πx)|,y=f(x)在(,]上的图象如图,在(,]上,(1,1)为两函数图象的交点,且另两个交点关于x=1对称,所以在(,]上,g(x)的零点和为3,故所有零点的和为3.3.设函数f(x)=-(-)(-)若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是. 【解析】若a=1,则f(x)=-(-)(-)作出函数f(x)的图象如图所示.由图可得f(x)的最小值为-1.当a≥1时,要使f(x)恰有2个零点,需满足21-a≤0 即a≥2;当a<1时,要使f(x)恰有2个零点,需满足-解得≤a<1.综上,实数a的取值范围为[,1)∪[2 +∞).答案:-1[,1)∪[2 +∞)【加练备选】1.(多选题)设函数f(x)=()若函数g(x)=f(x)-b有三个零点,则实数b可取的值为()A.0B.C.D.1【解析】选BCD.函数g(x)=f(x)-b有三个零点等价于函数y=f(x)的图象与直线y=b有三个不同的交点,当x≤0时,f(x)=(x+1)e x,则f'(x)=e x+(x+1)e x=(x+2)e x,所以f(x)在(-∞ -2)上单调递减,在(-2,0]上单调递增,且f(-2)=-,f(0)=1,x→-∞时,f(x)→0从而可得f(x)的图象如图所示.通过图象可知,若函数y=f(x)的图象与直线y=b有三个不同的交点,则b∈(0,1].2.已知函数f(x)=log2(x+1)-+m在区间(1,3]上有零点,则m的取值范围为()A. (-,0)B. (-∞ -)∪(0 +∞)C. (-∞ -]∪(0 +∞)D. [-,0)【解析】选D.由于函数y=log2(x+1),y=m-在区间(1,3]上单调递增,所以函数f(x)在(1,3]上单调递增.由于函数f(x)=log2(x+1)-+m在区间(1,3]上有零点,则()()即解得-≤m<0.因此,实数m的取值范围是[-,0).3.(2023·浙江名校联盟联考)定义在R上的函数f(x),满足f(-x)=-f(x),且f(x)=f(2-x).当0<x≤1时,f(x)=log2x,则方程f(x)=1在[-6,6]上的实数根的和为.【解析】定义在R上的函数f(x),满足f(-x)=-f(x),且f(x)=f(2-x),则f(x+2)=-f(x),即f(x+4)=-f(x+2)=f(x),所以函数f(x)的周期为4,且其图象关于直线x=1对称.当0<x≤1时,f(x)=log2x,所以f()=-1,则f(-)=1.由f(x)的图象关于直线x=1对称,得f()=1,则由周期为4可得,f()=1,f(-)=1,f(-)=1,f(-)=1,所以----++=-6.答案:-6【备选题型】嵌套函数的零点问题函数的零点是高考命题的热点,主要涉及判断函数零点的个数或范围,对于嵌套函数的零点,通常先“换元解套” 将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.角度1嵌套函数零点个数的判断[典例1]已知函数f(x)=则方程f(f(x))+3=0的解的个数为() A.3B.4C.5D.6【解析】选C.因为函数f(x)=由f(x)=-3,当x>0,即ln x=-3,解得x=,当x<0时,则有x+=-3,解得x=-.因为f(f(x))+3=0,即f(x)=或f(x)=-,由f(x)=,可得ln x=,此方程只有一个根.又x<0时,f(x)=x+≤-2,故f(x)=-仅在x>0时有一个根,f(x)=--在x<0时有两个根,在x>0时有一个根,综上,方程f(f(x))+3=0有五个根.【方法提炼】求解嵌套函数零点问题的主要步骤(1)换元解套,转化为t=g(x)与y=f(t)的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.角度2与嵌套函数零点相关的参数范围[典例2]函数f(x)=(--) --若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围是.【解析】设t=f(x),令f(f(x))-a=0,则a=f(t).在同一坐标系内作y=a,y=f(t)的图象(如图).当a≥-1时,y=a与y=f(t)的图象有两个交点.设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解,当t2≥-1时,t2=f(x)有两解.综上,当a≥-1时,函数g(x)=f(f(x))-a有三个不同的零点.答案:[-1 +∞)【方法提炼】1.求嵌套函数零点中的参数范围可抓住分段函数的图象性质,由y=a与y=f(t)的图象,确定t1,t2的取值范围,进而由t=f(x)的图象确定零点的个数.2.含参数的嵌套函数方程,还应注意让参数的取值“动起来” 抓临界位置,动静结合.【对点训练】1.已知函数f(x)=则函数g(x)=2f(f(x)-1)-1的零点个数为()A.7B.8C.10D.11【解析】选B.记t=f(x)-1,则2f(t)-1=0的解为t1=,t2=-1-,t3=-1+,t4=-1-.t=f(x)-1的根等价于直线y=t+1与y=f(x)的图象的交点个数,画出f(x)的图象,如图,数形结合知有8个交点,即g(x)=2f(f(x)-1)-1有8个零点.2.已知f(x)=,方程f2(x)+(2a-3)f(x)+a2-3a=0有三个不等实根,则a的取值范围为()A.{-e}∪(3-e +∞)B.{-e}∪(0,3-e)C.(-∞ 0)D.{-e}∪[3-e +∞)【解析】选B.由题意知f'(x)=-(x>0且x≠1) 令f'(x)=0,得x=e,所以当x∈(0,1)∪(1,e)时,f'(x)<0;当x∈(e +∞)时,f'(x)>0.