非线性动力学分析方法
- 格式:doc
- 大小:1.18 MB
- 文档页数:34
非线性动力学定性理论方法非线性动力学定性理论方法是一种研究动力系统行为的方法,用于研究非线性动力系统的稳定性、周期性、混沌性等特性。
在非线性动力学定性理论中,主要有相图分析法、频谱分析法、Lyapunov指数法、Poincaré截面法等多种方法。
相图分析法是研究非线性动力系统的最常用方法之一。
相图是描述动力系统状态变化规律的图形,其中横坐标表示系统的状态变量,纵坐标表示状态变量的导数或变化率。
相图可以通过绘制状态变量和导数之间的关系曲线得到。
相图分析法通过分析相图的形状和特征,可以判断系统的稳定性、周期运动和混沌运动等特性。
频谱分析法是一种通过分析系统输出信号的频谱特性来研究非线性动力系统的方法。
在频谱分析中,通过将系统的输出信号用傅立叶变换或小波变换等方法,将信号分解成一系列的频谱分量。
通过分析频谱的峰值位置、能量分布等特征,可以判断系统是否存在周期运动或混沌运动等特性。
Lyapunov指数法是研究非线性动力系统稳定性的一种方法。
Lyapunov指数可以用来描述系统状态的指数变化率,即用来刻画系统状态的稳定性或者混沌性。
通过计算Lyapunov指数,可以得到系统状态的变化趋势,从而判断系统是否稳定或者出现混沌行为。
Poincaré截面法是一种通过截取动力系统的轨迹与特定平面的交点,来研究非线性动力系统行为的方法。
在Poincaré截面法中,通过选择合适的截面,可以将系统的运动轨迹转化为一系列的离散点。
通过分析离散点的分布和变化规律,可以判断系统是否存在周期运动或混沌运动等特性。
以上介绍的是非线性动力学定性理论的一部分方法,这些方法在研究非线性动力系统的行为特性方面具有重要的应用价值。
通过相图分析、频谱分析、Lyapunov 指数计算和Poincaré截面分析等方法,可以全面地了解非线性动力系统的稳定性、周期性和混沌性等特性,为非线性动力系统的建模、控制和应用提供了重要的理论基础。
非线性系统动力学的研究与分析随着科技的进步和社会的发展,非线性系统动力学的研究与应用逐渐受到广泛关注。
非线性系统动力学是指在系统中包含非线性成分,且系统的演化过程不仅受到外部环境的影响,还受到系统内部动力学过程的调控与变化。
本文将探讨非线性系统动力学的研究与分析方法,介绍其在各个领域的应用,并展望未来的发展趋势。
一、非线性系统动力学的基本概念与原理非线性系统动力学的研究是基于系统的复杂性与非线性的特点展开的。
与线性系统不同,非线性系统的输入与输出之间的关系不具备比例关系,而是呈现出非线性的特征。
非线性系统动力学研究的基本概念主要包括:相空间、吸引子、分岔现象等。
相空间是非线性系统动力学中的重要概念,其描述了系统状态随时间演化的轨迹。
相空间中的每个点代表系统的一个具体状态,通过描述系统在相空间中的运动轨线,可以揭示系统的动力学特性。
吸引子是非线性系统动力学中的一个重要现象,指的是系统在长时间演化过程中,稳定地趋向于某个状态的集合。
吸引子可以是一个点、一条线或者一个空间区域,它揭示了系统从无序到有序、从混沌到稳定的过渡过程。
分岔现象是非线性系统动力学中的另一个重要现象,指的是系统参数发生微小变化时,系统演化过程发生根本性改变的现象。
分岔现象揭示了系统演化过程中的多样性和复杂性,对于理解和分析非线性系统的行为具有重要意义。
二、非线性系统动力学的研究方法与分析工具为了研究和分析非线性系统动力学,学者们提出了许多方法和工具。
其中,数值模拟方法、符号计算方法和实验观测方法是应用最广泛的研究手段。
数值模拟方法是基于计算机技术,通过数值计算的方式模拟非线性系统的演化过程。
这种方法可以模拟较为复杂的非线性系统,并通过分析系统的特性参数,揭示系统动力学的行为。
符号计算方法是利用数学符号运算的方式,推导和分析非线性系统的动力学行为。
通过建立系统的数学模型,使用符号计算软件进行求解和分析,可以得到系统的稳定性、周期性、分岔等动力学特征。
非线性动力学系统的建模与分析深入探究非线性动力学系统的建模与分析在科学研究中,许多系统都具有非线性特征,只有对这些系统进行深入的研究和建模,才能更好地了解其规律和特性。
非线性动力学系统的建模与分析,便是其中重要的一个方面。
一、非线性动力学系统的基本概念非线性动力学系统是由一个或多个非线性微分方程组成的系统,其特点在于其响应不随着输入信号呈线性变化。
这种系统一般存在着混沌现象、周期现象或者其他的非线性现象,因此其建模和分析具有很大的挑战性。
二、非线性动力学系统的建模方法1. 全局建模法全局建模法是一种直接把原系统转化为通用数学形式的建模方法,其核心是准确地描述系统的动力学状态,并且建立一个合适的数学模型以描述其动态行为。
2. 基于神经网络的建模法基于神经网络的建模法通过构建一种可以学习的算法,来从实验数据中获取非线性系统的内在结构和动态特征。
3. 非线性滤波法非线性滤波法是以基本的线性和非线性滤波器为基础来建立非线性动力学系统模型的方法。
三、非线性动力学系统的分析方法1. 稳态分析法稳态分析法主要是通过计算系统的稳定点、特征值和特征向量等指标来研究非线性系统的稳定性和性态。
2. 线性化分析法线性化分析法是将非线性系统模型线性化后,研究其内在特征,例如特征值和特征向量。
3. 数值分析法数值分析法是通过计算机模拟和数值解析方法,来研究非线性系统的动态特性和性态。
其中最为常用的方法包括Euler法和Runge-Kutta法等。
四、实例分析以一个简单的非线性动力学系统为例,假设其状态方程如下:$$\begin{cases} \dot{x}=y \\ \dot{y}=-\sin{x}-\cos{y}\end{cases}$$应用数值分析法,我们可以通过Euler法进行模拟仿真。
在t=10时,得出系统的稳定点位于(x,y)=(nπ,nπ/2),n为整数。
此外,我们还可以通过计算特征值和特征向量等指标,来研究该系统的特性。
非线性系统的动力学分析及控制研究随着科学技术的快速发展,对于动力学分析和控制研究的需求和重视也逐渐增加。
其中一种非常重要的研究对象就是非线性系统。
1.非线性系统概述非线性系统,简单来说就是不能被描述为线性关系的系统。
由于其比线性系统更复杂,因此难以进行精确的分析和控制,但非线性系统却可以描述许多自然界中的现象以及工程技术实践中的问题。
我们知道,线性系统的特性是“比例性”和“叠加性”,其输入和输出之间存在着数量上的线性关系。
但是,非线性系统在不同的输入下会产生系统响应的非线性变化。
其系统行为可能表现出变化多样、复杂、不可预知等特征。
这些性质决定了非线性系统的动力学不规则和不稳定性,对动力学的分析和控制构成了巨大的困难。
2.非线性系统的控制在非线性系统的控制领域中,最基本的方法就是通过反馈控制的方式,尽量减少系统的误差和稳态误差。
但对于非线性系统来说,它需要一些更为高级和复杂的控制策略,如模糊控制、神经网络控制、自适应控制等。
以自适应控制为例。
自适应控制方法是通过不断对过程进行监控,并改变控制器或控制算法的参数来实现快速、准确和自适应的控制。
这种方法的基本思想是根据系统的现实状况,进行实时修正和调整,使系统能更加灵活和稳定地运行。
但是,由于非线性系统的动力学特性,自适应控制系统设计也会面临很大的挑战。
这主要包括控制算法的设计、系统模型的定位和优化等一系列困难。
3.非线性系统的动力学分析非线性系统的动力学分析是非线性控制领域研究的核心问题之一。
涉及到非线性系统的稳定性、运动轨迹、系统响应等多个方面。
这里简单介绍一些非线性动力学分析方法。
首先是Lyapunov方法。