所以函数f(x)在(0,1),(1,e)上单调递减,在(e +∞)上单调递增,所以当x=e时,f(x)有极小值,且极小值为e,则函数f(x)的大致图象如图所示.由方程f2(x)+(2a-3)f(x)+a2-3a=0得f(x)=-a或f(x)=-a+3,若方程f2(x)+(2a-3)f(x)+a2-3a=0有三个不等实根,则有--或--解得0<a<3-e或a=-e.【思维导图·构网络】解题思维拓广角度❸复合函数零点、方程根的问题复合函数涉及内外两层函数,问题的解决往往涵盖函数与方程、数形结合、分类整合和化归与转化等数学思想.复合函数零点问题具有关系复杂、综合性强的特点,对考查学生思维能力、运算能力有较高的要求.[常见方法]先将复合函数的解析式写出,再根据函数的解析式画出函数的图象,根据函数的图象研究零点问题.类型一确定复合函数零点的个数或方程解的个数[典例1](1)已知函数f(x)=则下列关于函数y=f(f(x))+1的零点个数判断正确的是()A.当a>0时,有4个零点;a<0时,有1个零点B.当a>0时,有3个零点;a<0时,有2个零点C.无论a为何值,均有2个零点D.无论a为何值,均有4个零点【解析】选A.所求函数的零点,即方程f(f(x))=-1的解的个数,令t=f(x),先作出y=f(t)的图象,直线y=ax+1为过定点(0,1)的一条直线,但需要对a的符号进行分类讨论.当a>0时,如图1所示,先拆外层可得t1=-<0,t2=,如图2所示,而t1有两个对应的x,t2也有两个对应的x,共计4个;当a<0时,如图3所示,先拆外层可得t=,如图4所示,t=只有一个满足的x,所以共1个零点.结合选项,可判断出A正确.(2)已知f(x)=则函数y=2[f(x)]2-3f(x)+1的零点个数是. 【解析】由2[f(x)]2-3f(x)+1=0得f(x)=或f(x)=1,作出函数y=f(x)的图象.由图象知y=与y=f(x)的图象有2个交点,y=1与y=f(x)的图象有3个交点.因此函数y=2[f(x)]2-3f(x)+1的零点有5个.答案:5【方法提炼】求复合函数y=f(g(x))的零点的个数或方程解的个数的策略:(1)先换元解“套” 令t=g(x),则y=f(t),再作出y=f(t)与t=g(x)的图象.(2)由y=f(t)的图象观察有几个t的值满足条件,结合t的值观察t=g(x)的图象,求出每一个t与几个x对应,将x的个数汇总后即为y=f(g(x))的零点或方程解的个数,即“从外到内”.类型二已知函数零点的个数,求参数的取值范围[典例2](1)已知函数f(x)=若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是()A.[0 +∞)B.[1,3]C. (-1,-]D. [-1,-]【解析】选C.因为f(f(x))-2=0,所以f(f(x))=2,所以f(x)=-1或f(x)=-(k≠0).(i)当k=0时,作出函数f(x)的图象如图①所示,由图象可知f(x)=-1无解,所以k=0不符合题意;(ii)当k>0时,作出函数f(x)的图象如图②所示,由图象可知f(x)=-1无解且f(x)=-无解,即f(f(x))-2=0无解,不符合题意;(iii)当k<0时,作出函数f(x)的图象如图③所示,由图象可知f(x)=-1有1个实数根,因为f(f(x))-2=0有3个实数根,所以f(x)=-有2个实数根,所以1<-≤3 解得-1<k≤-.综上,k的取值范围是(-1,-].(2)已知函数f(x)=-x2-2x,g(x)=若方程g(f(x))-a=0有4个不同的实数根,则实数a的取值范围是.【解析】令f(x)=t,则原方程化为g(t)=a,由方程g(f(x))-a=0有4个不同的实数根,易知方程f(x)=t在t<1时有2个不同的解,则原方程有4个解等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g(t)(t<1)的图象如图,由图象可知,当1≤a<时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是[1,).答案: [1,)【方法提炼】已知复合函数y=f(g(x))零点的个数,求参数的取值范围的问题的方法:(1)先换元解套,令t=g(x),则y=f(t),再作出y=f(t)与t=g(x)的图象.(2)由零点个数结合t=g(x)与y=f(t)的图象特点,从而确定t的取值范围,进而确定参数的范围,即“从内到外”.此法称为双图象法(换元法+数形结合).【加练备选】已知函数f(x)=|x2-4x+3|,若方程[f(x)]2+bf(x)+c=0恰有七个不相同的实根,则实数b的取值范围是()A.(-2,0)B.(-2,-1)C.(0,1)D.(0,2)【解析】选B.通过图象变换作出t=f(x)的图象(如图),因为[f(x)]2+bf(x)+c=0最多只能解出2个f(x),若要解出七个根, 则t1=1,t2∈(0,1),所以-b=t1+t2∈(1,2),解得b∈(-2,-1).。
新教材必修第一册4.5.1:函数的零点与方程的解
课标解读:
1. 函数零点的概念.(理解)
2. 0)(=x f 有解与)(x f y =有零点的关系.(理解)
3. 函数零点的判断.(理解)
学习指导:
在熟练掌握基本初等函数(幂函数、指数函数、对数函数等)的图像与性质的基础上,提炼方程0)(=x f 的解与函数)(x f y =的图像与x 轴交点的关系,进而理解并准确把握函数零点的概念,以及函数零点、方程的实数解、函数图像与x 轴交点三者之间的关系,并能从“形”(函数图像)与“数”(函数零点存在定理)两个角度分析解决函数零点有关问题.