Lyapunov方法是通过构造Lyapunov函数,来判断非线性系统的稳定性。
主要思想就是找到一个函数,使得对于给定的初值,系统的状态必定会趋近于稳定。
通过求出Lyapunov函数的导数,然后判断其正负性,就能得出系统的稳定性。
另外还有基于相平面分析的方法。
非线性动力学系统的分析与控制随着科学技术的不断发展,人们对复杂系统的研究日益深入。
非线性系统时常出现在自然界和工程技术中,例如气象系统、化学反应、电路、生物系统、机械系统等等。
非线性系统具有极其丰富的动态行为,不同的系统之间存在着很大的差异性。
面对这些复杂多样的非线性系统,如何进行分析与控制是非常重要的。
一、非线性动力学系统的定义及特点非线性动力学系统是指在时间和空间上均发生动态行为的系统,其系统关系不是线性关系。
由于非线性因素的存在导致了系统的复杂性和不可预测性,系统可能表现出各种奇异的动态行为。
这些动态行为包括周期性运动、混沌、周期倍增等等。
一个非线性系统通常由多个部分组成,每个部分之间有相互作用,这种相互作用可以是线性的,也可以是非线性的。
与线性系统不同的是,非线性系统的各种状态和运动是非简单叠加的,微小的扰动可能会导致系统出现完全不同的行为,所以非线性系统的行为很难被准确地预测和控制。
二、非线性动力学系统的分析方法1. 数值方法数值方法是研究非线性系统的基本工具之一。
数值方法的核心是计算机程序,基本思路就是用计算机模拟系统的行为,通过计算机的演算,得出系统的动态变化。
在数值模拟中,巨大的数据量和模拟误差可能导致计算结果的不确定性。
为了解决这个问题,可以采用随机性和模糊性来描述不确定性,将非确定性的信息融入到模型和模拟中。
2. 动力学分析动力学分析是利用动力学知识进行对非线性系统的分析和研究。
通过对系统的本质特性进行分析,了解系统的发展趋势和行为特征。
动力学分析主要通过相空间画图、稳定性分析、流形理论等方法对非线性系统进行分析。
其中,相空间画图是研究非线性系统最常用的方法之一。
它可以将非线性系统的状态表示为相空间中的一点,通过画出系统在相空间中的运动轨迹,了解系统在不同初态下的动态行为。
3. 控制方法控制方法是为了改变非线性系统的行为,使其达到预期目标或保持稳定状态。
非线性系统的控制可以分为开环控制和反馈控制。
非线性动力学方法
非线性动力学方法是一种用于研究复杂系统的数学和计算方法。
它可以描述非线性系统中随时间演化的行为,并揭示系统的动力学性质。
非线性动力学方法包括以下几个方面:
1. 非线性微分方程: 非线性动力学方法主要研究非线性微分方程的解,这些方程描述了系统中各个变量之间的相互作用关系。
2. 相空间分析: 相空间是描述系统状态的空间,非线性动力学方法通过绘制相轨迹来分析系统在相空间中的运动轨迹,以揭示系统的稳定性、周期性和混沌行为等。
3. 分岔理论: 分岔理论研究系统在参数变化过程中出现的稳定性变化和态势的转变。
通过分析系统在不同参数值下的解的性质,可以确定系统的分岔点和分岔类型。
4. 混沌分析: 非线性动力学方法还研究系统中的混沌行为。
混沌是一种高度不确定和敏感依赖于初始条件的动力学行为,通过混沌分析方法,可以确定系统的Lyapunov指数和分岔图等。
非线性动力学方法在物理学、生物学、化学、经济学等众多领域具有重要应用,它可以揭示复杂系统的内在规律和行为特征,帮助人们更好地理解和预测自然和
人类活动中的各种现象。
机械系统的非线性动力学分析与控制一、引言机械系统的非线性动力学分析与控制是工程领域的重要研究方向。
随着科技的不断发展,机械系统的复杂性与非线性特性日益凸显,传统的线性分析和控制方法已经无法满足对系统性能和稳定性的要求。
因此,对机械系统的非线性动力学特性进行深入研究,并开发相应的控制策略,具有重要的理论和实际意义。
二、非线性动力学分析非线性动力学是机械系统中普遍存在的动力学行为,指的是系统在作用力的驱动下产生的非线性响应。
非线性动力学的分析是理解机械系统行为的基础。
常见的非线性现象包括周期性振动、混沌现象和共振现象等。
对于非线性系统,研究者通常运用数学工具和计算机模拟的方法来分析和解释其动力学特性。
其中,最常见的方法是利用微分方程和非线性微分方程来描述非线性系统的运动。
通过选择适当的控制参数和计算分析,可以获得系统的解析解或数值解。
通过对非线性动力学特性进行分析,可以深入理解机械系统的振动、稳定性和能量传递等方面的行为。
三、非线性动力学控制非线性动力学的控制是指通过设计控制策略和系统参数来影响和改善机械系统的非线性振动和行为。
控制是机械系统中重要的环节,旨在实现对系统运动和行为的精确调控。
传统的线性控制方法往往不能有效解决非线性动力学问题,因此非线性控制方法应运而生。
常见的非线性控制方法包括滑模控制、自适应控制和神经网络控制等。
滑模控制方法通过引入滑模面和滑模控制律,实现对系统状态的精确控制。
自适应控制方法则是根据系统的非线性特性和环境变化,动态地调整控制参数,提高控制系统的适应性和鲁棒性。
神经网络控制则通过模拟人脑神经元的连接方式和学习机制,实现复杂非线性系统的控制。
四、非线性系统应用实例非线性动力学分析与控制方法在实际工程中得到了广泛应用。
以飞机为例,飞机的非线性振动和控制问题是航空工程领域的重要研究方向。
非线性动力学分析方法可以揭示飞机结构和气动的耦合特性,从而为飞机结构的安全性和稳定性提供理论基础。
机械系统非线性动力学建模与分析方法在现代工程领域,机械系统的性能和可靠性对于各种设备的正常运行至关重要。
而理解和预测机械系统的动态行为则需要依靠有效的建模和分析方法,特别是在处理非线性问题时。
机械系统中的非线性现象广泛存在,例如摩擦、间隙、材料的非线性特性等,这些非线性因素会显著影响系统的性能和稳定性。
因此,对机械系统非线性动力学进行准确建模和深入分析具有重要的理论意义和实际应用价值。
非线性动力学建模是一个复杂而具有挑战性的任务。
首先,需要对机械系统的物理结构和工作原理有清晰的认识。
这包括确定系统中的各个部件、它们之间的连接方式以及所涉及的力和运动关系。
与线性系统不同,非线性系统的数学描述通常更加复杂,可能包含非线性函数、微分方程的高阶项等。
在建模过程中,常用的方法之一是基于牛顿力学定律。
通过对系统中每个部件进行受力分析,建立起相应的运动方程。
例如,对于一个简单的机械振动系统,可能需要考虑弹性力、阻尼力以及外部激励力等。
当存在非线性因素时,比如非线性弹簧或非线性阻尼,这些力的表达式就会变得更加复杂。
另一种常见的建模方法是基于能量原理。
通过分析系统的势能和动能,建立起拉格朗日方程或哈密顿方程。
这种方法在处理一些复杂的机械系统时,能够提供更简洁和统一的数学描述。
还有一种方法是利用实验数据来建立模型。
通过对机械系统进行实验测量,获取系统的输入输出数据,然后使用系统辨识技术来构建模型。
这种基于数据的建模方法在某些情况下可以有效地捕捉系统的非线性特性,但也存在一定的局限性,例如对实验条件的要求较高,数据的准确性和完整性等问题。
建立好模型之后,接下来就是对模型进行分析。
非线性动力学分析的方法多种多样,其中一种重要的方法是数值求解。
通过使用数值算法,如龙格库塔法、Adams 方法等,对非线性微分方程进行求解,得到系统在不同条件下的动态响应。
数值求解可以提供详细的时间历程信息,但计算量通常较大,并且需要对数值稳定性和精度进行仔细的考虑。
非线性动力学行为的建模与分析方法非线性动力学是研究非线性系统行为的一门学科。
在许多自然和社会现象中,非线性动力学行为都起着重要作用。
为了更好地理解和预测这些现象,人们需要建立合适的模型和分析方法。
建立非线性动力学模型的一种常用方法是基于微分方程。
微分方程是描述系统状态随时间变化的数学工具。