知识导图
知识点1:函数的零点
1.函数零点的概念
对于一般函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点.即函数的零点就是使函数值为零的自变量的值.
2.函数的零点与方程的解的关系
函数)(x f y =的零点就是方程0)(=x f 的实数解,也就是函数)(x f y =的图像与x 轴的公共点的横坐标.所以方程0)(=x f 有实数解⇔函数)(x f y =有零点⇔函数)(x f y =的图像与x 轴有公共点.
3.几种常见函数的零点
(1)二次函数的零点
一元二次方程)(002≠=++a c bx ax 的实数根也称为函数)(02≠++=a c bx ax y 的零点.
当0>a 时,一元二次方程02=++c bx ax 的实数根、二次函数c bx ax y ++=2的零点之间的关系如下表所示: ac b 42-=∆
0>∆ 0=∆ 0<∆ 02=++c bx ax 的实数根
a ac
b b x 2422,1-±-=(其中21x x <)
a b x x 221-== 方程无实数根 c bx ax y ++=2的图像
c bx ax y ++=2的零点 a
ac b b x 2422
,1-±-= a b x x 221-== 函数无零点 类似可得当0<a 的情形.
(2)正比例函数)0(≠=k kx y 仅有一个零点0.
(3)一次函数)0(≠+=k b kx y 仅有一个零点.k
b -
(4)反比例函数)0(≠=k x k y 没有零点.
(5)指数函数)10(≠>=a a a y x 且没有零点.
(6)对数函数)且(00log ≠>=a a x y a 仅有一个零点1.
(7)幂函数,a x y =当0>a 时仅有一个零点0;当0≤a 时,没有零点.
例1-1:观察如图所示的四个函数图像,指出在)0,(-∞上哪个函数有零点.
例1-2:判断下列说法是否正确:
(1)函数)102(1)(≤≤-=x x x f 的零点为1;
(2)函数x x x f 2)(2-=的零点为(0,0),(2,0).
例1-3:函数x x x f -=3)(的零点个数是( )
A. 0
B. 1
C. 2
D. 3
例1-4:”
“1<m 是“函数m x x x f ++=2)(有零点”的( ) A. 充分不必要条件 B.充要条件
C.必要不充分条件
D.既不充分也不必要条件
知识点2:函数零点存在定理
1.函数零点存在定理
如果函数)(x f y =在区间],[b a 上的图像是一条连续不断的曲线,且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内至少有一个零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的解.
2.函数零点存在定理的几何意义.
在闭区间],[b a 上有连续不断的曲线)(x f y =,且曲线的起点))(,(a f a 与终点))(,(b f b 分别在x 轴的两侧,则连续曲线与x 轴至少有一个交点.
3.函数零点的性质
如果函数图像通过零点时穿过x 轴,则称这样的零点为变号零点.如图(1)所示,210,,x x x 都是变号零点;如果没有穿过x 轴,则称这样的零点为不变号零点,如图(2)所示,二次函数2x y =有一个不变号零点(或叫二重零点).
对于任意函数)(x f y =,只要它的图像是连续不断的,则有:
(1)当它的图像听过零点且穿过x 轴时,零点两侧的函数值异号;
(2)相邻两个零点之间的所有函数值保持同号.
例2-5:若函数)(x f y =在区间],[b a 上的图像是一条连续不断的曲线,则下列说法正确的是( )
A.若0)()(>⋅b f a f ,则不存在实数),(b a c ∈,使得0)(=c f
B.若0)()(<⋅b f a f ,则只存在实数),(b a c ∈,使得0)(=c f
C.若0)()(>⋅b f a f ,则有可能在实数),(b a c ∈,使得0)(=c f
D.若0)()(<⋅b f a f ,则有可能不存在实数),(b a c ∈,使得0)(=c f。