对于线性系统,微分方程可以用简单的线性方程表示,但对于非线性系统,方程往往更加复杂。
因此,研究者们提出了各种方法来处理非线性动力学模型。
其中一种常用的方法是使用数值模拟。
数值模拟是通过计算机程序来模拟系统的行为。
通过将微分方程转化为差分方程,可以使用数值方法来近似求解系统的演化。
数值模拟可以提供系统的详细行为,但也有一定的计算复杂性和误差。
另一种常用的方法是使用符号计算。
符号计算是利用计算机代数软件来进行数学推导和计算。
通过对微分方程进行符号化处理,可以得到系统的解析解或近似解。
符号计算可以提供系统的精确解,但对于复杂的非线性系统,符号计算的复杂性也会增加。
除了数值模拟和符号计算,还有一些其他的方法可以用于建模和分析非线性动力学行为。
例如,混沌理论是研究非线性系统中混沌行为的一门学科。
混沌行为是指系统在非线性影响下表现出的不可预测和随机的行为。
混沌理论提供了一些方法来描述和分析混沌行为,例如分岔图、Lyapunov指数等。
另一个重要的方法是网络动力学。
网络动力学是研究网络中节点之间相互作用所导致的动力学行为的一门学科。
网络动力学可以用于描述和分析复杂网络中的非线性行为,例如脑网络、社交网络等。
通过构建网络模型和分析网络拓扑结构,可以揭示网络中的非线性动力学行为。
在实际应用中,非线性动力学模型和分析方法被广泛应用于各个领域。
例如,在天气预报中,气象学家使用非线性动力学模型来预测气象系统的演化。
在金融市场中,经济学家使用非线性动力学模型来分析市场的波动和风险。
在生物学中,生物学家使用非线性动力学模型来研究生物系统的行为。
非线性系统的动力学分析方法研究非线性系统在自然界和工业应用中都很常见,它的特征是系统的响应与输入并不是简单的比例关系。
因此,在非线性系统的研究和实际应用中,需要运用一些特殊的动力学分析方法,以便更好地了解系统的特点和行为。
本文将介绍一些常见的非线性系统动力学分析方法,并探讨它们的优缺点和应用场景。
1. 相图法相图法基于相空间的概念,通过绘制系统状态变量在相图上的轨迹来揭示系统的动力学特性。
相空间指的是系统状态空间中每一点对应于系统特定时刻的状态。
在相图中,时间沿着轨迹的方向逐渐增加,而轨迹的形态和位置则反映了系统的稳定性和周期性。
相图法的优点是直观、直观、简单,可以很好地表示系统的稳定性和行为。
而且,不需要对系统建立模型,只需要绘制状态变量的轨迹即可。
然而,相图法主要适用于低维系统,高维系统中相图会变得非常复杂,难以可视化和分析。
此外,相图法只适用于不包含噪声和随机扰动的系统,对于这些系统需要使用其他方法进行分析。
2. 极点分布法极点分布法是一种基于系统响应函数的分析方法,它可以揭示系统在频域上的响应特性,并帮助预测系统的稳定性和振荡性。
极点表示了系统响应函数的部分分式展开式中的分母,通过寻找极点的位置可以推断系统的稳定性和振荡特性。
极点分布法可以用来分析例如电路、控制系统等连续时间非线性系统,也可以用来分析数字信号处理系统、数字控制系统等离散时间非线性系统。
极点分布法的优点是灵活性强、容易推断系统的稳定性和振荡特性。
同时,极点分布法可以很好地用于系统设计,因为它可以预测系统的稳定性和振荡性,从而指导系统参数设计和控制。
然而,极点分布法只适用于可以表示成有理函数形式的系统,不适用于非线性系统的分析。
3. 非线性映射方法非线性映射方法是一种用于非线性系统动力学分析的数学工具,它通过将非线性系统映射到另一个空间来揭示系统的动力学特性。
非线性映射方法的代表性算法是混沌理论中的Lyapunov指数方法和分形维数方法。
第一章非线性动力学分析方法(6学时)一、教学目标1、理解动力系统、相空间、稳定性的概念;2、掌握线性稳定性的分析方法;3、掌握奇点的分类及判别条件;4、理解结构稳定性及分支现象;5、能分析简单动力系统的奇点类型及分支现象。
二、教学重点1、线性稳定性的分析方法;2、奇点的判别。
三、教学难点线性稳定性的分析方法四、教学方法讲授并适当运用课件辅助教学五、教学建议学习本章内容之前,学生要复习常微分方程的内容。
六、教学过程本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。
相空间和稳定性一、动力系统在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。
再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。
然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。
研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。
假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。
有时,每个状态变量不但是时间t 的函数而且也是空间位置r的函数。
如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。
这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。
),,,(2111n X X X f dtdX ),,,(2122n X X X f dtdX (1.1.1)…),,,(21n n nX X X f dtdX 其中 代表某一控制参数。
对于较复杂的问题来说,i f (i =l ,2,…n)一般是 i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。
由于 i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。
若 i f 明显地依赖时间t ,则称方程组为非自治动力系统。
非自治动力系统可化为自治动力系统。
对于非自治动力系统,总可以化成自治动力系统。
例如:)cos(t A x x令y x,t z ,上式化为.cos , zz A x y y x 上式则是一个三维自治动力系统。
又如: ).,,(),,,(t v u g vt v u f u令t w ,则化为.1),,,(),,,(w w v u g v w v u f u它就是三微自治动力系统.对于常微分方程来说,只要给定初始条件方程就能求解。
对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。
能严格求出解析解的非线性微分方程组是极少的,大多数只能求数值解或近似解析解。
二、相空间由n 个状态变量 i X =(X 1,X 2,…X n )描述的系统,可以用这n 个状态变量为坐标轴支起一个n 维空间,这个n 维空间就称为系统的相空间。
在t 时刻,每个状态变量都有一个确定的值,这些值决定了相空间的一个点,这个点称为系统状态的代表点(相点),即它代表了系统t 时刻的状态。
随着时间的流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线。
它代表了系统状态的演化过程。
三、稳定性把方程组(1.1.1)简写如下),,,(21n i iX X X f dtdX , i =l ,2,…n (1.1.2) 设方程组(1.1.2)在初始条件00)(i i X t X 下的解为)(t X i ,如果用与原来略有差别的初始条件i i i X t X 00)(,i 是一个小扰动,就会得到方程组的新解)(t X i 。
如果对于任意给定的 >0,存在 >0,并且 i ,当0t t 时也满足 )()(t X t X i i ,i =l ,2,…n(1.1.3)则称方程组(1.1.2)的解)(t X i 是稳定的,否则它就是不稳定的。
这样定义的稳定性称为Lyapunov 稳定性。
如果)(t X i 是稳定的,并且满足极限条件 0)()(limt X t X i i t ,i =l ,2,…n(1.1.4)则称)(t X i 是惭近稳定的。
上述抽象的数学定义可以直观理解为:方程组对于不同的初始条件有不同的解,如果原初始条件)(0t X i 和受扰动后的初始条件)(0t X i 之差限定在一定的范围内,即)()(00t X t X i i ,未扰动解)(t X i 和扰动解)(t X i 之差也不超出一定的范围,即 )()(t X t X i i ,则末扰动解)(t X i 就是稳定的;如果)(t X i 渐渐趋近于)(t X i ,最终变得和)(t X i 一致,则称)(t X i 是渐近稳定的;如果)(t X i 与)(t X i 之差不存在一个有限范围,即)(t X i 远离)(t X i ,则称)(t X i 是不稳定的。
由上述Lyapunov 稳定性的定义可以看到,要对动力系统的解的稳定性做出判断,必须对动力学方程组求解,然而对于非线性动力系统是很难获得解析解的,即使获得近似解析解也是如此。
那么,我们能否象最小熵产生原理那样,不用对方程组具体求解就能对系统的稳定性作出判断。
Lyapunov 发展了这种判断方法,通常称为Lyapunov 第二方法。
这种方法主要是寻找(或构造)一个Lyapunov 函数,利用这个函数的性质对系统的稳定性作出判断。
线性稳定性分析通过上节对稳定性的定义我们知道,要对非线性微分方程组的解的稳定性作出判断,最好是求出它的解析解。
然而,对于大多数非线性微分方程组很难得到它们的解析解,甚至求近似解析解都是不可能的。
虽然Lyapunov 方法避开了这一困难,但寻找一个Lyapunov 函数仍存在着相当的困难。
那么我们能否不去对非线性方程组去求解,而采取一种既简单又有效的方法对非线性方程组定态解的稳定性作出定性的判断。
这样的方法是存在的,那就是线性稳定性分析方法。
它的主要思想是,在非线性微分方程组定态解的小邻域,把非线性微分方程组线性化,用线性微分方程组来研究定态解对小扰动的稳定性。
因为线性微分方程组是容易求解的,而且在定态解的小邻域,用线性微分方程组近似取代非线性微分方程组是合理,所以线性稳定性分析方法既简单又有效,是一种常用的稳定性分析方法。
首先通过一个简单的例子来了解线性稳定性分析的思路。
设有一非线性微分方程 )(12X f X dtdX(1.2.1)在定态X 0,00dtdX ,有01)(200 X X f(1.2.2)由此得到定态解101 X ,102 X(1.2.3)设)(t x 是定态附近的小扰动,即)()(0t x X t X(1.2.4) 10X x(1.2.5)把方程(1.2.4)代入方程,有202021x x X X dtdx (1.2.6)考虑到定态方程(1.2.2),并忽略小扰动x 的二次项,得x x Xfx X dt dx 00)(2 (1.2.7)其中002)(X Xf(1.2.8)是线性化系数。
方程(1.2.7)是非线性方程的线性化方程,容易求出它的解为t e x t x 0)(其中)0(0x x 是初始扰动。
讨论:定态解的稳定性取决于 的符号。
(1)如果 <0,定态解附近的扰动会随时间指数衰减,最后回到该定态,说明这个定态是稳定的;(2)如果 >0,定态附近的扰动会随时间指数增加,最后离开这个定态,表明该定态是不稳定的。
对于定态101 X ,0220 X ,01X 是稳定的;对于定态102 X ,0220 X ,02X 是不稳定的。
图 方程(1.2.2)的定态解的稳定性我们可以很容易求得方程(1.2.1)的精确解析解(为一双曲函数))()(k t th t X)0(1X th k ,1)0( X (1.2.9)对于不同的初始条件)0(X ,可以得到一系列的)(t X 曲线,它们随时间的演化行为如图所示,曲线族趋于X 01=1,离开X 02=-1。
这证明我们采用线化方程得到的定性结论是正确的。
上述例子虽然简单,但具有一般性,数学家对此作了证明,并形成线性稳定性定理。
设有非线性方程组),(j i iX f dtdX ,n j i ,,2,1, (1.2.10)并设)(t x i 是定态解 0i X 附近的小扰动,即)()(0t x X t X i i i10i iX x ,n i ,,2,1 (1.2.11)非线性方程组(1.2.10)在定态解 0i X 附近的线性化方程为nj j ji i x x f dt dx 10)((1.2.12)定理 如果线性化方程组(1.2.12)的零解(021 n x x x )是渐近稳定的,则非线性方程组的定态解 0i X 也是渐近稳定的;如果零解是不稳定的,则定态解 0i X 也是不稳定的。
线性稳定性定理保证了利用线性的方法来研究非线性方程定态解稳定性的有效性。
利用线性稳定性定理来研究非线性方程定态解稳定性的过程称为线性稳定性分析。
这种分析方法在处理实际问题中经常被用到。
值得提及的是,线性稳定性定理只是对线性化方程的零解是渐近稳定的或是不稳定的情形给出了结论,而对于零解是Lyapunov 稳定的并不是浙近稳定的情形没有给出任何信息。
这在下节会给予讨论。
奇点分类和极限环现在我们考虑只有两个状态变量(X ,Y)的非线性动力系统,即),(),(21Y X f dtdY Y X f dtdX(1.3.1)现在相空间变为分别以X 和Y 为坐标轴的二维相平面。
如果方程(1.3.1)的解存在且唯一,那么它的解在相平面上就表现为一条线。
轨线的斜率是)0(,),(),()0(,),(),(221112f Y X f Y X f dY dX f Y X f Y X f dX dY(1.3.2)只要),(1Y X f 和),(2Y X f 不同时为零且连续可微,轨线的斜率就是唯一的,它意味着轨线不相交。
如果轨线在相平面中某一点相交,则这一点的斜率就不是唯一的。
换句话说,数学上的解的存在与唯一性定理要求相空间中的轨线不能相交。
如果),(1Y X f 和),(2Y X f 同时为零,即0),(0),(002001Y X f Y X f (1.3.3)则有dX dY (1.3.4)这表明轨线的斜率不唯一。
我们把在相平面中使),(1Y X f 和),(2Y X f 同时等于零的点),(00Y X 称为奇点。
在相平面上除奇点之外的所有其他点都叫做正则点。
根据方程(1.3.3)我们知道,奇点就是非线性方程组的定态解。
因此,我们通过研究相空间中奇点的稳定性就可以知道定态解的稳定性。
只要我们弄清楚奇点附近轨线的分布及其流向,就能对奇点的稳定性作出判断。
为此我们设x(t)和y(t)是奇点),(00Y X 附近的小扰动,即)()(0t x X t X )()(0t y Y t Y(1.3.5)10 X x ,10Y y把非线性方程组(1.3.1)的右边在奇点),(00Y X 附近按Taytor 级数展开,并保留线性项,有y Y f x X f Y X f dt dx 0101001)()(),( ,y Yf x X f Y X f dt dy 0202002)()(),( (1.3.6)根据定态方程(1.3.3),方程式变为y a x a dt dx 1211 ,y a x a dtdx1211 (1.3.7)其中01120111)(,)(Y f a X f a ,022120221)(,)(Yfa X f a (1.3.8)下标0表示在定态取值。